Unlocking Blockchain in Construction: A Systematic Review of Applications and Barriers
Abstract
:1. Introduction
2. Background on Blockchain Technology
2.1. Overview of Blockchain
2.2. Advantages of Blockchain
2.2.1. Distributed
- Changes propagate fast and are updated in seconds or minutes in the distributed ledger, making ledger tracking easy. This is because there are no involvements of intermediaries in the blockchain.
- New blocks can only be added to the blockchain after verification of the transactions by other participating nodes.
- Blockchain network does not give any special treatment to any node. Everyone must follow the standard procedures to add a new block to the network.
2.2.2. Immutable
- Each node in the blockchain network holds a copy of the digital ledger. No one can add any transaction blocks to the ledger without the approval of the majority of nodes [48].
- The validated records are irreversible; no network user can edit, change, or delete them [49].
- Altering any piece of information on the blockchain is extremely difficult and practically impossible due to its cryptographic and decentralized nature [19].
2.2.3. Decentralized
- The decentralized property of blockchain makes it less prone to failure and more expensive for hackers to attack the network. An attack on a single node does not result in complete network control [50].
- There is no third-party involvement; therefore, there is no added risk.
- Every change made in the network is traceable and concrete.
- Users maintain full autonomy of their properties and are not dependent on third parties to maintain and manage their assets.
- It provides enhanced security.
- Every record in the blockchain is individually encrypted.
- Every piece of information on the blockchain is hashed and has a unique identity on the network.
- All the blocks maintain a unique hash of their own and the hash of the previous block. Modifying the data means changing all the hash IDs, which is almost impossible.
- By creating an encrypted record, the blockchain helps prevent fraud and unauthorized activity.
2.2.4. Increased Speed and Efficiency
2.2.5. Greater Auditability
2.2.6. Greater Transparency
3. Research Methodology
4. Publication Trends and Thematic Mapping
4.1. Publication Year
4.2. Geographic Distribution
4.3. Mapping of Major Themes
5. Applications of Blockchain in the Construction Industry
5.1. Contract Administration
5.2. Payment Processes
5.3. Data Storage and Management
5.4. Procurement and Supply Chain Management
5.5. Sustainable Built Environment
5.6. Facilities Management
5.7. Design and Construction Processes
5.8. Project Risk and Compliance
6. Adoption Considerations and Challenges
7. Conclusions
7.1. Summary of Findings
7.2. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Contract Administration | Payment Processes | Procurement & Supply Chain Management | Design and Construction Process | Facilities Management | Sustainability | Data Storage and Management | Project Risk and Compliance | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author(s) and Publication Year | SC | DR | PS | SC | PR | MS | BI | DM | DT | PD | BD | OD | MA | SB | SM | SW | CI | CS | DM | SA | QM | PC | RM |
Adel et al. [91] | ● | ● | ● | ||||||||||||||||||||
Adel et al. [66] | ● | ● | |||||||||||||||||||||
Aheleroff et al. [147] | ● | ||||||||||||||||||||||
Aheleroff et al. [132] | ● | ● | |||||||||||||||||||||
Ahmadisheykhsarmast and Sonmez [79] | ● | ● | |||||||||||||||||||||
Alvarez et al. [88] | ● | ● | ● | ● | ● | ||||||||||||||||||
Asif et al. [92] | ● | ● | ● | ||||||||||||||||||||
Azmi et al. [110] | ● | ||||||||||||||||||||||
Bakhshi et al. [82] | ● | ● | ● | ||||||||||||||||||||
Balasubramanian et al. [105] | ● | ● | |||||||||||||||||||||
Chang et al. [127] | ● | ● | |||||||||||||||||||||
Cho et al. [114] | ● | ● | |||||||||||||||||||||
Chong and Diamantopoulos [80] | ● | ● | ● | ||||||||||||||||||||
