Construction Site Hazard Identification and Worker Adverse Reaction Monitoring Using Electroencephalograms: A Review
Abstract
:1. Introduction
1.1. Research Background
1.2. EEG Technology
1.2.1. Four Functional Areas of the Brain
1.2.2. Five Brain Wave Frequencies
1.2.3. The International 10–20 Electrode Placement System
1.2.4. Portable EEG Monitoring Devices
Traditional Scalp EEG
Ear-EEG
1.3. EEG Monitoring of Worker Adverse Reactions and Construction Hazard Identification
1.4. Contributions of the Review
2. Review Methodology
2.1. Literature Research
2.2. Selection Criteria
- Consider combining EEG monitoring with subjective monitoring during the monitoring process;
- In terms of monitoring adverse reactions in construction workers through EEG, consider mood monitoring, fatigue monitoring, distraction monitoring, and vigilance monitoring of workers;
- Aspects of the identification of hazardous behavior in construction through EEG include monitoring at the construction site and simulation of the construction site environment in the laboratory through VR technology.
3. Worker’s Adverse Reaction Monitoring and Construction Hazard Identification
3.1. Workers Adverse Effects
3.1.1. Emotional Aspect of Workers
3.1.2. Work Fatigue Monitoring
3.1.3. Distraction and Psychological Burden of Workers
3.1.4. Vigilance Aspect of Workers
3.2. Construction Hazard Identification
4. Discussion and Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EEG | Electroencephalogram |
MEG | Magnetoencephalography |
EMG | Electromyogram |
ECG | Electrocardiogram |
EOG | Electro-oculogram |
EDA | Electrodermal Activity |
TCV | Thermal Comfort Vote |
TSV | Thermal Sensation Vote |
SVF | Sky View Factor |
BCI | Brain-Machine Interface |
ERP | Event-related Potential |
SVM | Support Vector Machines |
IVE | Immersive Virtual Environment |
WPT | Wavelet Packet Transform |
CSA | Center Sleep Apnea |
MSA | Mix Sleep Apnea |
PMR | Progressive Muscle Relaxation |
TNS | Trigeminal Nerve Stimulation |
NASA-TLX | NASA TASK Load Index |
ML | Machine Learning |
DL | Deep Learning |
CNN | Convolutional Neural Networks |
MMN | Mismatch Negativity |
HMD | Head-mounted Device |
RBD | REM Sleep Behavior Disorder |
OSA | Obstructive Sleep Apnea |
PSG | Polysomnography |
TSV | Thermal Sensation Vote |
MTSV | Mean TSV |
TCV | Thermal Comfort Vote |
PSD | Power Spectral Density |
VAD | Valence-Arousal-Dominance |
α | Alpha |
β | Beta |
θ | Theta |
δ | Delta |
γ | Gamma |
References
- Birhane, G.E.; Yang, L.; Geng, J.; Zhu, J. Causes of construction injuries: A review. Int. J. Occup. Saf. Ergon. 2022, 28, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Hinze, J.W.; Teizer, J. Visibility-related fatalities related to construction equipment. Saf. Sci. 2011, 49, 709–718. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, Z.; Yuan, J.; Li, N.; Zhou, J. Accident pattern recognition in subway construction for the provision of customized safety measures. Tunn. Undergr. Space Technol. 2023, 137, 105157. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Y.; Lim Huey, W.; Ma, L.; Gu, B.; Huang, Y. Construction of a Bayesian Network Based on Leadership-Culture-Behavior Model to Improve Owner Safety Management Behavior. J. Constr. Eng. Manag. 2023, 149, 04022177. [Google Scholar] [CrossRef]
- Fang, D.; Zhao, C.; Zhang, M. A Cognitive Model of Construction Workers’ Unsafe Behaviors. J. Constr. Eng. Manag. 2016, 142, 04016039. [Google Scholar] [CrossRef]
