Weightbearing Imaging Assessment of Midfoot Instability in Patients with Confirmed Hallux Valgus Deformity: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Creation
2.2. Inclusion and Exclusion Criteria
2.3. Study Definitions
2.4. Article Screening Process
2.5. Data Extraction
2.6. Article Quality Grading
2.7. Statistical Analysis
3. Results
3.1. Initial Study Results
3.2. Article Quality Results
3.3. General Patient Demographics
3.4. Severity of Hallux Valgus by Imaging
3.5. Midfoot Instability via Intermetatarsal Angle
3.6. Midfoot Instability via Tarsometatarsal Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mann, R.A.; Coughlin, M.J. Hallux valgus—Etiology, anatomy, treatment and surgical considerations. Clin. Orthop. Relat. Res. 1981, 157, 31–41. [Google Scholar] [CrossRef]
- Coughlin, M. Juvenile hallux valgus. In Surgery of the Foot and Ankle; Mosby: St. Louis, MO, USA, 1999. [Google Scholar]
- Perera, A.; Mason, L.; Stephens, M. The pathogenesis of hallux valgus. JBJS 2011, 93, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, M.J. Instructional course lectures, The American academy of orthopaedic surgeons-hallux valgus. JBJS 1996, 78, 932–966. [Google Scholar] [CrossRef]
- Coughlin, M.J. Hallux valgus: Causes, evaluation, and treatment. Postgrad. Med. 1984, 75, 174–187. [Google Scholar] [CrossRef]
- Hardy, R.; Clapham, J. Hallux valgus predisposing anatomical causes. Lancet 1952, 259, 1180–1183. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.; Clapham, J. Observations on hallux valgus. J. Bone Jt. Surg. Br. Vol. 1951, 33, 376–391. [Google Scholar] [CrossRef]
- Hawkins, F.; Mitchell, C.L.; Hedrick, D.W. Correction of hallux valgus by metatarsal osteotomy. JBJS 1945, 27, 387–394. [Google Scholar]
- Jones, C.P.; Coughlin, M.J.; Pierce-Villadot, R.; Golano, P.; Kennedy, M.P.; Shurnas, P.S.; Grebing, B.R.; Teachout, L. The validity and reliability of the Klaue device. Foot Ankle Int. 2005, 26, 951–956. [Google Scholar] [CrossRef]
- Hansen, S., Jr. Hallux valgus surgery. Morton and Lapidus were right! Clin. Podiatr. Med. Surg. 1996, 13, 347–354. [Google Scholar] [CrossRef]
- Hofbauer, M.; Grossman, J. The Lapidus procedure. Clin. Podiatr. Med. Surg. 1996, 13, 485–496. [Google Scholar] [CrossRef]
- Johnson, K.; Kile, T. Hallux valgus due to cuneiform-metatarsal instability. J. South. Orthop. Assoc. 1994, 3, 273–282. [Google Scholar] [PubMed]
- Myerson, M. Metatarsocuneiform arthrodesis for treatment of hallux valgus and metatarsus primus varus. Orthopedics 1990, 13, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lalevee, M.; Mansur, N.S.B.; Vandelune, C.A.; Dibbern, K.N.; Barg, A.; Femino, J.E.; Netto, C.d.C. Multiplanar instability of the first tarsometatarsal joint in hallux valgus and hallux rigidus patients: A case–control study. Int. Orthop. 2022, 46, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Brage, M.E.; Holmes, J.R.; Sangeorzan, B.J. The influence of X-ray orientation on the first metatarsocuneiform joint angle. Foot Ankle Int. 1994, 15, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Nix, S.; Smith, M.; Vicenzino, B. Prevalence of hallux valgus in the general population: A systematic review and meta-analysis. J. Foot Ankle Res. 2010, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.A.; Coughlin, M.J.; Duvries, H.L. Hallux rigidus: A review of the literature and a method of treatment. Clin. Orthop. Relat. Res. 1979, 142, 57–63. [Google Scholar] [CrossRef]
