Metabolomics Applications for Diagnosing Peri-Implantitis: A Systematic Review of In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration and Validation of Study Protocol
2.2. Question of Study
2.3. Eligibility Criteria
- a.
- Inclusion criteria
- P (population) = patients treated with dental implants;
- E (exposure) = clinically diagnosed peri-implantitis;
- C (control) = implants in a state of clinically determined peri-implant health
- O (type of outcome measures) = differences in detectable metabolites from saliva of peri-implant crevicular fluid samples, assessed by both targeted or untargeted metabolomics approaches, marginal bone loss, bleeding on probing, and probing depth.
- S (type of studies) = original studies on humans, RCT, NRCT, prospective, retrospective, or cross-sectional studies, case reports and case series, and cohort studies
- b.
- Exclusion criteria
- -
- Study designs: literature reviews and/or meta-analyses, letters to editors, conference abstracts, and commentaries.
- -
- In vitro, animal study designs, and ex vivo studies.
- -
- Studies without full-text articles.
- -
- Studies that presented missing or incomplete data regarding outcome measures or the technologies and pathologies involved.
- -
- Studies published in languages other than English.
2.4. Search Strategy
2.5. Study Selection Process
2.6. Data Extraction
- -
- General data about the studies (title, main authors, geographical area, DOI, year of publication, study design)
- -
- Population (number of subjects/number of implants, age/gender distribution, personal potential confounding factors)
- -
- Exposure and controls (marginal bone loss, probing depth, bleeding on probing, other periodontal or peri-implant indexes)
- -
- Outcome (metabolomics approaches used, technologies involved, sample types, identified metabolites)
2.7. Risk of Bias/Quality Assessment
3. Results
3.1. Study Selection
3.2. Description of Included Studies
3.3. Identified Metabolites
3.4. Risk of Bias/Quality Assessment of the Studies
4. Discussion
4.1. Main Findings and Interpretation in the Context of Available Literature
4.2. Study Limitations and Strengths
4.3. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A. Search Strategy
Database/Registry | Query | No. of Results | Date |
PubMed | (“peri implantitis”[MeSH Terms] OR “peri implantitis”[All Fields] OR “periimplantitis”[All Fields] OR (“dental implants”[MeSH Terms] OR (“dental”[All Fields] AND “implants”[All Fields]) OR “dental implants”[All Fields] OR (“dental”[All Fields] AND “implant”[All Fields]) OR “dental implant”[All Fields]) OR (“periimplant”[All Fields] AND (“disease”[MeSH Terms] OR “disease”[All Fields] OR “diseases”[All Fields] OR “disease s”[All Fields] OR “diseased”[All Fields])) OR (“peri-implant”[All Fields] AND “crevicular”[All Fields] AND (“fluid”[All Fields] OR “fluid s”[All Fields] OR “fluids”[All Fields])) OR “PICF”[All Fields]) AND (“high-performance liquid chromatography”[Text Word] OR “mass spectrometry”[Text Word] OR “nuclear magnetic resonance spectroscopy”[Text Word] OR “liquid chromatography”[All Fields] OR “gas chromatography”[All Fields] OR (“metabolome”[MeSH Terms] OR “metabolomics”[MeSH Terms]) OR “metabolom*”[All Fields] OR “lipidomic*”[All Fields]) | 208 | 21 January 2025 |
Scopus | TITLE-ABS-KEY (peri-implantitis OR periimplantitis OR “dental implant*” OR peri-implant AND disease OR peri-implant AND crevicular AND fluid OR “PICF”) AND TITLE-ABS-KEY (metabolom* OR metabolomics OR metabolome OR lipidom* OR metabolite* OR “high-performance liquid chromatography” OR “mass spectrometry” OR “nuclear magnetic resonance spectroscopy” OR “liquid chromatography” OR “gas chromatography”) | 17 | 21 January 2025 |
