Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy
Abstract
:1. Introduction
2. Multiplex PCR Technology: An Overview
3. Impact of Multiplex PCR on Diagnostic Outcomes
4. Influence of Multiplex PCR on Antimicrobial Therapy Choice
4.1. Antibiotic Stewardship and the Role of Multiplex PCR
4.2. Clinical Case Studies: Multiplex PCR in Antimicrobial Decision-Making
5. Challenges and Limitations of Multiplex PCR
6. Applications of Multiplex PCR in Different Infection Types
6.1. Respiratory Infections
6.2. Bloodstream Infections
6.3. Fungal and Parasitic Infections
7. Impact of Multiplex PCR on Selection of Appropriate Antimicrobial Therapy: Empiric and Definitive Treatment
7.1. Empiric Therapy and the Role of Multiplex PCR
7.2. Definitive Therapy and Optimization with Multiplex PCR
7.3. Multiplex PCR and Antibiotic De-Escalation
7.4. Impact of mPCR on Antimicrobial Stewardship Programs
7.5. Clinical Outcomes and Cost Savings Associated with Rapid Transition from Empiric to Definitive Therapy
8. Future Directions and Innovations in Multiplex PCR
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Capraro, G.A. Replacement of Culture with Molecular Testing for Diagnosis Infectious Diseases. Clin. Lab. Med. 2022, 42, 547–555. [Google Scholar] [CrossRef]
- Chen, J.; Schwarz, E. Opportunities and Challenges of Multiplex Assays: A Machine Learning Perspective. Methods Mol. Biol. 2017, 1546, 115–122. [Google Scholar] [CrossRef]
- Peri, A.M.; Stewart, A.; Hume, A.; Irwin, A.; Harris, P.N.A. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr. Infect. Dis. Rep. 2021, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Petralia, S.; Conoci, S. PCR Technologies for Point of Care Testing: Progress and Perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef]
- Shebl, E.; Gulick, P.G. Nosocomial Pneumonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Buchan, B.W.; Windham, S.; Balada-Llasat, J.-M.; Leber, A.; Harrington, A.; Relich, R.; Murphy, C.; Bard, J.D.; Naccache, S.; Ronen, S.; et al. Practical Comparison of the BioFire FilmArray Pneumonia Panel to Routine Diagnostic Methods and Potential Impact on Antimicrobial Stewardship in Adult Hospitalized Patients with Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, e00135-20. [Google Scholar] [CrossRef]
- White, R.; Chen, A. Digital PCR: The next frontier in infectious disease diagnostics. Clin. Microbiol. Rev. 2021, 34, e00222-19. [Google Scholar]
- Dominguez, L.S.; Suárez, A.C.; Ledesma, M.S.; Bellido, J.L.M. Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis. Diagnostics 2024, 14, 931. [Google Scholar] [CrossRef]
- Qin, J.; Wang, W.; Gao, L.; Yao, S.Q. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem. Sci. 2022, 13, 2857–2876. [Google Scholar] [CrossRef]
- Bălan, A.-M.; Bodolea, C.; Trancă, S.D.; Hagău, N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare 2023, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; Jerome, K.R. Digital PCR-An Emerging Technology with Broad Applications in Microbiology. Clin. Chem. 2020, 66, 117–123. [Google Scholar] [CrossRef]
- Liu, H.Y.; Hopping, G.C.; Vaidyanathan, U.; Ronquillo, Y.C.; Hoopes, P.C.; Moshirfar, M. Polymerase Chain Reaction and Its Application in the Diagnosis of Infectious Keratitis. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 152–155. [Google Scholar] [PubMed]
- Okamoto, M.; Maejima, M.; Goto, T.; Mikawa, T.; Hosaka, K.; Nagakubo, Y.; Hirotsu, Y.; Amemiya, K.; Sueki, H.; Omata, M. Impact of the FilmArray Rapid Multiplex PCR Assay on Clinical Outcomes of Patients with Bacteremia. Diagnostics 2023, 13, 1935. [Google Scholar] [CrossRef] [PubMed]