Ciotta et al. [148] | ● | ||||||||||||||||||||||
Cocco et al. [93] | ● | ● | ● | ● | ● | ||||||||||||||||||
Coskun-Setirek and Tanrikulu [149] | ● | ||||||||||||||||||||||
Dakhli et al. [137] | ● | ● | ● | ||||||||||||||||||||
Das et al. [85] | ● | ||||||||||||||||||||||
Das et al. [60] | ● | ● | ● | ||||||||||||||||||||
de Fátima Castro et al. [124] | ● | ||||||||||||||||||||||
de Villiers et al. [107] | ● | ● | ● | ||||||||||||||||||||
Deep et al. [150] | ● | ||||||||||||||||||||||
Eisele et al. [122] | ● | ● | |||||||||||||||||||||
Elghaish et al. [136] | ● | ● | ● | ● | |||||||||||||||||||
Elghaish et al. [76] | ● | ||||||||||||||||||||||
Gough et al. [123] | ● | ● | |||||||||||||||||||||
Gurgun and Koc [55] | ● | ● | ● | ||||||||||||||||||||
Gurgun et al. [71] | ● | ● | |||||||||||||||||||||
Hamledari and Fischer [84] | ● | ● | ● | ||||||||||||||||||||
Hamledari and Fischer [73] | ● | ● | ● | ● | |||||||||||||||||||
Hamledari and Fischer [72] | ● | ● | ● | ||||||||||||||||||||
Hamledari and Fischer [87] | ● | ● | ● | ||||||||||||||||||||
Helo and Shamsuzzoha [103] | ● | ||||||||||||||||||||||
Huang et al. [74] | ● | ● | ● | ||||||||||||||||||||
Hunhevicz et al. [83] | ● | ● | ● | ||||||||||||||||||||
Ibrahim et al. [89] | ● | ● | |||||||||||||||||||||
Ibrahim et al. [77] | ● | ● | |||||||||||||||||||||
Ismail and Buyya [151] | ● | ||||||||||||||||||||||
Jeoung et al. [125] | ● | ● | |||||||||||||||||||||
Jeyabharathi et al. [120] | ● | ● | |||||||||||||||||||||
Jiang and Zheng [121] | ● | ||||||||||||||||||||||
Jiang et al. [130] | ● | ||||||||||||||||||||||
Khan et al. [152] | ● | ||||||||||||||||||||||
Khan et al. [153] | ● | ||||||||||||||||||||||
Kim et al. [90] | ● | ● | |||||||||||||||||||||
Kim et al. [99] | ● | ● | ● | ||||||||||||||||||||
Kochovski and Stankovski [154] | ● | ● | ● | ||||||||||||||||||||
Kochovski and Stankovski [155] | ● | ||||||||||||||||||||||
Lee et al. [56] | ● | ● | ● | ● | |||||||||||||||||||
Li et al. [156] | ● | ● | ● | ● | |||||||||||||||||||
Li et al. [102] | ● | ● | ● | ● | |||||||||||||||||||
Li et al. [104] | ● | ● | ● | ● | |||||||||||||||||||
Li et al. [94] | ● | ● | |||||||||||||||||||||
Liu et al. [113] | ● | ● | ● | ● | |||||||||||||||||||
Liu et al. [157] | ● | ● | ● | ||||||||||||||||||||
Lu et al. [109] | ● | ● | |||||||||||||||||||||
Lu et al. [142] | ● | ● | ● | ● | |||||||||||||||||||
Lu et al. [86] | ● | ||||||||||||||||||||||
Marsal-Llacuna [158] | ● | ||||||||||||||||||||||
Mastos et al. [101] | ● | ● | ● | ● | |||||||||||||||||||
McNamara and Sepasgozar [62] | ● | ● | ● | ||||||||||||||||||||
Moretti et al. [126] | ● | ● | ● | ● | ● | ||||||||||||||||||
Nawari and Ravindran [141] | ● | ● | ● | ||||||||||||||||||||
Ni et al. [100] | ● | ● | ● | ● | ● | ||||||||||||||||||
Osunsanmi et al. [63] | ● | ||||||||||||||||||||||
Pan et al. [95] | ● | ● | |||||||||||||||||||||
Pradeep et al. [134] | ● | ● | ● | ● | ● | ||||||||||||||||||
Qian and Papadonikolaki [108] | ● | ● | |||||||||||||||||||||
Rodrigo et al. [118] | ● | ● | |||||||||||||||||||||
Sadeghi et al. [116] | ● | ||||||||||||||||||||||
Saygili et al. [78] | ● | ● | ● | ||||||||||||||||||||
Sheng et al. [69] | ● | ● | |||||||||||||||||||||
Shojaei et al. [112] | ● | ● | ● | ● | |||||||||||||||||||
Shojaei et al. [111] | ● | ● | |||||||||||||||||||||
Shu et al. [59] | ● | ● | |||||||||||||||||||||
Sigalov et al. [58] | ● | ● | ● | ||||||||||||||||||||
Song et al. [117] | ● | ● | |||||||||||||||||||||
Sonmez et al. [159] | ● | ● | ● | ||||||||||||||||||||
Srivastava et al. [81] | ● | ● | ● | ● | |||||||||||||||||||
Sun and Zhang [119] | ● | ||||||||||||||||||||||
Tao et al. [139] | ● | ● | ● | ● | ● | ● | |||||||||||||||||
Tao et al. [96] | ● | ● | ● | ||||||||||||||||||||
Teisserenc and Sepasgozar [68] | ● | ● | ● | ||||||||||||||||||||
Turk et al. [97] | ● | ● | ● | ||||||||||||||||||||
van Groesen and Pauwels [61] | ● | ● | ● | ● | ● | ||||||||||||||||||