Web of Science | ALL=(peri-implantitis OR periimplantitis OR “dental implant*” OR peri-implant AND disease OR peri-implant AND crevicular AND fluid OR “PICF”) AND ALL=(metabolom* OR metabolomics OR metabolome OR lipidom* OR metabolite* OR “high-performance liquid chromatography” OR “mass spectrometry” OR “nuclear magnetic resonance spectroscopy” OR “liquid chromatography” OR “gas chromatography”) | 192 | 21 January 2025 |
ProQuest Central | summary((peri-implantitis OR periimplantitis OR (“dental implant” OR “dental implantology” OR “dental implants”) OR peri-implant AND disease OR peri-implant AND crevicular AND fluid OR “PICF”) AND (metabolom* OR metabolomics OR metabolome OR lipidom* OR metabolite*)) | 26 | 21 January 2025 |
Google Scholar | peri-implantitis periimplantitis “dental implant*” peri-implant disease peri-implant crevicular fluid PICF metabolom* metabolomics metabolome lipidom* metabolite* high-performance liquid chromatography “mass spectrometry” “nuclear magnetic resonance spectroscopy” 1H NMR “liquid chromatography” “gas chromatography”Results were sorted “by relevance” and the first 10 pages of results were considered | 100 | 21 January 2025 |
Total | 543 |
References
- Misch, C.E. Rationale for dental implants. In Dental Implant Prosthetics, 2nd ed.; Elsevier Mosby: Maryland Heights, MO, USA, 2014; pp. 1–25. [Google Scholar]
- Srinivasan, M.; Meyer, S.; Mombelli, A.; Müller, F. Dental implants in the elderly population: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2017, 28, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Mauer, R.G.; Shadrav, A.; Dashti, M. Predictability of Dental Implants. In Innovative Perspectives in Oral and Maxillofacial Surgery; Springer International Publishing: Cham, Switzerland, 2021; pp. 35–45. [Google Scholar]
- Berglundh, T.; Jepsen, S.; Stadlinger, B.; Terheyden, H. Peri-implantitis and its prevention. Clin. Oral Implants Res. 2019, 30, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bäumer, D.; Ozga, A.K.; Körner, G.; Bäumer, A. Patient satisfaction and oral health-related quality of life 10 years after implant placement. BMC Oral Health 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Pradyachaipimol, N.; Tangsathian, T.; Supanimitkul, K.; Sophon, N.; Suwanwichit, T.; Manopattanasoontorn, S.; Arunyanak, S.P.; Kungsadalpipob, K. Patient satisfaction following dental implant treatment: A survey. Clin. Implant. Dent. Relat. Res. 2023, 25, 613–623. [Google Scholar] [CrossRef]
- Abrahamsson, K.H.; Wennström, J.L.; Berglundh, T.; Abrahamsson, I. Altered expectations on dental implant therapy; views of patients referred for treatment of peri-implantitis. Clin. Oral Implants Res. 2017, 28, 437–442. [Google Scholar] [CrossRef]
- Hämmerle, C.H.F.; Tarnow, D. The etiology of hard- and soft-tissue deficiencies at dental implants: A narrative review. J. Clin. Periodontol. 2018, 45, S267–S277. [Google Scholar] [CrossRef]
- Diaz, P.; Gonzalo, E.; Villagra, L.J.G.; Miegimolle, B.; Suarez, M.J. What is the prevalence of peri-implantitis? A systematic review and meta-analysis. BMC Oral Health 2022, 22, 1–13. [Google Scholar] [CrossRef]
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. 16), S158–S171. [Google Scholar] [CrossRef]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45, S278–S285. [Google Scholar] [CrossRef]