- Namian, M.; Taherpour, F.; Ghiasvand, E.; Turkan, Y. Insidious Safety Threat of Fatigue: Investigating Construction Workers’ Risk of Accident Due to Fatigue. J. Constr. Eng. Manag. 2021, 147, 04021162. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Tempesta, D.; Socci, V.; De Gennaro, L.; Ferrara, M. Sleep and emotional processing. Sleep Med. Rev. 2018, 40, 183–195. [Google Scholar] [CrossRef]
- Gu, J.; Guo, F. How fatigue affects the safety behaviour intentions of construction workers an empirical study in Hunan, China. Saf. Sci. 2022, 149, 105684. [Google Scholar] [CrossRef]
- Abdelhamid Tariq, S.; Everett John, G. Physiological Demands during Construction Work. J. Constr. Eng. Manag. 2002, 128, 427–437. [Google Scholar] [CrossRef]
- Haslam, R.A.; Hide, S.A.; Gibb, A.G.F.; Gyi, D.E.; Pavitt, T.; Atkinson, S.; Duff, A.R. Contributing factors in construction accidents. Appl. Ergon. 2005, 36, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Murphy, L.A.; Fang, D.; Caban-Martinez, A.J. Influence of fatigue on construction workers’ physical and cognitive function. Occup. Med. 2015, 65, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Wang, Y.; Sun, H.; Zhao, X. Automatic construction site hazard identification integrating construction scene graphs with BERT based domain knowledge. Autom. Constr. 2022, 142, 104535. [Google Scholar] [CrossRef]
- Ricciardi, P.; Buratti, C. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Build. Environ. 2018, 127, 23–36. [Google Scholar] [CrossRef]
- De Dear, R. Thermal comfort in practice. Indoor Air 2004, 14 (Suppl. S7), 32–39. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, C.E.; Capeluto, I.G. Evaluating visual comfort and performance of three natural lighting systems for deep office buildings in highly luminous climates. Build. Environ. 2006, 41, 1128–1135. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Merli, F.; Ricciardi, P. A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Build. Environ. 2018, 139, 27–37. [Google Scholar] [CrossRef]
- Perrin Jegen, N.; Chevret, P. Effect of noise on comfort in open-plan offices: Application of an assessment questionnaire. Ergonomics 2017, 60, 6–17. [Google Scholar] [CrossRef]
- Pierrette, M.; Parizet, E.; Chevret, P.; Chatillon, J. Noise effect on comfort in open-space offices: Development of an assessment questionnaire. Ergonomics 2015, 58, 96–106. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Baik, Y.K.; Clausen, G.; Fanger, P.O. Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 1999, 9, 165–179. [Google Scholar] [CrossRef]
- Lan, L.; Wargocki, P.; Wyon, D.P.; Lian, Z. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air 2011, 21, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Arango, D.; Vásquez-Hernández, A.; Botero-Botero, L.F. Assessment of subjective workplace well-being of construction workers: A bottom-up approach. J. Build. Eng. 2021, 36, 102154. [Google Scholar] [CrossRef]
- Rozenfeld, O.; Sacks, R.; Rosenfeld, Y.; Baum, H. Construction Job Safety Analysis. Saf. Sci. 2010, 48, 491–498. [Google Scholar] [CrossRef]
- Wang, H.-H.; Boukamp, F. Ontology-Based Representation and Reasoning Framework for Supporting Job Hazard Analysis. J. Comput. Civ. Eng. 2011, 25, 442–456. [Google Scholar] [CrossRef]
- Pinto, A.; Nunes, I.L.; Ribeiro, R.A. Occupational risk assessment in construction industry—Overview and reflection. Saf. Sci. 2011, 49, 616–624. [Google Scholar] [CrossRef]
- Pan, Y.; WAN, Y.; Chen, G.Q.; Hu, Q.; Huang, L.H.; Wang, J.L.; Wang, Q.Z.; Wang, W.J.; Yi, R.H. Research on Neural Information Systems: Current Status and Prospects. J. Manag. Sci. China 2018, 21, 1–21. [Google Scholar]
