Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Group Allocation
2.2. Recruitment and Ethics Approval
2.3. Inclusion and Exclusion Criteria
2.4. Extraction of Spines and Cancellous Bone
2.5. Diagnostic Imaging
2.5.1. CT and QCT
2.5.2. Micro-CT Images and Evaluation of Microarchitecture
2.6. Statistics
3. Results
3.1. QCT
3.2. Micro-CT
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
- Due to the unique and unchanging microstructure of cervical vertebrae with age, fractures in this region are extremely rare, even in the presence of osteoporosis.
- The different puncture directions used when obtaining cancellous bone from the vertebrae revealed an inhomogeneous microarchitecture inside the vertebrae.
- The highest bone volume fraction was seen in the marginal subcortical areas. Moreover, there were differences when using different puncture directions.
- For clinical practice using QCT measurements, at a cancellous bone mineral density of <60 mg/cm3 in the LS, we observed frequent insufficiency fractures in the spine, with the exception of the CS.
- The differences in bone volume fraction between the center of the vertebra and its marginal regions, as well as between the individual segments of the spine, helped explain fractures in the fish vertebrae.
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Al | Aluminum |
BMD | Bone mineral density |
BMI | Body mass index |
BVF | Bone volume fraction |
cm | Centimeter |
CC | craniocaudal |
CS | Cervical spine |
CT | Computed tomography |
CV | Cervical vertebra |
Conn.D | Connectivity density |
DA | Degree of anisotropy |
DXA | Dual-energy X-ray absorptiometry |
Fig. | Figure |
Fs | Fracture |
g/cm3 | Gram/cubic centimeter |
kV | Kilovolt |
LV | Lumbar vertebra |
LS | Lumbar spine |
mg/cm3 | Milligram/cubic centimeter |
mg/mL | Milligram/milliliter |
Micro-CT | Micro-computed tomography |
Mio. | Million |
mL | Milliliter |
mm | Millimeter |
M | Mean value |
OP | Osteoporosis |
Q I | Quadrant I |
Q II | Quadrant II |
Q III | Quadrant III |
QCT | Quantitative computed tomography |
ROI | Region of interest |
SD | Standard deviation |
SMI | Structure model index |
TS | Thoracic spine |
TV | Thoracic vertebra |
Tb.N | Trabecular number |
Tb.Pf | Trabecular pattern factor |
Tb.Sp | Trabecular separation |
Tb.Th | Trabecular thickness |
VD | Ventrodorsal |
VFs | Vertebral fractures |
µm | Micrometer |
µA | Microampere |
References
- Chen, H.; Kubo, K.-Y. Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J. Orthop. 2014, 5, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Zanker, J.; Duque, G. Osteoporosis in Older Persons: Old and New Players. J. Am. Geriatr. Soc. 2019, 67, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.; Bauer, D.; Davison, K.; Dian, L.; Hanley, D.; Harris, S.; McClung, M.; Miller, P.; Schousboe, J.; Yuen, C.; et al. Vertebral Fractures: Clinical Importance and Management. Am. J. Med. 2016, 129, 221.e1–10. [Google Scholar] [CrossRef] [PubMed]