- Polymeri, A.; Loos, B.G.; Aronovich, S.; Steigmann, L.; Inglehart, M.R. Risk factors, diagnosis, and treatment of peri-implantitis: A cross-cultural comparison of U.S. and European periodontists’ considerations. J. Periodontol. 2022, 93, 481–492. [Google Scholar] [CrossRef]
- Saleh, M.H.A.; Dias, D.R.; Kumar, P. The economic and societal impact of periodontal and peri-implant diseases. Periodontol. 2000 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Alcoforado, G.; Guerrero, A.; Jönsson, D.; Klinge, B.; Lang, N.; Mattheos, N.; Mertens, B.; Pitta, J.; Ramanauskaite, A.; et al. Peri-implantitis: Summary and consensus statements of group 3. The 6th EAO Consensus Conference 2021. Clin. Oral. Implants. Res. 2021, 32 (Suppl. 21), 245–253. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.; Aaboe, M.; Araujo, M.; Carrión, J.B.; Cavalcanti, R.; Cionca, N.; Cochran, D.; Darby, I.; Funakoshi, E.; Gierthmuehlen, P.C.; et al. Group 4 ITI Consensus Report: Risks and biologic complications associated with implant dentistry. Clin. Oral Implants Res. 2018, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Garaicoa-Pazmino, C.; Couso-Queiruga, E.; Monje, A.; Avila-Ortiz, G.; Castilho, R.; Amo, F. Disease Resolution Following the Treatment of Peri-implant Diseases: A Systematic Review. Int. J. Periodontics Restor. Dent. 2025, 45, 115–133. [Google Scholar] [CrossRef]
- Fu, J.H.; Wang, H.L. Breaking the wave of peri-implantitis. Periodontol. 2000 2020, 84, 145–160. [Google Scholar] [CrossRef]
- Alassy, H.; Parachuru, P.; Wolff, L. Peri-implantitis diagnosis and prognosis using biomarkers in peri-implant crevicular fluid: A narrative review. Diagnostics 2019, 9, 214. [Google Scholar] [CrossRef]
- Bornes, R.; Montero, J.; Correia, A.; Marques, T.; Rosa, N. Peri-implant diseases diagnosis, prognosis and dental implant monitoring: A narrative review of novel strategies and clinical impact. BMC Oral Health 2023, 23, 183. [Google Scholar] [CrossRef]
- Kabbashi, S.; Roomaney, I.A.; Chetty, M. Bridging the gap between omics research and dental practice. BDJ Open 2024, 10, 1–9. [Google Scholar] [CrossRef]
- Sorsa, T.; Gursoy, U.K.; Nwhator, S.; Hernandez, M.; Tervahartiala, T.; Leppilahti, J.; Gürsoy, M.; Könönen, E.; Emingil, G.; Pussinen, P.J.; et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontol. 2000 2016, 70, 142–163. [Google Scholar] [CrossRef]
- Duarte, P.M.; Serrão, C.R.; Miranda, T.S.; Zanatta, L.C.S.; Bastos, M.F.; Faveri, M.; Figueiredo, L.C.; Feres, M. Could cytokine levels in the peri-implant crevicular fluid be used to distinguish between healthy implants and implants with peri-implantitis? A systematic review. J. Periodontal Res. 2016, 51, 689–698. [Google Scholar] [CrossRef]
- Carinci, F.; Romanos, G.E.; Scapoli, L. Molecular tools for preventing and improving diagnosis of peri-implant diseases. Periodontol. 2000 2019, 81, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Carpenter, G.; So, P.W. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, E.; Savolainen, M.; Mikkonen, J.J.W.; Kullaa, A.M. Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Hamilton, J. Investigation of Diagnostic and Prognostic Testing for Peri-Implantitis Using Quantitative Metabolomics. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2020. [Google Scholar]
- Alassy, H. Peri-Implantitis Prognosis Using Metabolomic Biomarkers in Peri-Implant Crevicular Fluid: A Longitudinal Study. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2021. [Google Scholar]
- Liu, Y.; Yang, H.; Wang, P.; Shi, Y.; Shi, R.; Zhang, S.; Zhao, Y.; Lan, J.; Ge, S. Correlation between short-chain fatty acids and peri-implant disease: A cross-sectional study. J. Periodontol. 2024, 96, 21–29. [Google Scholar] [CrossRef]