- Barg, A.; Harmer, J.R.; Presson, A.P.; Zhang, C.; Lackey, M.; Saltzman, C.L. Unfavorable outcomes following surgical treatment of hallux valgus deformity: A systematic literature review. J. Bone Jt. Surgery. Am. Vol. 2018, 100, 1563. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Conti, M.S.; Patel, T.J.; Zhu, J.; Elliott, A.J.; Conti, S.F.; Ellis, S.J. Association of first metatarsal pronation correction with patient-reported outcomes and recurrence rates in hallux valgus. Foot Ankle Int. 2022, 43, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.S.; Willett, J.F.; Garfinkel, J.H.; Miller, M.C.; Costigliola, S.V.; Elliott, A.J.; Conti, S.F.; Ellis, S.J. Effect of the modified Lapidus procedure on pronation of the first ray in hallux valgus. Foot Ankle Int. 2020, 41, 125–132. [Google Scholar] [CrossRef]
- Coughlin, M.J.; Jones, C.P. Hallux valgus: Demographics, etiology, and radiographic assessment. Foot Ankle Int. 2007, 28, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Faber, F.W.; Kleinrensink, G.-J.; Mulder, P.G.; Verhaar, J.A. Mobility of the first tarsometatarsal joint in hallux valgus patients: A radiographic analysis. Foot Ankle Int. 2001, 22, 965–969. [Google Scholar] [CrossRef]
- Greeff, W.; Strydom, A.; Saragas, N.P.; Ferrao, P.N.F. Radiographic assessment of relative first metatarsal length following modified lapidus procedure. Foot Ankle Int. 2020, 41, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Ding, S.; Zhang, M.; Reyes, K.C.; Zhu, M.; Sun, C. The role of first tarsometatarsal joint morphology and instability in the etiology of hallux valgus: A case-control study. Foot Ankle Int. 2023, 44, 778–787. [Google Scholar] [CrossRef]
- Kernozek, T.W.; Sterriker, S.A. Chevron (Austin) distal metatarsal osteotomy for hallux valgus: Comparison of pre-and post-surgical characteristics. Foot Ankle Int. 2002, 23, 503–508. [Google Scholar] [CrossRef] [PubMed]
- King, D.M.; Toolan, B.C. Associated deformities and hypermobility in hallux valgus: An investigation with weightbearing radiographs. Foot Ankle Int. 2004, 25, 251–255. [Google Scholar] [CrossRef]
- Kopp, F.J.; Patel, M.M.; Levine, D.S.; Deland, J.T. The modified Lapidus procedure for hallux valgus: A clinical and radiographic analysis. Foot Ankle Int. 2005, 26, 913–917. [Google Scholar] [CrossRef]
- Lalevée, M.; Mansur, N.S.B.; Dibbern, K.; Briggs, H.; Maly, C.J.; de Carvalho, K.A.M.; Lintz, F.; Netto, C.d.C. Coronal Plane Rotation of the Medial Column in Hallux Valgus: A Retrospective Case-Control Study. Foot Ankle Int. 2022, 43, 1041–1048. [Google Scholar] [CrossRef]
- Ahuero, J.S.; Kirchner, J.S.; Ryan, P.M. Medial Cuneiform Opening-Wedge Osteotomy for the Treatment of Hallux Valgus. Foot Ankle Orthop. 2019, 4, 2473011418813318. [Google Scholar] [CrossRef]
- Ferreyra, M.; Pericé, R.V.; Nuñez-Samper, M.; Ibáñez, L.; Ibarra, M.; Vilá-Rico, J. Can we correct first metatarsal rotation and sesamoid position with the 3D Lapidus procedure? Foot Ankle Surg. 2022, 28, 313–318. [Google Scholar] [CrossRef]
- Ozturk, A.M.; Suer, O.; Coban, I.; Ozer, M.A.; Govsa, F. Three-dimensional printed anatomical models help in correcting foot alignment in hallux valgus deformities. Indian J. Orthop. 2020, 54, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Manceron, A.; Cazeau, C.; Hardy, A.; Piat, C.; Bauer, T.; Stiglitz, Y. Correlation between first tarsometatarsal joint mobility and hallux valgus severity. Int. Orthop. 2022, 46, 855–859. [Google Scholar] [CrossRef]