- Dessajan, J.; Timsit, J.F. Impact of Multiplex PCR in the Therapeutic Management of Severe Bacterial Pneumonia. Antibiotics 2024, 13, 95. [Google Scholar] [CrossRef]
- Feng, W.; Chen, Y.; Han, Y.; Diao, Z.; Zhao, Z.; Zhang, Y.; Huang, T.; Ma, Y.; Li, Z.; Jiang, J.; et al. Key performance evaluation of commercialized multiplex rRT-PCR kits for respiratory viruses: Implications for application and optimization. Microbiol. Spectr. 2024, 12, e0164124. [Google Scholar] [CrossRef]
- Millot, G.; Voisin, B.; Loiez, C.; Wallet, F.; Nseir, S. The next generation of rapid point-of-care testing identification tools for ventilator-associated pneumonia. Ann. Transl. Med. 2017, 5, 451. [Google Scholar] [CrossRef]
- Aissaoui, Y.; Derkaoui, A.; Hachimi, A.; Bouchama, A.; Dendane, T.; Doumiri, M.; ElAidaoui, K.; Ziadi, A.; Essafti, M.; Oualili, L.; et al. Diagnostic Performance and Impact on Antimicrobial Treatment of a Multiplex Polymerase Chain Reaction in Critically Ill Patients With Pneumonia: A Multicenter Observational Study (The MORICUP-PCR Study: Morocco ICU Pneumonia-PCR study). Crit. Care Explor. 2025, 7, e1220. [Google Scholar] [CrossRef]
- Clark, T.W.; Lindsley, K.; Wigmosta, T.B.; Bhagat, A.; Hemmert, R.B.; Uyei, J.; Timbrook, T.T. Rapid multiplex PCR for respiratory viruses reduces time to result and improves clinical care: Results of a systematic review and meta-analysis. J. Infect. 2023, 86, 462–475. [Google Scholar] [CrossRef]
- Moy, A.-C.; Kimmoun, A.; Merkling, T.; Berçot, B.; Caméléna, F.; Poncin, T.; Deniau, B.; Mebazaa, A.; Dudoignon, E.; Dépret, F.; et al. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: A systematic review and meta-analysis. Anaesth. Crit. Care Pain Med. 2023, 42, 101300. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Chu, S.V.; Vu, S.T.; Nguyen, H.M.; Le, N.T.; Truong, P.T.; Vu, V.T.T.; Phung, T.T.B.; Nguyen, A.T.V. Fast and Sensitive Real-Time PCR Detection of Major Antiviral-Drug Resistance Mutations in Chronic Hepatitis B Patients by Use of a Predesigned Panel of Locked-Nucleic-Acid TaqMan Probes. J. Clin. Microbiol. 2021, 59, e0093621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.Z.; Negoescu, D.; Munoz-Zanzi, C. When and what to test for: A cost-effectiveness analysis of febrile illness test-and-treat strategies in the era of responsible antibiotic use. PLoS ONE 2020, 15, e0227409. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.M.; Timbrook, T.T.; Hommel, B.; Prinzi, A.M. Breaking Boundaries in Pneumonia Diagnostics: Transitioning from Tradition to Molecular Frontiers with Multiplex PCR. Diagnostics 2024, 14, 752. [Google Scholar] [CrossRef] [PubMed]
- Courboules, C.; Dournon, N.; Lawrence, C.; Noussair, L.; Descours, G.; Sivadon-Tardy, V.; Jarraud, S.; Herrmann, J.-L.; Gaillard, J.-L.; Espinasse, F.; et al. Non-Legionella pneumophila serogroup 1 pneumonia: Diagnosis of a nosocomial legionellosis with the Biofire Pneumonia plus panel. IDCases 2022, 28, e01487. [Google Scholar] [CrossRef]
- Zacharioudakis, I.M.; Zervou, F.N.; Dubrovskaya, Y.; Inglima, K.; See, B.; Aguero-Rosenfeld, M. Evaluation of a Multiplex PCR Panel for the Microbiological Diagnosis of Pneumonia in Hospitalized Patients: Experience from an Academic Medical Center. Int. J. Infect. Dis. 2021, 104, 354–360. [Google Scholar] [CrossRef]