- Song, L.; Lu, H.; Jiang, J.; Xu, A.; Huang, Y.; Huang, J.P.; Ding, P.H.; He, F. Metabolic profiling of peri-implant crevicular fluid in peri-implantitis. Clin. Oral Implants Res. 2024, 35, 719–728. [Google Scholar] [CrossRef]
- Fornasaro, S.; Rapani, A.; Farina, F.; Ibishi, M.; Pisnoli, G.; Stacchi, C.; Sergo, V.; Bonifacio, A.; Di Lenarda, R.; Berton, F. Spectroscopic insights into peri-implant mucositis and peri-implantitis: Unveiling peri-implant crevicular fluid profiles using surface enhanced Raman scattering. Analyst 2023, 149, 885–894. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodontal Res. 2016, 51, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kouznetsova, V.L.; Li, J.; Romm, E.; Tsigelny, I.F. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis. 2021, 27, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Papale, F.; Santonocito, S.; Polizzi, A.; Giudice, A.L.; Capodiferro, S.; Favia, G.; Isola, G. The New Era of Salivaomics in Dentistry: Frontiers and Facts in the Early Diagnosis and Prevention of Oral Diseases and Cancer. Metabolites 2022, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Baima, G.; Corana, M.; Iaderosa, G.; Romano, F.; Citterio, F.; Meoni, G.; Tenori, L.; Aimetti, M. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: A systematic review with meta-analysis. J. Periodontal Res. 2021, 56, 633–645. [Google Scholar] [CrossRef]
- Alamri, M.M.; Williams, B.; Le Guennec, A.; Mainas, G.; Santamaria, P.; Moyes, D.L.; Nibali, L. Metabolomics analysis in saliva from periodontally healthy, gingivitis and periodontitis patients. J. Periodontal Res. 2023, 58, 1272–1280. [Google Scholar] [CrossRef]
- Romano, F.; Meoni, G.; Manavella, V.; Baima, G.; Tenori, L.; Cacciatore, S.; Aimetti, M. Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. J. Periodontol. 2018, 89, 1452–1460. [Google Scholar] [CrossRef]
- Heimisdottir, L.H.; Lin, B.M.; Cho, H.; Orlenko, A.; Ribeiro, A.A.; Simon-Soro, A.; Roach, J.; Shungin, D.; Ginnis, J.; Simancas-Pallares, M.; et al. Metabolomics Insights in Early Childhood Caries. J. Dent. Res. 2021, 100, 615–622. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Du, N.; Sun, Y.; Sun, Q.; Yin, W.; Li, H.; Meng, L.; Liu, X. Salivary microbiome and metabolome analysis of severe early childhood caries. BMC Oral Health 2023, 23, 30. [Google Scholar] [CrossRef]
- Schulz, A.; Lang, R.; Behr, J.; Hertel, S.; Reich, M.; Kümmerer, K.; Hannig, M.; Hannig, C.; Hofmann, T. Targeted metabolomics of pellicle and saliva in children with different caries activity. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.M.; Xu, L.Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, R.; Zhang, D.D.; Qi, S.; Liu, Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed. Pharmacother. 2023, 160, 114295. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lin, L.; Ye, J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater. Today Bio. 2022, 13, 100205. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Lee, J.C.; Sauer-Budge, A.; Théberge, R.; Costello, C.E.; Ziegler, L.D. The biochemical origins of the surface-enhanced Raman spectra of bacteria: A metabolomics profiling by SERS. Anal. Bioanal. Chem. 2016, 408, 4631–4647. [Google Scholar] [CrossRef]