Wang et al. [138] | ● | ● | |||||||||||||||||||||
Wang et al. [160] | ● | ● | |||||||||||||||||||||
Wu et al. [143] | ● | ● | |||||||||||||||||||||
Wu et al. [161] | ● | ● | |||||||||||||||||||||
Wu et al. [106] | ● | ● | ● | ||||||||||||||||||||
Wu et al. [129] | ● | ||||||||||||||||||||||
Wu et al. [131] | ● | ● | |||||||||||||||||||||
Xiong et al. [75] | ● | ● | ● | ||||||||||||||||||||
Xiong et al. [64] | ● | ● | ● | ||||||||||||||||||||
Xu et al. [98] | ● | ● | ● | ||||||||||||||||||||
Xue and Lu [128] | ● | ● | |||||||||||||||||||||
Xue et al. [133] | ● | ||||||||||||||||||||||
Yang et al. [162] | ● | ● | ● | ||||||||||||||||||||
Yang et al. [70] | ● | ● | ● | ● | ● | ● | |||||||||||||||||
Zhang et al. [67] | ● | ● | |||||||||||||||||||||
Zhang et al. [65] | ● | ● | ● | ||||||||||||||||||||
Zhang et al. [135] | ● | ||||||||||||||||||||||
Zheng et al. [57] | ● | ● | ● | ● | |||||||||||||||||||
Zhong et al. [115] | ● | ● | |||||||||||||||||||||
Zhu et al. [140] | ● |
References
- Smart Construction. Smart Construction’s 2023 Construction Industry Outlook. Available online: https://smartconstruction.com/resource-center/blog/u.s.-construction-industry-challenges-for-2023 (accessed on 30 August 2023).
- Ahsan, K.; Gunawan, I. Analysis of cost and schedule performance of international development projects. Int. J. Proj. Manag. 2010, 28, 68–78. [Google Scholar] [CrossRef]
- Assaf, S.A.; Al-Hejji, S. Causes of delay in large construction projects. Int. J. Proj. Manag. 2006, 24, 349–357. [Google Scholar] [CrossRef]
- Sambasivan, M.; Soon, Y.W. Causes and effects of delays in Malaysian construction industry. Int. J. Proj. Manag. 2007, 25, 517–526. [Google Scholar] [CrossRef]
- Flyvbjerg, B.; Skamris Holm, M.K.; Buhl, S.L. What causes cost overrun in transport infrastructure projects? Transp. Rev. 2004, 24, 3–18. [Google Scholar] [CrossRef]
- Mohd Nawi, M.N.; Baluch, N.H.; Bahaudin, A.Y. Impact of fragmentation issue in construction industry: An overview. In Proceedings of the MATEC Web of Conferences, Iskandar, Malaysia, 27 August 2014; p. 01009. [Google Scholar]
- Barbosa, F.; Woetzel, J.; Mischke, J. Reinventing Construction: A Route of Higher Productivity; McKinsey Global Institute: New York, NY, USA, 2017. [Google Scholar]
- Flyvbjerg, B.; Holm, M.S.; Buhl, S. Underestimating costs in public works projects: Error or lie? J. Am. Plan. Assoc. 2002, 68, 279–295. [Google Scholar] [CrossRef]
- Flyvbjerg, B.; Skamris Holm, M.K.; Buhl, S.L. How common and how large are cost overruns in transport infrastructure projects? Transp. Rev. 2003, 23, 71–88. [Google Scholar] [CrossRef]
- Levy, S.M. Project Management in Construction; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Malsane, S.M.; Sheth, A.Z. Simulate construction schedules using BIM 4D application to track progress. In Proceedings of the IIER (International Institute of Engineers and Researchers) International Conference, London, UK, 20 April 2015; pp. 10–15. [Google Scholar]
- Kopsida, M.; Brilakis, I.; Vela, P.A. A review of automated construction progress monitoring and inspection methods. In Proceedings of the 32nd CIB W78 Conference, Eindhoven, The Netherlands, 26–29 October 2015; pp. 421–431. [Google Scholar]
- Elasawi, H.A.E. Critical Assessment of Post-Award Contract Administration Performance in Construction Projects. Doctoral Dissertation, Qatar University, Doha, Qatar, 2020. [Google Scholar]
- Gunduz, M.; Elsherbeny, H.A. Operational framework for managing construction-contract administration practitioners’ perspective through modified Delphi method. J. Constr. Eng. Manag. 2020, 146, 04019110. [Google Scholar] [CrossRef]
- Perera, S.; Nanayakkara, S.; Rodrigo, M.N.N.; Senaratne, S.; Weinand, R. Blockchain technology: Is it hype or real in the construction industry? J. Ind. Inf. Integr. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Li, J.; Greenwood, D.; Kassem, M. Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. Autom. Constr. 2019, 102, 288–307. [Google Scholar] [CrossRef]