- Maataoui, N.; Chemali, L.; Patrier, J.; Dinh, A.T.; Le Fèvre, L.; Lortat-Jacob, B.; Marzouk, M.; D’Humières, C.; Rondinaud, E.; Ruppé, E.; et al. Impact of rapid multiplex PCR on management of antibiotic therapy in COVID-19-positive patients hospitalized in intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2227–2234. [Google Scholar] [CrossRef]
- Ibn Saied, W.; Mourvillier, B.; Cohen, Y.; Ruckly, S.; Reignier, J.; Marcotte, G.; Siami, S.; Bouadma, L.; Darmon, M.; de Montmollin, E.; et al. A Comparison of the Mortality Risk Associated With Ventilator-Acquired Bacterial Pneumonia and Nonventilator ICU-Acquired Bacterial Pneumonia. Crit. Care Med. 2019, 47, 345–352. [Google Scholar] [CrossRef]
- Hijano, D.R.; Ferrolino, J.A.; Gu, Z.; Brazelton, J.N.; Zhu, H.; Suganda, S.; Glasgow, H.L.; Dallas, R.H.; Allison, K.J.; Maron, G.; et al. Digital PCR to Measure SARS-CoV-2 RNA, Variants, and Outcomes in Youth. J. Pediatr. Infect. Dis. Soc. 2023, 12, 618–626. [Google Scholar] [CrossRef]
- Patel, S.V.; Pulcini, C.; Demirjian, A.; van Hecke, O. Rapid diagnostic tests for common infection syndromes: Less haste, more speed. J. Antimicrob. Chemother. 2020, 75, 2028–2030. [Google Scholar] [CrossRef]
- Paz, V.; D’Agostino, M.; Garibaldi, F.; Orellana, R.; Paniagua, M.; Santillán, A. Multiplex PCR in the empirical antibiotic treatment of patients with SARS-CoV-2 and bacterial respiratory superinfection. Infect. Prev. Pract. 2022, 4, 100227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, F.; Sun, Z.; Fang, Y.; Zhu, H.; Zhang, D.; Zeng, X.; Liu, W.; Liu, T.; Liu, Y.; et al. Rapid and precise identification of bloodstream infections using a pre-treatment protocol combined with high-throughput multiplex genetic detection system. BMC Infect. Dis. 2022, 22, 823. [Google Scholar] [CrossRef]
- On behalf of the China Antimicrobial Surveillance Network (CHINET) Study Group; Hu, F.; Guo, Y.; Yang, Y.; Zheng, Y.; Wu, S.; Jiang, X.; Zhu, D.; Wang, F. Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Frens, J.; Baumeister, T.; Sinclair, E.; Zeigler, D.; Hurst, J.; Hill, B.; McElmeel, S.; Le Page, S. Getting rapid diagnostic test data into the appropriate hands by leveraging pharmacy staff and a clinical surveillance platform: A case study from a US community hospital. J. Antimicrob. Chemother. 2024, 79 (Suppl. S1), i37–i43. [Google Scholar] [CrossRef]
- Jenks, J.D.; Spiess, B.; Buchheidt, D.; Hoenigl, M. (New) Methods for Detection of Aspergillus fumigatus Resistance in Clinical Samples. Curr. Fungal Infect. Rep. 2019, 13, 129–136. [Google Scholar] [CrossRef]
- Buchheidt, D.; Reinwald, M.; Hoenigl, M.; Hofmann, W.-K.; Spiess, B.; Boch, T. The evolving landscape of new diagnostic tests for invasive aspergillosis in hematology patients: Strengths and weaknesses. Curr. Opin. Infect. Dis. 2017, 30, 539–544. [Google Scholar] [CrossRef]
- Jenks, J.D.; Gangneux, J.-P.; Schwartz, I.S.; Alastruey-Izquierdo, A.; Lagrou, K.; Iii, G.R.T.; Lass-Flörl, C.; Hoenigl, M.; European Confederation of Medical Mycology (ECMM) Council Investigators. Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. J. Fungi 2020, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, W.; Xu, Q.; Gu, J.; Kang, Z.; Chen, J.; Xu, X.; Zhang, X.; Zhang, X.; Jiang, H.; et al. A rapid multiplex assay of human malaria parasites by digital PCR. Clin. Chim. Acta 2023, 539, 70–78. [Google Scholar] [CrossRef]