- Robitaille, N.; Reed, D.N.; Walters, J.D.; Kumar, P.S. Periodontal and peri-implant diseases: Identical or fraternal infections? Mol. Oral Microbiol. 2016, 31, 285–301. [Google Scholar] [CrossRef]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Martins, C.C.; Amaral, S.A.; Vieira, T.R.; Albuquerque, B.N.; Cota, L.O.M.; Lima, R.P.E.; Costa, F.O. Periodontitis as a risk factor for peri-implantitis: Systematic review and meta-analysis of observational studies. J. Dent. 2018, 79, 1–10. [Google Scholar] [CrossRef]
- Darby, I. Risk factors for periodontitis & peri-implantitis. Periodontol. 2000 2022, 90, 9–12. [Google Scholar]
- Dalago, H.R.; Schuldt Filho, G.; Rodrigues, M.A.P.; Renvert, S.; Bianchini, M.A. Risk indicators for Peri-implantitis. A cross-sectional study with 916 implants. Clin. Oral Implants Res. 2017, 28, 144–150. [Google Scholar] [CrossRef]
- Guan, X.; Li, W.; Meng, H. A double-edged sword: Role of butyrate in the oral cavity and the gut. Mol. Oral Microbiol. 2021, 36, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Brito, F.; Curcio, H.F.Q.; da Silva Fidalgo, T.K. Periodontal disease metabolomics signatures from different biofluids: A systematic review. Metabolomics 2022, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Na, H.S.; Kim, S.; Yu, Y.; Kim, S.Y.; Kim, H.J.; Lee, J.Y.; Lee, J.H.; Chung, J. Molecular subgroup of periodontitis revealed by integrated analysis of the microbiome and metabolome in a cross-sectional observational study. J. Oral Microbiol. 2021, 13, 1902707. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.J.; Song, Y.; Lee, H.A.; Kim, S.; Chung, J. Metabolic phenotyping of saliva to identify possible biomarkers of periodontitis using proton nuclear magnetic resonance. J. Clin. Periodontol. 2021, 48, 1240–1249. [Google Scholar] [CrossRef]
- Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023, 11, 2749. [Google Scholar] [CrossRef]
- Basic, A.; Dahlén, G. Microbial metabolites in the pathogenesis of periodontal diseases: A narrative review. Front. Oral Health 2023, 4, 1210200. [Google Scholar] [CrossRef]
- Kuboniwa, M.; Sakanaka, A.; Hashino, E.; Bamba, T.; Fukusaki, E.; Amano, A. Prediction of Periodontal Inflammation via Metabolic Profiling of Saliva. J. Dent. Res. 2016, 95, 1381–1386. [Google Scholar] [CrossRef]
- Sakanaka, A.; Kuboniwa, M.; Katakami, N.; Furuno, M.; Nishizawa, H.; Omori, K.; Taya, N.; Ishikawa, A.; Mayumi, S.; Isomura, E.T.; et al. Saliva and Plasma Reflect Metabolism Altered by Diabetes and Periodontitis. Front. Mol. Biosci. 2021, 8, 742002. [Google Scholar] [CrossRef]
- Sakanaka, A.; Kuboniwa, M.; Hashino, E.; Bamba, T.; Fukusaki, E.; Amano, A. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci. Rep. 2017, 7, 42818. [Google Scholar] [CrossRef]
- Rashid, M.H.; Yellarthi, S.P.K.; Yellarthi, P.K.; Didugu, B.G.L.; Mamillapalli, A. Combined assessment of lysine and N-acetyl cadaverine levels assist as a potential biomarker of the smoker periodontitis. Amino Acids 2024, 56, 41. [Google Scholar] [CrossRef]
- Andörfer, L.; Holtfreter, B.; Weiss, S.; Matthes, R.; Pitchika, V.; Schmidt, C.O.; Samietz, S.; Kastenmüller, G.; Nauck, M.; Völker, U.; et al. Salivary metabolites associated with a 5-year tooth loss identified in apopulation-based setting. BMC Med. 2021, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Barnes, V.M.; Ciancio, S.G.; Shibly, O.; Xu, T.; Devizio, W.; Trivedi, H.M.; Guo, L.; Jonsson, T.J. Metabolomics Reveals Elevated Macromolecular Degradation in Periodontal Disease. J. Dent. Res. 2011, 90, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Li, B.; Wang, H.; Cai, Q.; Quan, X.; Cui, Y.; Meng, W. Effects of d-valine on periodontal or peri-implant pathogens: Porphyromonas gingivalis biofilm. J. Periodontol. 2018, 89, 303–314. [Google Scholar] [CrossRef]