- Kimura, T.; Kubota, M.; Taguchi, T.; Suzuki, N.; Hattori, A.; Marumo, K. Evaluation of first-ray mobility in patients with hallux valgus using weight-bearing CT and a 3-D analysis system: A comparison with normal feet. JBJS 2017, 99, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Dayton, P.; Carvalho, S.; Egdorf, R.; Dayton, M. Comparison of radiographic measurements before and after triplane tarsometatarsal arthrodesis for hallux valgus. J. Foot Ankle Surg. 2020, 59, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Naguib, S.; Derner, B.; Meyr, A.J. Evaluation of the mechanical axis of the first ray before and after first metatarsal-phalangeal joint reconstructive surgery. J. Foot Ankle Surg. 2018, 57, 1140–1142. [Google Scholar] [CrossRef]
- Oravakangas, R.; Leppilahti, J.; Laine, V.; Niinimäki, T. Proximal opening wedge osteotomy provides satisfactory midterm results with a low complication rate. J. Foot Ankle Surg. 2016, 55, 456–460. [Google Scholar] [CrossRef]
- Randich, J.R.; John, K.J.; Gomez, K.; Bush, W.J. Frontal plane rotation of the first Ray in hallux valgus using standing computerized tomography (CT). J. Foot Ankle Surg. 2021, 60, 489–493. [Google Scholar] [CrossRef]
- Thompson, J.M.; Hyer, C.F. Maintenance of Correction of the Modified Lapidus Procedure with a First Metatarsal to Second Metatarsal Screw with “Spot Weld” Technique: A Retrospective and Radiographic Analysis. J. Foot Ankle Surg. 2023, 62, 707–711. [Google Scholar] [CrossRef]
- Klemola, T.; Savola, O.; Ohtonen, P.; Ojala, R.; Leppilahti, J. First Tarsometatarsal Joint Derotational Arthrodesis for Flexible Hallux Valgus: Results from Follow-Up of 3–8 Years. Scand. J. Surg. 2017, 106, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Almaawi, A.; Albqami, S.; Zamzami, M.; Alshahrani, S.; Alsahil, M. Radiological Assessment of Postoperative Changes Following Lapidus Procedure for the Treatment of Hallux Valgus. Ann. Med. Health Sci. Res. 2021, 11, 1378–1384. [Google Scholar]
- Karasick, D.; Wapner, K.L. Hallux valgus deformity: Preoperative radiologic assessment. AJR Am. J. Roentgenol. 1990, 155, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Faber, F.W.; Kleinrensink, G.-J.; Verhoog, M.W.; Vijn, A.H.; Snijders, C.J.; Mulder, P.G.; Verhaar, J.A. Mobility of the first tarsometatarsal joint in relation to hallux valgus deformity: Anatomical and biomechanical aspects. Foot Ankle Int. 1999, 20, 651–656. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, K.A.; Walt, J.S.; Ehret, A.; Tazegul, T.E.; Dibbern, K.; Mansur, N.S.; Lalevée, M.; de Cesar Netto, C. Comparison between Weightbearing-CT semiautomatic and manual measurements in Hallux Valgus. Foot Ankle Surg. 2022, 28, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, K.; Metikala, S.; Mehta, S.D.; Fryhofer, G.W.; Farber, D.C.; Prat, D. The role of weightbearing computed tomography scan in hallux valgus. Foot Ankle Int. 2021, 42, 287–293. [Google Scholar] [CrossRef]
- Najefi, A.-A.; Katmeh, R.; Zaveri, A.K.; Alsafi, M.K.; Garrick, F.; Malhotra, K.; Patel, S.; Cullen, N.; Welck, M. Imaging findings and first metatarsal rotation in hallux valgus. Foot Ankle Int. 2022, 43, 665–675. [Google Scholar] [CrossRef]