- Monard, C.; Pehlivan, J.; Auger, G.; Alviset, S.; Dinh, A.T.; Duquaire, P.; Gastli, N.; D’humières, C.; Maamar, A.; Boibieux, A.; et al. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit. Care 2020, 24, 434. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Yamin, D.; Uskoković, V.; Wakil, A.M.; Goni, M.D.; Shamsuddin, S.H.; Mustafa, F.H.; Alfouzan, W.A.; Alissa, M.; Alshengeti, A.; Almaghrabi, R.H.; et al. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.; Smith, A.; Young, D.; Fulton, R.; Booth, M.G. Mortality in intensive care: The impact of bacteremia and the utility of systemic inflammatory response syndrome. Am. J. Infect. Control 2016, 44, 1291–1295. [Google Scholar] [CrossRef]
- Stafylaki, D.; Maraki, S.; Vaporidi, K.; Georgopoulos, D.; Kontoyiannis, D.P.; Kofteridis, D.P.; Chamilos, G. Impact of Molecular Syndromic Diagnosis of Severe Pneumonia in the Management of Critically Ill Patients. Microbiol. Spectr. 2022, 10, e0161622. [Google Scholar] [CrossRef]
- Butler, A.M.; Nickel, K.B.; Olsen, M.A.; Sahrmann, J.M.; Colvin, R.; Neuner, E.; O’neil, C.A.; Fraser, V.J.; Durkin, M.J. Comparative safety of different antibiotic regimens for the treatment of outpatient community-acquired pneumonia among otherwise healthy adults. Clin. Infect. Dis. 2024, ciae519. [Google Scholar] [CrossRef]
- Murphy, C.N.; Fowler, R.; Balada-Llasat, J.M.; Carroll, A.; Stone, H.; Akerele, O.; Buchan, B.; Windham, S.; Hopp, A.; Ronen, S.; et al. Multicenter Evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for Detection and Quantification of Agents of Lower Respiratory Tract Infection. J. Clin. Microbiol. 2020, 58, e00128-20. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Huh, K.; Shim, H.J.; Yun, S.A.; Na Chung, Y.; Kang, O.K.; Huh, H.J.; Lee, N.Y. Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. Int. J. Infect. Dis. 2020, 95, 326–331. [Google Scholar] [CrossRef]
- Mohsen, S.; Dickinson, J.A.; Somayaji, R. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Physician 2020, 66, 651–659. [Google Scholar] [PubMed]
- Ma, H.; Wang, H.; Han, X.; Fei, J. Efficacy of targeted next generation sequencing for pathogen detection in lower respiratory tract infections. Am. J. Transl. Res. 2024, 16, 3637–3645. [Google Scholar] [CrossRef]
- Tabah, A.; De Bus, L.; Leone, M. Antibiotic de-escalation: Finally, some action and not only words. Lancet Infect. Dis. 2024, 24, 331–333. [Google Scholar] [CrossRef]
- Zhu, M.; Pickens, C.I.; Markov, N.S.; Pawlowski, A.; Kang, M.; Rasmussen, L.V.; Walter, J.M.; Nadig, N.R.; Singer, B.D.; Wunderink, R.G.; et al. Antibiotic De-escalation Patterns and Outcomes in Critically Ill Patients with Suspected Pneumonia as Informed by Bronchoalveolar Lavage Results. medRxiv 2024. [Google Scholar] [CrossRef]
- Moreno, A.; Mah, J.; Budvytiene, I.; Ho, D.Y.; Schwenk, H.T.; Banaei, N. Dynamics and prognostic value of plasma cell-free DNA PCR in patients with invasive aspergillosis and mucormycosis. J. Clin. Microbiol. 2024, 62, e0039424. [Google Scholar] [CrossRef]
- Paiva, J.-A.; Mergulhão, P.; Salluh, J.I.F. What every intensivist must know about antimicrobial stewardship: Its pitfalls and its challenges. Rev. Bras. Ter. Intensiv. 2020, 32, 207–212. [Google Scholar] [CrossRef]
- Virk, A.; Strasburg, A.P.; Kies, K.D.; Donadio, A.D.; Mandrekar, J.; Harmsen, W.S.; Stevens, R.W.; Estes, L.L.; Tande, A.J.; Challener, D.W.; et al. Rapid multiplex PCR panel for pneumonia in hospitalised patients with suspected pneumonia in the USA: A single-centre, open-label, pragmatic, randomised controlled trial. Lancet Microbe 2024, 5, 100928. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-N.; Fang, B.-L.; Gao, H.-M.; Li, R.-B.; Su, G.-Y.; Mao, Y.-Y.; He, Y.-S.; Wang, Y.; Zhou, X.-H.; Cai, L.-M.; et al. Applications of mPCR testing reduced initial antibiotic use and duration of mechanical ventilation in virus-infected children with severe community-acquired pneumonia admitted to the PICU. World J. Pediatr. 2022, 18, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef]