- Liebsch, C.; Pitchika, V.; Pink, C.; Samietz, S.; Kastenmüller, G.; Artati, A.; Suhre, K.; Adamski, J.; Nauck, M.; Völzke, H.; et al. The Saliva Metabolome in Association to Oral Health Status. J. Dent. Res. 2019, 98, 642–651. [Google Scholar] [CrossRef]
- Citterio, F.; Romano, F.; Meoni, G.; Iaderosa, G.; Grossi, S.; Sobrero, A.; Dego, F.; Corana, M.; Berta, G.N.; Tenori, L.; et al. Changes in the salivary metabolic profile of generalized periodontitis patients after non-surgical periodontal therapy: A metabolomic analysis using nuclear magnetic resonance spectroscopy. J. Clin. Med. 2020, 9, 1–12. [Google Scholar] [CrossRef]
- Barnes, V.M.; Teles, R.; Trivedi, H.M.; Devizio, W.; Xu, T.; Mitchell, M.W.; Milburn, M.V.; Guo, L. Acceleration of purine degradation by periodontal diseases. J. Dent. Res. 2009, 88, 851–855. [Google Scholar] [CrossRef]
- Phang, J.M.; Pandhare, J.; Liu, Y. The Metabolism of Proline as Microenvironmental Stress Substrate. J. Nutr. 2008, 138, 2008S. [Google Scholar] [CrossRef]
- Karna, E.; Szoka, L.; Huynh, T.Y.L.; Palka, J.A. Proline-dependent regulation of collagen metabolism. Cell Mol. Life Sci. 2019, 70, 1911. [Google Scholar] [CrossRef]
- Fouillen, A.; Mary, C.; Ponce, K.J.; Moffatt, P.; Nanci, A. A proline rich protein from the gingival seal around teeth exhibits antimicrobial properties against Porphyromonas gingivalis. Sci. Rep. 2021, 11, 2353. [Google Scholar] [CrossRef]
- Jayasinghe, T.N.; Harrass, S.; Erdrich, S.; King, S.; Eberhard, J. Protein Intake and Oral Health in Older Adults-A Narrative Review. Nutrients 2022, 2022, 4478. [Google Scholar] [CrossRef]
- García-Villaescusa, A.; Morales-Tatay, J.M.; Monleón-Salvadó, D.; González-Darder, J.M.; Bellot-Arcis, C.; Montiel-Company, J.M.; Almerich-Silla, J.M. Using NMR in saliva to identify possible biomarkers of glioblastoma andchronic periodontitis. PLoS ONE 2018, 13, e0188710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, P.; Liu, Y.; Wu, Y.; Chen, Y.; Guo, Y.; Zhang, S.; Zheng, X.; Zhou, L.; Liu, W.; et al. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nat. Commun. 2020, 11, 5596. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, Y.; Huang, L.; Shi, B.; Yin, X.; Zou, S. Alpha-ketoglutarate up-regulates autophagic activity in peri-implant environment and enhances dental implant osseointegration in osteoporotic mice. J. Clin. Periodontol. 2023, 50, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, Q.; Ma, S.; Wang, B. α-Ketoglutarate promotes autophagic activity under a peri-implant condition to enhance osseointegration of dental implant in rats with osteoporosis. Connect. Tissue Res. 2024, 66, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Li, Y.; Song, W.; Shao, B.; Li, H.; Lin, W.; Li, Q.; Shuai, X.; Bai, M.; et al. Alpha-ketoglutarate promotes alveolar bone regeneration by modulating M2 macrophage polarization. Bone Rep. 2023, 18, 101671. [Google Scholar] [CrossRef]
Main Author | Year | Analytic Platform | Approach | Study Type | Sample Type | Sample Size | Inclusion Criteria | Metabolites Identified (nr) | Significant Metabolites | Notes | Conclusions |
---|---|---|---|---|---|---|---|---|---|---|---|