- Yevu, S.K.; Ann, T.W.; Darko, A. Digitalization of construction supply chain and procurement in the built environment: Emerging technologies and opportunities for sustainable processes. J. Clean. Prod. 2021, 322, 129093. [Google Scholar] [CrossRef]
- Mandapuram, M. Applications of Blockchain and Distributed Ledger Technology (DLT) in Commercial Settings. Asian Account. Audit. Adv. 2016, 7, 50–57. [Google Scholar]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends. In Proceedings of the 2017 IEEE international congress on big data (BigData Congress), Boston, MA, USA, 11–14 December 2017; pp. 557–564. [Google Scholar]
- Yoon, J.H.; Pishdad-Bozorgi, P. State-of-the-art review of blockchain-enabled construction supply chain. J. Constr. Eng. Manag. 2022, 148, 03121008. [Google Scholar] [CrossRef]
- Nawari, N.O.; Ravindran, S. Blockchain and building information modeling (BIM): Review and applications in post-disaster recovery. Buildings 2019, 9, 149. [Google Scholar] [CrossRef]
- Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and scalability. In Proceedings of the IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 122–128. [Google Scholar]
- Khan, D.; Jung, L.T.; Hashmani, M.A. Systematic literature review of challenges in blockchain scalability. Appl. Sci. 2021, 11, 9372. [Google Scholar] [CrossRef]
- Scott, D.J.; Broyd, T.; Ma, L. Exploratory literature review of blockchain in the construction industry. Autom. Constr. 2021, 132, 103914. [Google Scholar] [CrossRef]
- Li, J.; Kassem, M. Applications of distributed ledger technology (DLT) and Blockchain-enabled smart contracts in construction. Autom. Constr. 2021, 132, 103955. [Google Scholar] [CrossRef]
- Kiu, M.S.; Chia, F.C.; Wong, P.F. Exploring the potentials of blockchain application in construction industry: A systematic review. Int. J. Constr. Manag. 2022, 22, 2931–2940. [Google Scholar] [CrossRef]
- Mahmudnia, D.; Arashpour, M.; Yang, R. Blockchain in construction management: Applications, advantages and limitations. Autom. Constr. 2022, 140, 104379. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, P.; Li, H.; Zhong, B.; Fung, I.W.H.; Lee, Y.Y.R. Blockchain Technology in the Construction Industry: Current Status, Challenges, and Future Directions. J. Constr. Eng. Manag. 2022, 148, 03122007. [Google Scholar] [CrossRef]
- Liu, H.; Han, S.; Zhu, Z. Blockchain technology toward smart construction: Review and future directions. J. Constr. Eng. Manag. 2023, 149, 03123002. [Google Scholar] [CrossRef]
- Cong, L.W.; He, Z. Blockchain disruption and smart contracts. Rev. Financ. Stud. 2019, 32, 1754–1797. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Y.; Du, L. Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm. Sci. Rep. 2022, 12, 8606. [Google Scholar] [CrossRef] [PubMed]
- Lee Kuo Chuen, D. Handbook of Digital Currency; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Mougayar, W. The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Iansiti, M.; Lakhani, K.R. The truth about blockchain. Harv. Bus. Rev. 2017, 95, 118–127. [Google Scholar]
- Kuo, T.-T.; Kim, H.-E.; Ohno-Machado, L. Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 2017, 24, 1211–1220. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the future of sustainable supply chain management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Al-Jaroodi, J.; Mohamed, N. Blockchain in industries: A survey. IEEE Access 2019, 7, 36500–36515. [Google Scholar] [CrossRef]
- Attaran, M. Digital technology enablers and their implications for supply chain management. In Supply Chain Forum: An International Journal; Taylor & Francis: Abingdon, UK, 2020; pp. 158–172. [Google Scholar]
- Babich, V.; Hilary, G. Distributed Ledgers and Operations: What Operations Management Researchers Should Know about Blockchain Technology. Manuf. Serv. Oper. Manag. 2019, 22, 223–428. [Google Scholar] [CrossRef]