- Meregildo-Rodriguez, E.D.; Asmat-Rubio, M.G.; Vásquez-Tirado, G.A. Droplet digital PCR vs. quantitative real time-PCR for diagnosis of pulmonary and extrapulmonary tuberculosis: Systematic review and meta-analysis. Front. Med. 2023, 10, 1248842. [Google Scholar] [CrossRef]
- Nazir, S. Medical diagnostic value of digital PCR (dPCR): A systematic review. Biomed. Eng. Adv. 2023, 6, 100092. [Google Scholar] [CrossRef]
- Astatke, M.; Tiburzi, O.; Connolly, A. A novel RNA detection technique for point-of-care identification of pathogens. J. Immunoass. Immunochem. 2022, 43, 1955380. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Díaz-González, M.; de la Escosura-Muñiz, A. Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal. Bioanal. Chem. 2021, 413, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Drain, P.K. Point-of-Care Diagnostics (POCD) in Resource-Limited Settings. Diagnostics 2024, 14, 1926. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; de la Fuente-Nunez, C.; Collins, J.J. Leveraging artificial intelligence in the fight against infectious diseases. Science 2023, 381, 164–170. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Tascini, C.; Russo, A.; Sozio, E.; Raponi, G.; Rosin, C.; Pignatelli, P.; Carfagna, P.; Farcomeni, A.; et al. Assessment of risk factors for candidemia in non-neutropenic patients hospitalized in Internal Medicine wards: A multicenter study. Eur. J. Intern. Med. 2017, 41, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Pompeo, M.E.; Vena, A.; Marruncheddu, L.; Ciccaglioni, A.; Grossi, P.; Mancini, C.; Novelli, A.; Stefani, S.; et al. Retrospective case-control analysis of patients with staphylococcal infections receiving daptomycin or glycopeptide therapy. Int. J. Antimicrob. Agents 2012, 39, 64–68. [Google Scholar] [CrossRef]
- Russo, A.; Falcone, M.; Gutiérrez-Gutiérrez, B.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Ruiz-Garbajosa, P.; Gasch, O.; Gozalo, M.; et al. Predictors of outcome in patients with severe sepsis or septic shock due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 52, 577–585. [Google Scholar] [CrossRef]
- Pai, M.P.; Russo, A.; Novelli, A.; Venditti, M.; Falcone, M. Simplified equations using two concentrations to calculate area under the curve for antimicrobials with concentration-dependent pharmacodynamics: Daptomycin as a motivating example. Antimicrob. Agents Chemother. 2014, 58, 3162–3167. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Russo, A.; Croxatto, A.; Calandra, T.; Guery, B. Rational approach in the management of Pseudomonas aeruginosa infections. Curr. Opin. Infect. Dis. 2018, 31, 578–586. [Google Scholar] [CrossRef]
- Bassetti, M.; Russo, A.; Carnelutti, A.; La Rosa, A.; Righi, E. Antimicrobial resistance and treatment: An unmet clinical safety need. Expert Opin. Drug Saf. 2018, 17, 669–680. [Google Scholar] [CrossRef]
- Russo, A.; Campanile, F.; Falcone, M.; Tascini, C.; Bassetti, M.; Goldoni, P.; Trancassini, M.; Della Siega, P.; Menichetti, F.; Stefani, S.; et al. Linezolid-resistant staphylococcal bacteraemia: A multicentre case-case-control study in Italy. Int. J. Antimicrob. Agents 2015, 45, 255–261. [Google Scholar] [CrossRef]