- Waterloo, S.; A Ahmed, L.; Center, J.R.; A Eisman, J.; Morseth, B.; Nguyen, N.D.; Nguyen, T.; Sogaard, A.J.; Emaus, N. Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet. Disord. 2012, 13, 3. [Google Scholar] [CrossRef]
- Ea, H.-K.; Weber, A.-J.; Yon, F.; Lioté, F. Osteoporotic fracture of the dens revealed by cervical manipulation. Jt. Bone Spine 2004, 71, 246–250. [Google Scholar] [CrossRef]
- Ostrowski, C.; Ronan, L.; Sheridan, R.; Pearce, V. An osteoporotic fracture mimicking cervical dystonia in idiopathic Parkinson’s disease. Age Ageing 2013, 42, 658–659. [Google Scholar] [CrossRef]
- Schröder, G.; Hiepe, L.; Moritz, M.; Vivell, L.-M.; Schulze, M.; Martin, H.; Götz, A.; Andresen, J.R.; Kullen, C.M.; Andresen, R.; et al. Why Insufficiency Fractures are Rarely Found in the Cervical Spine, Even with Osteoporosis. Z. Orthop. Unf. 2021, 160, 657–669. [Google Scholar] [CrossRef]
- Chen, H.; Shoumura, S.; Emura, S.; Bunai, Y.; Azuma, K. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos. Int. 2008, 19, 1473–1483. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, M.; Yeung, H.Y.; Qin, L. Regional variations in microstructural properties of vertebral trabeculae with aging. J. Bone Min. Metab. 2005, 23, 174–180. [Google Scholar] [CrossRef]
- Grote, H.; Amling, M.; Vogel, M.; Hahn, M.; Pösl, M.; Delling, G. Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 1995, 16, 301–308. [Google Scholar] [CrossRef]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Min. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef]
- Bassgen, K.; Westphal, T.; Haar, P.; Kundt, G.; Mittlmeier, T.; Schober, H.-C. Population-based prospective study on the incidence of osteoporosis-associated fractures in a German population of 200,413 inhabitants. J. Public. Health 2013, 35, 255–261. [Google Scholar] [CrossRef]
- Schröder, G.; Baginski, A.M.; Schulze, M.; Hiepe, L.; Bugaichuk, S.; Martin, H.; Andresen, J.R.; Moritz, M.; Andresen, R.; Schober, H.-C. Regional variations in the intra- and intervertebral trabecular microarchitecture of the osteoporotic axial skeleton. Anat. Sci. Int. 2023, 98, 566–579. [Google Scholar] [CrossRef]
- Schröder, G.; Denkert, K.; Hiepe, L.; Schulze, M.; Martin, H.; Andresen, J.R.; Andresen, R.; Büttner, A.; Schober, H.-C. Histomorphometric analysis of osteocyte density and trabecular structure of 92 vertebral bodies of different ages and genders. Ann. Anat. 2023, 246, 152022. [Google Scholar] [CrossRef] [PubMed]
- Banse, X.; Devogelaer, J.; Munting, E.; Delloye, C.; Cornu, O.; Grynpas, M. Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 2001, 28, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, X.; Fujita, H.; Onozuka, M.; Kubo, K.-Y. Age-related changes in trabecular and cortical bone microstructure. Int. J. Endocrinol. 2013, 2013, 213234. [Google Scholar] [CrossRef] [PubMed]
- Follet, H.; Farlay, D.; Bala, Y.; Viguet-Carrin, S.; Gineyts, E.; Burt-Pichat, B.; Wegrzyn, J.; Delmas, P.; Boivin, G.; Chapurlat, R. Determinants of microdamage in elderly human vertebral trabecular bone. PLoS ONE 2013, 8, e55232. [Google Scholar] [CrossRef]