- Szafir, D.; Signorile, R. An Exploration of the Utilization of Electroencephalography and Neural Nets to Control Robots. In Human-Computer Interaction—INTERACT 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 186–194. [Google Scholar]
- Inagaki, H.K.; Chen, S.; Ridder, M.C.; Sah, P.; Li, N.; Yang, Z.; Hasanbegovic, H.; Gao, Z.; Gerfen, C.R.; Svoboda, K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022, 185, 1065–1081.e23. [Google Scholar] [CrossRef]
- Wu, M.; Li, H.; Qi, H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments. Indoor Air 2020, 30, 534–543. [Google Scholar] [CrossRef]
- Lu, M.; Hu, S.; Mao, Z.; Liang, P.; Xin, S.; Guan, H. Research on work efficiency and light comfort based on EEG evaluation method. Build. Environ. 2020, 183, 107122. [Google Scholar] [CrossRef]
- Lang, X.; Wang, Z.; Tian, X.; Wu, Y.; Zhu, S.; Liu, W. The effects of extreme high indoor temperature on EEG during a low intensity activity. Build. Environ. 2022, 219, 109225. [Google Scholar] [CrossRef]
- Zhang, L.; Fabbri, D.; Upender, R.; Kent, D. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Sleep 2019, 42, zsz159. [Google Scholar] [CrossRef] [PubMed]
- Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Ishman, S.L.; Yang, C.J.; Cohen, A.P.; Benke, J.R.; Meinzen-Derr, J.K.; Anderson, R.M.; Madden, M.E.; Tabangin, M.E. Is the OSA-18 predictive of obstructive sleep apnea: Comparison to polysomnography. Laryngoscope 2015, 125, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Colín-Cano, C.; Ruiz-Morales, M.; Ledo-Gutiérrez, L.; Marín-Agudelo, H.A.; Jiménez-Correa, U. Correlation between the clinical inventory of sleep quality (CISQ) and polisomnographic (PSG) characteristics in patients with obstructive sleep apnea syndrome (OSA). Sleep Med. 2017, 40, e150. [Google Scholar] [CrossRef]
- Kritzinger, F.E.; Al-Saleh, S.; Narang, I. Descriptive analysis of central sleep apnea in childhood at a single center. Pediatr. Pulmonol. 2011, 46, 1023–1030. [Google Scholar] [CrossRef]
- Neikrug, A.B.; Ancoli-Israel, S. Diagnostic tools for REM sleep behavior disorder. Sleep Med. Rev. 2012, 16, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Tabar, Y.R.; Mikkelsen, K.B.; Rank, M.L.; Hemmsen, M.C.; Otto, M.; Kidmose, P. Ear-EEG for sleep assessment: A comparison with actigraphy and PSG. Sleep Breath. 2021, 25, 1693–1705. [Google Scholar] [CrossRef]
- Scanlon, J.E.M.; Jacobsen, N.S.J.; Maack, M.C.; Debener, S. Outdoor walking: Mobile EEG dataset from walking during oddball task and walking synchronization task. Data Brief 2023, 46, 108847. [Google Scholar] [CrossRef]
- Jacobsen, N.S.J.; Blum, S.; Witt, K.; Debener, S. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings. Eur. J. Neurosci. 2021, 54, 8421–8440. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.; Liu, W.; Tian, Y.; Ma, Z.; He, G.; Yang, H. A study of the cognitive process of pedestrian avoidance behavior based on synchronous EEG and eye movement detection. Heliyon 2023, 9, e13788. [Google Scholar] [CrossRef]
- Ma, X.; Song, L.; Hong, B.; Li, Y.; Li, Y. Relationships between EEG and thermal comfort of elderly adults in outdoor open spaces. Build. Environ. 2023, 235, 110212. [Google Scholar] [CrossRef]
- Demos, J.N. Getting Started with Neurofeedback; WW Norton & Company: New York, NY, USA, 2005. [Google Scholar]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, UK, 2014. [Google Scholar]