- Bassetti, M.; Russo, A.; Righi, E.; Dolso, E.; Merelli, M.; D’aurizio, F.; Sartor, A.; Curcio, F. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert Rev. Anti-Infect. Ther. 2019, 17, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Serapide, F.; Guastalegname, M.; Gullì, S.P.; Lionello, R.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Russo, A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Antonelli, M.; Deschepper, M.; Arvaniti, K.; Blot, K.; Brown, B.C.; de Lange, D.; De Waele, J.; Dikmen, Y.; Dimopoulos, G.; et al. Poor timing and failure of source control are risk factors for mortality in critically ill patients with secondary peritonitis. Intensive Care Med. 2022, 48, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Olivadese, V.; Trecarichi, E.M.; Torti, C. Bacterial Ventilator-Associated Pneumonia in COVID-19 Patients: Data from the Second and Third Waves of the Pandemic. J. Clin. Med. 2022, 11, 2279. [Google Scholar] [CrossRef]
- Russo, A.; Picciarella, A.; Russo, R.; D’ettorre, G.; Ceccarelli, G. Time to Effective Therapy Is an Important Determinant of Survival in Bloodstream Infections Caused by Vancomycin-Resistant Enterococcus spp. Int. J. Mol. Sci. 2022, 23, 11925. [Google Scholar] [CrossRef]
Feature | Traditional Culture | Single PCR | Multiplex PCR |
---|---|---|---|
Time to Results | 48–72 h | 3–4 h | 1 h |
Pathogen Coverage | Limited (single) | Limited (single) | Broad (multiple pathogens) |
Sensitivity and Specificity | Variable | High | High |
Cost | Moderate | High | Moderate to High |
Requirement for Sample Size | High | Low | Low |
Labor Intensity | High | Low | Low |
Ease of Implementation | Standard in labs | Limited to reference labs | Varies, specialized labs |
Parameter | Traditional Culture | Multiplex PCR |
---|---|---|
Diagnostic Time | 48–72 h | 1 h |
Average Time to Treatment | 48+ h | <6 h |
Impact on AMR (Reduction) | Moderate | High |
Advantages | Limitations |
---|---|
Rapid pathogen detection | Risk of false positives |
High sensitivity | Potential bias to distinguish between infection/colonization/previous infection |
Multiple pathogen detection | High cost of equipment and assays |
Effective in polymicrobial cases | Requirement for specialized training |
Reduced antibiotic misuse | Limited access in low-resource settings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serapide, F.; Pallone, R.; Quirino, A.; Marascio, N.; Barreca, G.S.; Davoli, C.; Lionello, R.; Matera, G.; Russo, A. Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy. Diagnostics 2025, 15, 1044. https://doi.org/10.3390/diagnostics15081044
Serapide F, Pallone R, Quirino A, Marascio N, Barreca GS, Davoli C, Lionello R, Matera G, Russo A. Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy. Diagnostics. 2025; 15(8):1044. https://doi.org/10.3390/diagnostics15081044
Chicago/Turabian StyleSerapide, Francesca, Rita Pallone, Angela Quirino, Nadia Marascio, Giorgio Settimo Barreca, Chiara Davoli, Rosaria Lionello, Giovanni Matera, and Alessandro Russo. 2025. "Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy" Diagnostics 15, no. 8: 1044. https://doi.org/10.3390/diagnostics15081044
APA StyleSerapide, F., Pallone, R., Quirino, A., Marascio, N., Barreca, G. S., Davoli, C., Lionello, R., Matera, G., & Russo, A. (2025). Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy. Diagnostics, 15(8), 1044. https://doi.org/10.3390/diagnostics15081044