- McDonnell, P.; McHugh, P.E.; O’Mahoney, D. Vertebral osteoporosis and trabecular bone quality. Ann. Biomed. Eng. 2007, 35, 170–189. [Google Scholar] [CrossRef]
- Mosekilde, L. Age-related changes in vertebral trabecular bone architecture—Assessed by a new method. Bone 1988, 9, 247–250. [Google Scholar] [CrossRef]
- Jensen, K.S.; Mosekilde, L. A model of vertebral trabecular bone architecture and its mechanical properties. Bone 1990, 11, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Homminga, J.; Van-Rietbergen, B.; Lochmüller, E.; Weinans, H.; Eckstein, F.; Huiskes, R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 2004, 34, 510–516. [Google Scholar] [CrossRef]
- Schröder, G.; Reichel, M.; Spiegel, S.; Schulze, M.; Götz, A.; Bugaichuk, S.; Andresen, J.R.; Kullen, C.M.; Andresen, R.; Schober, H.-C. Breaking strength and bone microarchitecture in osteoporosis: A biomechanical approximation based on load tests in 104 human vertebrae from the cervical, thoracic, and lumbar spines of 13 body donors. J. Orthop. Surg. Res. 2022, 17, 228. [Google Scholar] [CrossRef]
- Kinney, J.H.; Ladd, A.J. The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J. Bone Min. Res. 1998, 13, 839–845. [Google Scholar] [CrossRef]
- Hildebrand, T.O.; Rüegsegger, P. Quantification of Bone Microarchitecture with the Structure Model Index. Comput. Methods Biomech. Biomed. Eng. 1997, 1, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Duval-Beaupère, G.; Robain, G. Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured in vivo. Int. Orthop. 1987, 11, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, B.A.; Bouxsein, M.L. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr. Osteoporos. Rep. 2010, 8, 198–204. [Google Scholar] [CrossRef]
- Roux, J.P.; Wegrzyn, J.; Boutroy, S.; Bouxsein, M.L.; Hans, D.; Chapurlat, R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: An ex vivo study. Osteoporos. Int. 2013, 24, 2455–2460. [Google Scholar] [CrossRef]
Overall Group (n = 20) | CC Group (n = 10) | VD Group (n = 10) | p-Value | |
---|---|---|---|---|
Age (years) | 79.4 ± 6.4 | 79.0 ± 5.4 | 79.8 ± 7.6 | 0.788 T |
Gender (male/female) | 6/14 | 2/8 | 4/6 | 0.329 C |
Body mass index (kg/m2) | 24.9 ± 6.6 | 27.3 ± 7.0 | 22.4 ± 5.5 | 0.099 T |
Bone mineral density in the LS (mg/cm3) * | 53.2 (44.3–64.2) | 57.5 (43.6–69.6) | 51.7 (45.3–64.1) | 0.971 M |
Median number of fractures | 2.0 (1.0—2.0) | 1.5 (0.75–2.0) | 2.0 (0.75–3.0) | 0.393 M |
Excluded segments | C5, C6, T8, T12, L1, L3 | C5, C6, T8, T12, L1, L3 | C5, C6, T8, T12, L1, L3 | |
Number of investigated vertebrae (n) | 120 | 60 | 60 | |
Number of investigated cancellous bone cylinders (n) | 360 | 180 | 180 |
Quadrants | Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Spinal Segments | Overall M ± SD | Q I M ± SD | Q II M ± SD | Q III M ± SD | Q I vs. Q II p-Value | Q III vs. Q II p-Value | Q I vs. Q III p-Value |