- Sharbrough, F.; Chatrian, G.E.; Lesser, R.P.; Luders, H.; Nuwer, M.; Picton, T.W. American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol. 1991, 8, 200–202. [Google Scholar]
- Xu, Q.; Chong, H.-Y.; Liao, P.-C. Exploring eye-tracking searching strategies for construction hazard recognition in a laboratory scene. Saf. Sci. 2019, 120, 824–832. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Nnaji, C.; Okpala, I.; Awolusi, I. Wearable sensing devices: Potential impact & current use for incident prevention. Prof. Saf. 2020, 65, 16–24. [Google Scholar]
- Abuwarda, Z.; Mostafa, K.; Oetomo, A.; Hegazy, T.; Morita, P. Wearable devices: Cross benefits from healthcare to construction. Autom. Constr. 2022, 142, 104501. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying mental fatigue of construction workers using EEG and deep learning. Autom. Constr. 2023, 151, 104887. [Google Scholar] [CrossRef]
- Chen, J.; Taylor John, E.; Comu, S. Assessing Task Mental Workload in Construction Projects: A Novel Electroencephalography Approach. J. Constr. Eng. Manag. 2017, 143, 04017053. [Google Scholar] [CrossRef]
- Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 2017, 82, 154–165. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Chen, J.; Luo, X.; Li, J.; Xing, X. Pre-service fatigue screening for construction workers through wearable EEG-based signal spectral analysis. Autom. Constr. 2019, 106, 102851. [Google Scholar] [CrossRef]
- Xing, X.; Li, H.; Li, J.; Zhong, B.; Luo, H.; Skitmore, M. A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers. Autom. Constr. 2019, 105, 102836. [Google Scholar] [CrossRef]
- Matthies, D.J.C. InEar BioFeedController: A headset for hands-free and eyes-free interaction with mobile devices. In Proceedings of the CHI’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 1293–1298. [Google Scholar]
- Athavipach, C.; Pan-ngum, S.; Israsena, P. A Wearable In-Ear EEG Device for Emotion Monitoring. Sensors 2019, 19, 4014. [Google Scholar] [CrossRef] [PubMed]
- Looney, D.; Kidmose, P.; Park, C.; Ungstrup, M.; Rank, M.L.; Rosenkranz, K.; Mandic, D.P. The In-the-Ear Recording Concept: User-Centered and Wearable Brain Monitoring. IEEE Pulse 2012, 3, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Matthies, D.J.C.; Strecker, B.A.; Urban, B. EarFieldSensing: A Novel In-Ear Electric Field Sensing to Enrich Wearable Gesture Input through Facial Expressions. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 1911–1922. [Google Scholar]
- Nguyen, A.; Alqurashi, R.; Raghebi, Z.; Banaei-kashani, F.; Halbower, A.C.; Vu, T. A Lightweight and Inexpensive In-ear Sensing System for Automatic Whole-night Sleep Stage Monitoring. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, CA, USA, 14–16 November 2016; pp. 230–244. [Google Scholar]
- You, S.; Cho, B.H.; Yook, S.; Kim, J.Y.; Shon, Y.-M.; Seo, D.-W.; Kim, I.Y. Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network. Comput. Methods Programs Biomed. 2020, 193, 105472. [Google Scholar] [CrossRef]
- You, S.; Hwan Cho, B.; Shon, Y.-M.; Seo, D.-W.; Kim, I.Y. Semi-supervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG. Comput. Methods Programs Biomed. 2022, 213, 106542. [Google Scholar] [CrossRef]
- General Office of the Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Circular of the General Office of the Ministry of Housing and Urban-Rural Development on Production and Safety Accidents in Housing and Municipal Engineering in 2019. 2020. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202006/20200624_246031.html (accessed on 22 November 2023).