- Coughlin, M.J.; Freund, E. The reliability of angular measurements in hallux valgus deformities. Foot Ankle Int. 2001, 22, 369–379. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.S.; Young, K.W.; Naraghi, R.; Cho, H.K.; Lee, S.Y. A new measure of tibial sesamoid position in hallux valgus in relation to the coronal rotation of the first metatarsal in CT scans. Foot Ankle Int. 2015, 36, 944–952. [Google Scholar] [CrossRef]
- Shibuya, N.; Kyprios, E.M.; Panchani, P.N.; Martin, L.R.; Thorud, J.C.; Jupiter, D.C. Factors associated with early loss of hallux valgus correction. J. Foot Ankle Surg. 2018, 57, 236–240. [Google Scholar] [CrossRef]
- Wagner, P.; Lescure, N.; Siddiqui, N.; Fink, J.; Wagner, E. Validity and reliability of a new radiological method to estimate medial column internal rotation in hallux valgus using foot weight-bearing X-ray. Foot Ankle Spec. 2021. [Google Scholar] [CrossRef] [PubMed]
- Lintz, F.; Bernasconi, A.; Fernando, C.; Welck, M.; Netto, C.d.C. Three-Dimensional Weightbearing Assessment of the First Ray in Hallux Valgus: A Case-Control Study. Foot Ankle Orthop. 2019, 4, 2473011419S00050. [Google Scholar] [CrossRef]
- Ray, J.J.; Koay, J.; Dayton, P.D.; Hatch, D.J.; Smith, B.; Santrock, R.D. Multicenter early radiographic outcomes of triplanar tarsometatarsal arthrodesis with early weightbearing. Foot Ankle Int. 2019, 40, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Dayton, P.; Kauwe, M.; Feilmeier, M. Is our current paradigm for evaluation and management of the bunion deformity flawed? A discussion of procedure philosophy relative to anatomy. J. Foot Ankle Surg. 2015, 54, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Mashima, N.; Yamamoto, H.; Tsuboi, I.; Tsuchiya, H.; Tanaka, Y.; Watanabe, S. Correction of hallux valgus deformity using the center of rotation of angulation method. J. Orthop. Sci. 2009, 14, 377–384. [Google Scholar] [CrossRef]
- Mortier, J.-P.; Bernard, J.-L.; Maestro, M. Axial rotation of the first metatarsal head in a normal population and hallux valgus patients. Orthop. Traumatol. Surg. Res. 2012, 98, 677–683. [Google Scholar] [CrossRef]
- Paley, D.; Herzenberg, J.E.; Tetsworth, K.; McKie, J.; Bhave, A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop. Clin. N. Am. 1994, 25, 425–466. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takakura, Y.; Kumai, T.; Samoto, N.; Tamai, S. Radiographic analysis of hallux valgus. A two-dimensional coordinate system. JBJS 1995, 77, 205–213. [Google Scholar] [CrossRef]
- Wagner, E.; Ortiz, C.; Wagner, P. Using the center of rotation of angulation concept in hallux valgus correction: Why do we choose the proximal oblique sliding closing wedge osteotomy? Foot Ankle Clin. 2018, 23, 247–256. [Google Scholar] [CrossRef]
- Watanabe, K.; Ikeda, Y.; Suzuki, D.; Teramoto, A.; Kobayashi, T.; Suzuki, T.; Yamashita, T. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet. Clin. Biomech. 2017, 42, 65–69. [Google Scholar] [CrossRef]
Author (Year) | Study Type | Total MINORS Score | Clearly Stated Aim | Inclusion of Consecutive Patients | Prospective Collection of Data | End Points Appropriate to Study Aim | Unbiased Assessment of Study End Point | Follow-Up Period Appropriate to Study Aim | Less Than 5% Lost to Follow Up | Prospective Calculation of the Study Size | Adequate Control Group | Contemporary Groups | Baseline Equivalence of Groups | Adequate Statistical Analysis |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conti (2020) [23] | Non-comparative | 10 | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | - | - | - | - |
King (2004) [29] | Comparative | 15 | 2 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
Ferreyra (2022) [33] | Non-comparative | 8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | - | - | - | - |
Kernozek (2002) [28] | Non-comparative | 6 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 0 | - | - | - | - |
Dayton (2020) [37] | Non-comparative | 9 | 2 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | - | - | - | - |
Lalevée (2022) [31] | Comparative | 16 | 2 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | 2 | 2 |
Manceron (2022) [35] | Non-comparative | 8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | - | - | - | - |
Conti (2022) [22] | Non-comparative | 12 | 2 | 2 | 1 | 2 | 0 | 1 | 2 | 2 | - | - | - | - |
Kimura (2017) [36] | Comparative | 20 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 |
Naguib (2018) [38] | Non-comparative | 7 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | - | - | - | - |
Klemola (2017) [42] | Non-comparative | 7 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | - | - | - | - |
Randich (2021) [40] | Comparative | 16 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 1 | 2 | 1 | 2 |
Coughlin (2007) [24] | Non-comparative | 10 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | - | - | - | - |
Thompson (2023) [41] | Non-comparative | 9 | 2 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | - | - | - | - |
Ahuero (2019) [32] | Non-comparative | 12 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | - | - | - | - |
Faber (2001) [25] | Non-comparative | 6 | 1 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | - | - | - | - |
Lee (2022) [14] | Comparative | 14 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 2 | 1 | 2 |
Oravakangas (2016) [39] | Non-comparative | 8 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | - | - | - | - |
Greeff (2020) [26] | Non-comparative | 5 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | - | - | - | - |
Almaawi (2021) [43] | Non-comparative | 9 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 0 | - | - | - | - |
Kopp (2005) [30] | Non-comparative | 8 | 2 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | - | - | - | - |
Ji (2023) [27] | Comparative | 16 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 |
Ozturk (2020) [34] | Non-comparative | 8 | 2 | 1 | 0 | 2 | 0 | 1 | 2 | 0 | - | - | - | - |
Author (Year) | Study TYPE | Treatment Group | Patients (n) | Feet (n) | Mean Age (Standard Deviation) (Range) | Imaging Modality | HVA (AP) | HVA (Lateral) | HVA (Axial) | HVA (Sagittal) | HVA (Frontal) | DMAA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conti (2020) [23] | Retrospective | HV | 31 | 31 | 51.2 (29–67) | WBCT | - | - | - | 29.9 (17–47) | - | - |
Lalevée (2022) [31] | Retrospective | Healthy | 20 | 20 | 37.3 (16.5) | WBCT | - | - | - | - | - | - |
HV | 22 | 22 | 40.1 (17.4) | - | - | - | - | - | - | |||
Kimura (2017) [36] | Retrospective | Healthy | 10 | 10 | 56 (5) (50–66) | WBCT | - | - | - | 14.1 (2.8) | - | - |
HV | 10 | 10 | 58 (14.2) (33–74) | - | - | - | 43.2 (10.1) | - | - | |||
Randich (2021) [40] | Retrospective | Healthy | 36 | 36 | 49.31 (12.71) | WBCT | - | - | - | - | 11.03 (6.56) | - |
HV | 10 | 10 | 53.00 (19.35) | - | - | - | - | 28.66 (10.99) | - | |||
Lee (2022) [14] | Retrospective | Healthy | 30 | 30 | 42.97 (17.52) | WBCT | - | - | 7.52 (4.49) | - | - | - |