Parametric variables | ||||||||
BVF (%) | Overall CC VD | 17.07 ± 4.69 | 18.49 ± 4.80 | 16.99 ± 4.74 | 15.72 ± 4.97 | |||
20.39 ± 3.31 | 22.41 ± 2.19 | 17.91 ± 2.92 | 20.86 ± 3.38 | 0.016 * | 0.095 | 0.364 | ||
CS CC VD | 22.73 ± 2.46 | 23.65 ± 4.87 | 22.83 ± 0.36 | 21.72 ± 1.63 | ||||
21.82 ± 2.74 | 21.99 ± 3.29 | 20.55 ± 2.02 | 22.91 ± 4.10 | |||||
TS CC VD | 13.40 ± 2.10 | 14.94 ± 2.61 | 12.84 ± 0.90 | 12.41 ± 2.64 | ||||
20.98 ± 3.63 | 24.24 ± 1.35 | 18.01 ± 2.63 | 20.70 ± 4.24 | |||||
LS CC VD | 15.07 ± 2.21 | 16.88 ± 0.10 | 15.31 ± 1.75 | 13.03 ± 2.33 | ||||
18.38 ± 2.98 | 21.0 ± 0.52 | 15.18 ± 1.62 | 18.97 ± 2.55 | |||||
Tb.Th (µm) | Overall CC | 159 ± 16 | 158 ± 15 | 169 ± 19 | 151 ± 10 | |||
VD | 179 ± 14 | 186 ± 12 | 169 ± 9 | 181 ± 14 | ||||
CS CC | 173 ± 19 | 169 ± 21 | 193 ± 3 | 159 ± 14 | ||||
VD | 177 ± 12 | 181 ± 17 | 168 ± 7 | 182 ± 13 | ||||
TS CC | 148 ± 9 | 146 ± 12 | 151 ± 8 | 146 ± 11 | ||||
VD | 185 ± 10 | 195 ± 8 | 178 ± 6 | 183 ± 13 | ||||
LS CC | 158 ± 8 | 159 ± 2 | 165 ± 2 | 148 ± 3 | ||||
VD | 174 ± 17 | 184 ± 12 | 160 ± 3 | 177 ± 25 | ||||
Tb.Sp (µm) | Overall CC VD | 549 ± 40 | 522 ± 24 | 564 ± 39 | 561 ± 43 | |||
557 ± 38 | 553 ± 46 | 548 ± 45 | 570 ± 21 | |||||
CS CC VD | 524 ± 21 | 519 ± 11 | 534 ± 37 | 519 ± 22 | ||||
564 ± 44 | 591 ± 48 | 521 ± 27 | 581 ± 29 | |||||
TS CC VD | 576 ± 41 | 540 ± 35 | 589 ± 23 | 599 ± 49 | ||||
552 ± 46 | 505 ± 2 | 587 ± 52 | 563 ± 33 | |||||
LS CC VD | 547 ± 40 | 506 ± 16 | 568 ± 52 | 566 ± 2 | ||||
555 ± 28 | 562 ± 25 | 536 ± 45 | 567 ± 8 | |||||
Conn.D (mm−3) | Overall CC | 6.03 ± 2.30 | 6.95 ± 2.52 | 5.65 ± 1.49 | 5.45 ± 2.80 | |||
VD | 5.92 ± 1,58 | 5.93 ± 0.10 | 5.95 ± 1.76 | 5.89 ± 1.75 | ||||
CS CC | 8.44 ± 1.64 | 9.35 ± 2.69 | 7.11 ± 0.74 | 8.86 ± 0.25 | ||||
VD | 6.39 ± 1.31 | 5.57 ± 0.86 | 7.20 ± 1.78 | 6.41 ± 1.42 | ||||
TS CC | 4.86 ± 1.80 | 6.33 ± 0.66 | 4.92 ± 2.12 | 3.32 ± 1.46 | ||||
VD | 6.39 ± 2.27 | 6.97 ± 2.77 | 5.88 ± 2.52 | 6.33 ± 3.24 | ||||
LS CC | 4.79 ± 1.24 | 5.15 ± 2.28 | 5.04 ± 0.02 | 4.18 ± 1.15 | ||||
VD | 4.99 ± 0.27 | 5.26 ± 0.19 | 4.76 ± 0.03 | 4.94 ± 0.30 | ||||
DA (n) | Overall CC VD | 1.87 ± 0.20 | 1.89 ± 0.21 | 1.86 ± 0.21 | 1.84 ± 0.23 | |||
1.20 ± 0.62 | 1.69 ± 0.10 | 0.36 ± 0.03 | 1.60 ± 0.11 | <0.001 *** | <0.001 *** | 0.379 | ||
CS CC VD | 1.66 ± 0.09 | 1.74 ± 0.12 | 1.66 ± 0.10 | 1.60 ± 0.02 | ||||
1.16 ± 0.63 | 1.64 ± 0.16 | 0.34 ± 0.06 | 1.49 ± 0.05 | <0.001 *** | <0.001 *** | 0.047 | ||
TS CC VD | 2.01 ± 0.15 | 1.84 ± 0.08 | 2.11 ± 0.05 | 2.08 ± 0.13 | ||||
1.22 ± 0.65 | 1.60 ± 0.07 | 0.38 ± 0.03 | 1.67 ± 0.14 | 0.001** | 0.001 ** | 0.526 | ||
LS CC VD | 1.92 ± 0.18 | 2.09 ± 0,26 | 1.83 ± 0.04 | 1.85 ± 0.12 | ||||
1.24 ± 0.69 | 1.71 ± 0.20 | 0.36 ± 0.01 | 1.65 ± 0.01 | 0.001 ** | 0.001 ** | 0.637 | ||
SMI | Overall CC VD | 1.87 ± 0.28 | 1.78 ± 0.31 | 1.95 ± 0.28 | 1.89 ± 0.27 | |||
1.83 ± 0.19 | 1.78 ± 0.17 | 1.92 ± 0.19 | 1.79 ± 0.21 | |||||