- Jap, B.T.; Lal, S.; Fischer, P.; Bekiaris, E. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 2009, 36, 2352–2359. [Google Scholar] [CrossRef]
- Barwick, F.; Arnett, P.; Slobounov, S. EEG correlates of fatigue during administration of a neuropsychological test battery. Clin. Neurophysiol. 2012, 123, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Schmidt, E.A.; Kincses, W.E.; Fritzsche, M.; Bruns, A.; Aufmuth, C.; Bogdan, M.; Rosenstiel, W.; Schrauf, M. EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions. Clin. Neurophysiol. 2011, 122, 1168–1178. [Google Scholar] [CrossRef]
- Li, W.; He, Q.-c.; Fan, X.-m.; Fei, Z.-m. Evaluation of driver fatigue on two channels of EEG data. Neurosci. Lett. 2012, 506, 235–239. [Google Scholar] [CrossRef]
- Freilich, S.; Kreimer, A.; Meilijson, I.; Gophna, U.; Sharan, R.; Ruppin, E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 2010, 38, 3857–3868. [Google Scholar] [CrossRef]
- van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Andersen, L.P.; Mikkelsen, K.L. Recall of occupational injuries: A comparison of questionnaire and diary data. Saf. Sci. 2008, 46, 255–260. [Google Scholar] [CrossRef]
- Shahid, A.; Wilkinson, K.; Marcu, S.; Shapiro, C.M. STOP, THAT and One Hundred Other Sleep Scales; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Dura, A.; Wosiak, A. Unsupervised emotional state recognition based on clustering of EEG features. Procedia Comput. Sci. 2022, 207, 3093–3102. [Google Scholar] [CrossRef]
- Mir, M.; Nasirzadeh, F.; Bereznicki, H.; Enticott, P.; Lee, S. Investigating the effects of different levels and types of construction noise on emotions using EEG data. Build. Environ. 2022, 225, 109619. [Google Scholar] [CrossRef]
- Xing, X.; Zhong, B.; Luo, H.; Rose, T.; Li, J.; Antwi-Afari, M.F. Effects of physical fatigue on the induction of mental fatigue of construction workers: A pilot study based on a neurophysiological approach. Autom. Constr. 2020, 120, 103381. [Google Scholar] [CrossRef]
- Tehrani, B.M.; Wang, J.; Truax, D. Assessment of mental fatigue using electroencephalography (EEG) and virtual reality (VR) for construction fall hazard prevention. Eng. Constr. Archit. Manag. 2022, 29, 3593–3616. [Google Scholar] [CrossRef]
- Ke, J.; Zhang, M.; Luo, X.; Chen, J. Monitoring distraction of construction workers caused by noise using a wearable Electroencephalography (EEG) device. Autom. Constr. 2021, 125, 103598. [Google Scholar] [CrossRef]
- Ke, J.; Du, J.; Luo, X. The effect of noise content and level on cognitive performance measured by electroencephalography (EEG). Autom. Constr. 2021, 130, 103836. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Lin, Z. Revealing the “Invisible Gorilla” in construction: Estimating construction safety through mental workload assessment. Autom. Constr. 2016, 63, 173–183. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Z.; Guo, X. Developing construction workers’ mental vigilance indicators through wavelet packet decomposition on EEG signals. In Proceedings of the Construction Research Congress 2018, New Orleans, LO, USA, 2–4 April 2018; pp. 51–61. [Google Scholar]
- Wang, D.; Li, H.; Chen, J. Detecting and measuring construction workers’ vigilance through hybrid kinematic-EEG signals. Autom. Constr. 2019, 100, 11–23. [Google Scholar] [CrossRef]
- Perlman, A.; Sacks, R.; Barak, R. Hazard recognition and risk perception in construction. Saf. Sci. 2014, 64, 22–31. [Google Scholar] [CrossRef]
- Carter, G.; Smith Simon, D. Safety Hazard Identification on Construction Projects. J. Constr. Eng. Manag. 2006, 132, 197–205. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Esmaeili, B.; Dodd Michael, D. Impact of Construction Workers’ Hazard Identification Skills on Their Visual Attention. J. Constr. Eng. Manag. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Noghabaei, M.; Han, K. Hazard recognition in an immersive virtual environment: Framework for the simultaneous analysis of visual search and EEG patterns. In Proceedings of the Construction Research Congress 2020, Reston, VA, USA, 8–10 March 2020; pp. 934–943. [Google Scholar]