Song et al. [33] | 2024 | UHPLC-MS, GC-MS | Targeted and untargeted | Cross-sectional | PICF | 56 patients (56 implants) | >18 years old; minimum 12 months functional loading, clinical diagnosis of PI/IH | 179 | succinic acid, fructose-6-phosphate, glucose-6-phosphate (correlated to PI and periodontal parameters); Isobutyric acid, 3-phenylpropionic acid (correlated with periodontal parameters); L-phenylalanine, benzamide, and L-valine (correlated to PD); Photoline, chlorphenguanidine, pyrrolidine, and hypoxanthine (correlated to BOP) | Some participants in the peri-implantitis group also had periodontitis. | A distinct metabolite profile between healthy implants and implants affected by peri-implantitis exists, and it correlates with existing bacterial flora. |
Alassy [31] | 2021 | H-NMR | Untargeted | Longitudinal | PICF; saliva | 71 patients (130 implants) | Good general health, clinical diagnosis of PI/IH | 36 | Cadaverine/lysine (correlated to PI); alpha-ketoglutarate (correlated to healthy implants); Proline and 1-3-diamino propane (predictors for bone loss >1 mm); arginine (associated with non-progressive PI) | Study included smoking patients; | PI PICF samples demonstrate a distinct metabolic profile compared to healthy implants. |
Fornasaro et al. [34] | 2023 | SERS | Untargeted | Cross-sectional | PICF | 118 patients (305 implants) | >18 years old; minimum 12 months functional loading, good general health, clinical diagnosis of PI/HI | NR | glutathione, ergothioneine, and hypoxanthine | Study included patients diagnosed with peri-mucositis | SERS could be a non-invasive tool to monitor implant health and PI development |
Hamilton [30] | 2020 | H-NMR | Untargeted | Longitudinal | PICF | 59 patients (128 implants) | Good general health with controlled systemic diseases, clinical diagnosis of PI/HI | 35 | Cadaverine/lysine, propionate, alanine/lysine, putrescine/lysine, valine, tyramine, and threonine (correlated to PI); a- ketoglutarate, isoleucine, proline, and uracil (correlated to implant health) | Study included patients diagnosed with peri-mucositis | Specific metabolites were significantly correlated with PI or HI but showed insufficient sensitivity/specificity to diagnose PI. |
Liu et al. [32] | 2024 | GC-MS, HPLC | Targeted | Cross-sectional | PICF | 48 patients (86 implants) | >18 years of age; minimum 5 years since implant placemen; no mechanical complications of implants; clinically diagnosed PI, PIM or PH | NA | Formic acid, acetic, propionic, and isovaleric acids (correlated to PIM); butyric, isobutyric, and isovaleric acids (correlated to PI) | Study searched specifically for SCFAs | Short-chain fatty acids were significantly correlated with PI clinical parameters. Elevated specific SCFAs are correlated with peri-implant disease. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condor, A.-M.; Kui, A.; Condor, D.C.; Negucioiu, M.; Buduru, S.D.; Lucaciu, P.O. Metabolomics Applications for Diagnosing Peri-Implantitis: A Systematic Review of In Vivo Studies. Diagnostics 2025, 15, 990. https://doi.org/10.3390/diagnostics15080990
Condor A-M, Kui A, Condor DC, Negucioiu M, Buduru SD, Lucaciu PO. Metabolomics Applications for Diagnosing Peri-Implantitis: A Systematic Review of In Vivo Studies. Diagnostics. 2025; 15(8):990. https://doi.org/10.3390/diagnostics15080990
Chicago/Turabian StyleCondor, Ana-Maria, Andreea Kui, Daniela Cornelia Condor, Marius Negucioiu, Smaranda Dana Buduru, and Patricia Ondine Lucaciu. 2025. "Metabolomics Applications for Diagnosing Peri-Implantitis: A Systematic Review of In Vivo Studies" Diagnostics 15, no. 8: 990. https://doi.org/10.3390/diagnostics15080990
APA StyleCondor, A.-M., Kui, A., Condor, D. C., Negucioiu, M., Buduru, S. D., & Lucaciu, P. O. (2025). Metabolomics Applications for Diagnosing Peri-Implantitis: A Systematic Review of In Vivo Studies. Diagnostics, 15(8), 990. https://doi.org/10.3390/diagnostics15080990