HV | 27 | 30 | 54.20 (14.01) | - | - | 33.50 (9.47) | - | - | - | |||
Ji (2023) [27] | Retrospective | Healthy | - | 79 | 42 (32–51) | WBCT | - | - | 11.6 (10.1–14.0) | - | - | - |
HV | - | 82 | 46 (37–55) | - | - | 30.4 (22.4–38.6) | - | - | - | |||
Conti (2022) [22] | Retrospective | HV | 39 | - | 51.5 (24.1–64.3) | WBRG | 33.2 (10.7) | - | - | - | - | - |
WBCT | - | - | - | - | - | - | ||||||
King (2004) [29] | Prospective | Healthy | 15 | - | 36 (15) (18–62) | WBRG | 5 (3) | - | - | - | - | - |
HV | 25 | - | 48 (17) (14–81) | 13 (7) | - | - | - | - | - | |||
Ferreyra (2022) [33] | Retrospective | HV | 30 | 37 | 45.68 (15–76) | WBRG | 32.12 | - | - | - | - | - |
Kernozek (2002) [28] | Retrospective | HV | 25 | - | 43 (40–60) | WBRG | 31.7 (4.7) | - | - | - | - | - |
Naguib (2018) [38] | Retrospective | HV | - | 59 | - | WBRG | 11.59 (3.79) | - | - | - | - | - |
Klemola (2017) [42] | Retrospective | HV | 66 | 84 | 47.9 (10.2) | WBRG | 30.1 (7.0) | - | - | - | - | - |
Coughlin (2007) [24] | Retrospective | HV | 103 | 122 | 50 (22–78) | WBRG | 30 (20–53) | - | - | - | - | 10 (0–20) |
Thompson (2023) [41] | Retrospective | HV | 77 | 90 | 48.8 (16.2) | WBRG | - | - | - | - | - | - |
Ahuero (2019) [32] | Retrospective | HV | 13 | 14 | 56 (22–75) | WBRG | 32 (26.5–41) | - | - | - | - | - |
Faber (2001) [25] | Prospective | HV | 94 | 109 | 41.4 (15–63) | WBRG | - | - | - | - | - | - |
Oravakangas (2016) [39] | Retrospective | HV | 20 | 23 | 50 (22–69) | WBRG | 38 (5) | - | - | - | - | - |
Greeff (2020) [26] | Retrospective | HV | 23 | 32 | 43 (20–68) | WBRG | 33 (16–46) | - | - | - | - | 16 (4–26) |
Almaawi (2021) [43] | Retrospective | HV | 89 | 100 | 40.7 | WBRG | 33.2 (8.0) | - | - | - | - | - |
Kopp (2005) [30] | Retrospective | HV | 29 | 34 | 54.2 (27–84) | WBRG | 33.6 (17–61) | - | - | - | - | - |
Ozturk (2020) [34] | Prospective | HV | 10 | 10 | 59.3 (15.8) (25–72) | WBRG | 38.4 (6.5) | - | - | - | - | - |
Manceron (2022) [35] | Retrospective | HV | - | 20 | - | WBRG | 32 | - | - | - | - | - |
HV | - | 20 | - | 34.2 | - | - | - | - | - | |||
HV | - | 9 | - | 37.9 | - | - | - | - | - | |||
Dayton (2020) [37] | Retrospective | HV | 108 | 109 | 33.9 (14.1) | WBRG | 22.9 (7.6) | - | - | - | - | 19.6 (9.2) |
Author (Year) | Treatment Group | Patients | # Feet | IMT Angle (AP) | IMT Angle (Lateral) | IMT Angle (Axial) | IMT Angle (Sagittal) | IMT Angle (Frontal) | TMT Angle (AP) | TMT Angle (Lateral) | TMT Angle (Axial) | TMT Angle (Sagittal) | TMT Angle (Frontal) | Sagittal Lift (mm) | Meary’s Angle |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conti (2020) [23] | HV | 31 | 31 | - | - | - | 16.7 (10–25) | - | - | - | - | - | - | - | - |
Lalevée (2022) [31] | Healthy | 20 | 20 | - | - | - | - | - | - | - | - | - | - | - | - |
HV | 22 | 22 | - | - | - | - | - | - | - | - | - | - | - | - | |
Kimura (2017) [36] | Healthy | 10 | 10 | - | - | - | 9.3 (1.3) | - | - | - | - | 3.2 (1.3) | - | - | - |
HV | 10 | 10 | - | - | - | 22.1 (4.1) | - | - | - | - | 6.5 (2.6) | - | - | - | |
Randich (2021) [40] | Healthy | 36 | 36 | - | - | - | - | 8.77 (2.45) | - | - | - | - | −1.28 (6.33) | - | - |
HV | 10 | 10 | - | - | - | - | 16.45 (4.47) | - | - | - | - | −5.36 (6.28) | - | - | |
Lee (2022) [14] | Healthy | 30 | 30 | - | - | 9.46 (2.58) | - | - | - | - | - | 0.23 (0.42) | - | - | - |
HV | 27 | 30 | - | - | 16.98 (5.27) | - | - | - | - | - | 1.15 (1.23) | - | - | - | |