- Noghabaei, M.; Han, K.; Albert, A. Feasibility Study to Identify Brain Activity and Eye-Tracking Features for Assessing Hazard Recognition Using Consumer-Grade Wearables in an Immersive Virtual Environment. J. Constr. Eng. Manag. 2021, 147, 04021104. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.; Liao, P.-C. EEG-based work experience prediction using hazard recognition. Autom. Constr. 2022, 136, 104151. [Google Scholar] [CrossRef]
- Liu, Q. Influence Mechanism of Construction Workers’ Safety Psychology on their Safety Behavior Based on Event-related Potentials. NeuroQuantology 2018, 16, 171–175. [Google Scholar] [CrossRef]
- Jeon, J.; Cai, H.; Yu, D.; Xu, X. Identification of safety hazards using wearable EEG. In Proceedings of the Construction Research Congress 2020, Reston, VA, USA, 8–10 March 2020; pp. 185–194. [Google Scholar]
- Jeon, J.; Cai, H. Classification of construction hazard-related perceptions using: Wearable electroencephalogram and virtual reality. Autom. Constr. 2021, 132, 103975. [Google Scholar] [CrossRef]
- Jeon, J.; Cai, H. Multi-class classification of construction hazards via cognitive states assessment using wearable EEG. Adv. Eng. Inform. 2022, 53, 101646. [Google Scholar] [CrossRef]
- Jeon, J.; Cai, H. A Framework for EEG-based ubiquitous hazard identification and proactive safety management. In Proceedings of the Construction Research Congress 2022, Reston, VA, USA, 9–12 March 2022; pp. 145–153. [Google Scholar]
- Liao, P.-C.; Zhou, X.; Chong, H.-Y.; Hu, Y.; Zhang, D. Exploring construction workers’ brain connectivity during hazard recognition: A cognitive psychology perspective. Int. J. Occup. Saf. Ergon. 2023, 29, 207–215. [Google Scholar] [CrossRef]
- Lacan, L.; Hamoud, Y.; Nguyen, S.; De Jonckheere, J.; Storme, L.; Houfflin-Debarge, V.; Auvin, S.; Sharma, D.; Garabedian, C.; Ghesquière, L. Fetal sheep cerebral electrical activity: A new technique to record EEG. J. Neurosci. Methods 2020, 345, 108888. [Google Scholar] [CrossRef]
- Fu, H.; Xia, Z.; Tan, Y.; Guo, X. Influence of Cues on the Safety Hazard Recognition of Construction Workers during Safety Training: Evidence from an Eye-Tracking Experiment. J. Civ. Eng. Educ. 2024, 150, 04023009. [Google Scholar] [CrossRef]
Band Name | Frequency Band (Hz) | Subjective Feeling State | Relevant Mandates and Behaviors |
---|---|---|---|
Delta (δ) | 0.5 Hz–4 Hz | dreamless sleep, non-REM sleep, asleep | Drowsiness, immobility, difficulty concentrating |
Theta (θ) | 4 Hz–8 Hz | Intuition, recollection, deeply relaxed | Be creative and intuitive; Distraction, lack of concentration |
Alpha (α) | 8 Hz–13 Hz | relaxed, not irritable, not sleepy | Meditative, no movement |
Beta (β) | 13 Hz–30 Hz | Alert, excited, focused | Conduct mental activities |
Gamma (γ) | 30 Hz–Up | High performance | Advanced information processing and information-rich task processing |
The Time after Being Stimulated | Information Exchange in Different Regions |
---|---|
200 ms | The parietal lobe has a relatively active exchange of information with the whole brain. |
240–300 ms | There is relatively active information outflow from the lateral parietal region. |
200–500 ms | Strong information outflow was observed in the left temporal lobe region. |
400–600 ms | Strong information outflow was observed in the right parietal lobe region. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Yang, B.; Zhang, W.; Liu, P.; Fu, H.; Lv, Z.; Wang, F. Construction Site Hazard Identification and Worker Adverse Reaction Monitoring Using Electroencephalograms: A Review. Buildings 2024, 14, 180. https://doi.org/10.3390/buildings14010180
Wei B, Yang B, Zhang W, Liu P, Fu H, Lv Z, Wang F. Construction Site Hazard Identification and Worker Adverse Reaction Monitoring Using Electroencephalograms: A Review. Buildings. 2024; 14(1):180. https://doi.org/10.3390/buildings14010180
Chicago/Turabian StyleWei, Bo’an, Bin Yang, Weiling Zhang, Pengju Liu, Hanliang Fu, Zhihan Lv, and Faming Wang. 2024. "Construction Site Hazard Identification and Worker Adverse Reaction Monitoring Using Electroencephalograms: A Review" Buildings 14, no. 1: 180. https://doi.org/10.3390/buildings14010180
APA StyleWei, B., Yang, B., Zhang, W., Liu, P., Fu, H., Lv, Z., & Wang, F. (2024). Construction Site Hazard Identification and Worker Adverse Reaction Monitoring Using Electroencephalograms: A Review. Buildings, 14(1), 180. https://doi.org/10.3390/buildings14010180