CS CC VD | 1.52 ± 0.13 | 1.40 ± 0.20 | 1.59 ± 0.01 | 1.56 ± 0.08 | ||||
1.64 ± 0.13 | 1.57 ± 0.01 | 1.79 ± 0.04 | 1.54 ± 0.10 | |||||
TS CC VD | 2.05 ± 0.08 | 1.95 ± 0.02 | 2.09 ± 0.07 | 2.10 ± 0.01 | ||||
1.87 ± 0.13 | 1.88 ± 0.09 | 1.83 ± 0.20 | 1.89 ± 0.17 | |||||
LS CC VD | 2.06 ± 0.10 | 2.0 ± 0.02 | 2.16 ± 0.12 | 2.01 ± 0.08 | ||||
1.99 ± 0.12 | 1.90 ± 0.03 | 2.14 ± 0.06 | 1.94 ± 0.01 |
Spinal Segments | Group Comparison | ||||||
---|---|---|---|---|---|---|---|
Parameter | Overall M ± SD | CS M ± SD | TS M ± SD | LS M ± SD | CS vs. TS p-Value | CS vs. LS p-Value | TS vs. LS p-Value |
BVF (%) CC | 17.07 ± 4.69 | 22.73 ± 2.46 | 13.40 ± 2.10 | 15.07 ± 2.21 | <0.001 *** | <0.001 *** | 0.218 |
VD | 20.39 ± 3.31 | 21.82 ± 2.74 | 20.98 ± 3.63 | 18.38 ± 2.98 | |||
Tb.Th (µm) CC | 159 ± 16 | 173 ± 19 | 148 ± 9 | 158 ± 8 | 0.003 ** | 0.049 * | 0.201 |
VD | 179 ± 14 | 177 ± 12 | 185 ± 10 | 174 ± 17 | |||
Tb.Sp (µm) CC | 549 ± 40 | 524 ± 21 | 576 ± 41 | 547 ± 40 | |||
VD | 557 ± 38 | 564 ± 44 | 552 ± 46 | 555 ± 28 | |||
Conn.D (mm−3) CC | 6.03 ± 2.30 | 8.44 ± 1.64 | 4.86 ± 1.80 | 4.79 ± 1.24 | 0.001 ** | 0.001 ** | 0.943 |
VD | 5.92 ± 1.58 | 6.39 ± 1.31 | 6.39 ± 2.27 | 4.99 ± 0.27 | |||
DA (n) CC | 1.87 ± 0.20 | 1.66 ± 0.09 | 2.01 ± 0.15 | 1.92 ± 0.18 | 0.001 ** | 0.007 ** | 0.305 |
VD | 1.20 ± 0.62 | 1.16 ± 0.63 | 1.22 ± 0.65 | 1.24 ± 0.69 | |||
SMI CC | 1.87 ± 0.28 | 1.52 ± 0.13 | 2.05 ± 0.08 | 2.06 ± 0.10 | <0.001 *** | <0.001 *** | 0.871 |
VD | 1.83 ± 0.19 | 1.64 ± 0.13 | 1.87 ± 0.13 | 1.99 ± 0.12 | 0.007 ** | <0.001 *** | 0.110 |
Group CC (n = 10) | Group VD (n = 10) | p-Value | |
---|---|---|---|
BVF (%) | 17.07 ± 4.69 | 20.39 ± 3.31 | 0.018 * |
Tb.Th (µm) | 159 ± 16 | 179 ± 14 | <0.001 *** |
Tb.Sp (µm) | 549 ± 40 | 557 ± 38 | 0.541 |
Conn.D (mm−3) | 6.03 ± 2.30 | 5.92 ± 1.58 | 0.874 |
DA (n) | 1.87 ± 0.20 | 1.20 ± 0.62 | <0.001 *** |
SMI | 1.87 ± 0.28 | 1.83 ± 0.19 | 0.599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schröder, G.; Mittlmeier, T.; Gahr, P.; Ulusoy, S.; Hiepe, L.; Schulze, M.; Götz, A.; Andresen, R.; Schober, H.-C. Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture. Diagnostics 2024, 14, 498. https://doi.org/10.3390/diagnostics14050498
Schröder G, Mittlmeier T, Gahr P, Ulusoy S, Hiepe L, Schulze M, Götz A, Andresen R, Schober H-C. Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture. Diagnostics. 2024; 14(5):498. https://doi.org/10.3390/diagnostics14050498
Chicago/Turabian StyleSchröder, Guido, Thomas Mittlmeier, Patrick Gahr, Sahra Ulusoy, Laura Hiepe, Marko Schulze, Andreas Götz, Reimer Andresen, and Hans-Christof Schober. 2024. "Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture" Diagnostics 14, no. 5: 498. https://doi.org/10.3390/diagnostics14050498
APA StyleSchröder, G., Mittlmeier, T., Gahr, P., Ulusoy, S., Hiepe, L., Schulze, M., Götz, A., Andresen, R., & Schober, H.-C. (2024). Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture. Diagnostics, 14(5), 498. https://doi.org/10.3390/diagnostics14050498