Ji (2023) [27] | Healthy | - | 79 | - | - | 8.3 (7.8–8.7) | - | - | - | - | - | 0.9 (0.8–1.0) | - | - | - |
HV | - | 82 | - | - | 14.8 (11.8–16.7) | - | - | - | - | - | 1.6 (1.6–2.1) | - | - | - | |
Conti (2022) [22] | HV | 39 | - | 15.6 (3.2) | - | - | - | - | - | - | - | - | - | - | - |
- | - | - | - | - | - | - | - | - | - | - | - | ||||
King (2004) [29] | Healthy | 15 | - | 8 (2) | - | 0.0001 | - | - | 8 (4) | 4 (8) | - | - | - | 0.3 (0.5) | - |
HV | 25 | - | 15 (3) | - | - | - | 11 (7) | 13 (8) | - | - | - | 2 (2) | - | ||
Ferreyra (2022) [33] | HV | 30 | 37 | 16.42 | - | - | - | - | 27.2 (7.3) | - | - | - | - | - | - |
Kernozek (2002) [28] | HV | 25 | - | 14.5 (1.7) | - | - | - | - | - | - | - | - | - | - | - |
Naguib (2018) [38] | HV | - | 59 | 23.86 (7.76) | - | - | - | - | - | - | - | - | - | - | - |
Klemola (2017) [42] | HV | 66 | 84 | 13.3 (2.7) | - | - | - | - | - | - | - | - | - | - | −3.7 (6.8) |
Coughlin (2007) [24] | HV | 103 | 122 | 14.5 (7–23) | - | - | - | - | - | - | - | - | - | - | - |
Thompson (2023) [41] | HV | 77 | 90 | 14.9 (3.1) | - | - | - | - | - | - | - | - | - | - | - |
Ahuero (2019) [32] | HV | 13 | 14 | 16 (9.5–21) | - | - | - | - | - | - | - | - | - | - | - |
Faber (2001) [25] | HV | 94 | 109 | - | - | - | - | - | - | 12.9 (4.8) | - | - | - | - | - |
Oravakangas (2016) [39] | HV | 20 | 23 | 17 (2) | - | - | - | - | - | - | - | - | - | - | −5 (8) |
Greeff (2020) [26] | HV | 23 | 32 | 15 (11–20) | - | - | - | - | - | - | - | - | - | - | - |
Almaawi (2021) [43] | HV | 89 | 100 | 14.4 (3.3) | - | - | - | - | - | - | - | - | - | - | 5.5 (4.1) |
Kopp (2005) [30] | HV | 29 | 34 | 15.9 (10–22) | - | - | - | - | - | - | - | - | - | - | - |
Ozturk (2020) [34] | HV | 10 | 10 | 13.8 (0.5) | - | - | - | - | - | - | - | - | - | - | - |
Manceron (2022) [35] | HV | - | 20 | 13.3 | - | - | - | - | - | - | - | - | - | - | - |
HV | - | 20 | 14.8 | - | - | - | - | - | - | - | - | - | - | - | |
HV | - | 9 | 16.9 | - | - | - | - | - | - | - | - | - | - | - | |
Dayton (2020) [37] | HV | 108 | 109 | 13.3 (2.4) | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talaski, G.M.; Baumann, A.N.; Sleem, B.; Anastasio, A.T.; Walley, K.C.; O’Neill, C.N.; Adams, S.B. Weightbearing Imaging Assessment of Midfoot Instability in Patients with Confirmed Hallux Valgus Deformity: A Systematic Review of the Literature. Diagnostics 2024, 14, 193. https://doi.org/10.3390/diagnostics14020193
Talaski GM, Baumann AN, Sleem B, Anastasio AT, Walley KC, O’Neill CN, Adams SB. Weightbearing Imaging Assessment of Midfoot Instability in Patients with Confirmed Hallux Valgus Deformity: A Systematic Review of the Literature. Diagnostics. 2024; 14(2):193. https://doi.org/10.3390/diagnostics14020193
Chicago/Turabian StyleTalaski, Grayson M., Anthony N. Baumann, Bshara Sleem, Albert T. Anastasio, Kempland C. Walley, Conor N. O’Neill, and Samuel B. Adams. 2024. "Weightbearing Imaging Assessment of Midfoot Instability in Patients with Confirmed Hallux Valgus Deformity: A Systematic Review of the Literature" Diagnostics 14, no. 2: 193. https://doi.org/10.3390/diagnostics14020193
APA StyleTalaski, G. M., Baumann, A. N., Sleem, B., Anastasio, A. T., Walley, K. C., O’Neill, C. N., & Adams, S. B. (2024). Weightbearing Imaging Assessment of Midfoot Instability in Patients with Confirmed Hallux Valgus Deformity: A Systematic Review of the Literature. Diagnostics, 14(2), 193. https://doi.org/10.3390/diagnostics14020193