- Wamba, S.F.; Queiroz, M.M. Blockchain in the operations and supply chain management: Benefits, challenges and future research opportunities. Int. J. Inf. Manag. 2020, 52, 102064. [Google Scholar] [CrossRef]
- Wamba, S.F.; Queiroz, M.M.; Trinchera, L. Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. Int. J. Prod. Econ. 2020, 229, 107791. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N. Core components of blockchain. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 121, pp. 193–209. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Sarmah, S.S. Understanding blockchain technology. Comput. Sci. Eng. 2018, 8, 23–29. [Google Scholar]
- Lin, I.-C.; Liao, T.-C. A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 2017, 19, 653–659. [Google Scholar]
- Attaran, M.; Gunasekaran, A. Blockchain-enabled technology: The emerging technology set to reshape and decentralise many industries. Int. J. Appl. Decis. Sci. 2019, 12, 424–444. [Google Scholar] [CrossRef]
- Lee, D.; Deng, R.H. Handbook of Blockchain, Digital Finance, and Inclusion, Volume 2: ChinaTech, Mobile Security, and Distributed Ledger; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Samy, H.; Tammam, A.; Fahmy, A.; Hasan, B. Enhancing the performance of the blockchain consensus algorithm using multithreading technology. Ain Shams Eng. J. 2021, 12, 2709–2716. [Google Scholar] [CrossRef]
- Chang, J. Blockchain: The Immutable Ledger of Transparency in Healthcare Technology. Available online: http://sidebench.com/blockchain-healthcare-technology (accessed on 25 August 2023).
- Kogure, J.; Kamakura, K.; Shima, T.; Kubo, T. Blockchain technology for next generation ICT. Fujitsu Sci. Tech. J. 2017, 53, 56–61. [Google Scholar]
- Leng, J.; Zhou, M.; Zhao, J.L.; Huang, Y.; Bian, Y. Blockchain security: A survey of techniques and research directions. IEEE Trans. Serv. Comput. 2020, 15, 2490–2510. [Google Scholar] [CrossRef]
- Bonyuet, D. Overview and impact of blockchain on auditing. Int. J. Digit. Account. Res. 2020, 20, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Boillet, J. Is Audit Ready for Blockchain? Available online: https://www.accountingtoday.com/opinion/is-audit-ready-for-blockchain (accessed on 10 October 2023).
- Rizal Batubara, F.; Ubacht, J.; Janssen, M. Unraveling transparency and accountability in blockchain. In Proceedings of the 20th Annual International Conference on Digital Government Research, Dubai, United Arab Emirates, 18–20 June 2019; pp. 204–213. [Google Scholar]
- Gurgun, A.P.; Koc, K. Administrative risks challenging the adoption of smart contracts in construction projects. Eng. Constr. Archit. Manag. 2022, 29, 989–1015. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Zheng, R.; Jiang, J.; Hao, X.; Ren, W.; Xiong, F.; Ren, Y. bcBIM: A blockchain-based big data model for BIM modification audit and provenance in mobile cloud. Math. Probl. Eng. 2019, 2019, 5349538. [Google Scholar] [CrossRef]
- Sigalov, K.; Ye, X.; König, M.; Hagedorn, P.; Blum, F.; Severin, B.; Hettmer, M.; Hückinghaus, P.; Wölkerling, J.; Groß, D. Automated payment and contract management in the construction industry by integrating building information modeling and blockchain-based smart contracts. Appl. Sci. 2021, 11, 7653. [Google Scholar] [CrossRef]
- Shu, Z.; Liu, W.; Fu, B.; Li, Z.; He, M. Blockchain-enhanced trading systems for construction industry to control carbon emissions. Clean Technol. Environ. Policy 2022, 24, 1851–1870. [Google Scholar] [CrossRef]
- Das, M.; Tao, X.; Liu, Y.; Cheng, J.C.P. A blockchain-based integrated document management framework for construction applications. Autom. Constr. 2022, 133, 104001. [Google Scholar] [CrossRef]
- van Groesen, W.; Pauwels, P. Tracking prefabricated assets and compliance using quick response (QR) codes, blockchain and smart contract technology. Autom. Constr. 2022, 141, 104420. [Google Scholar] [CrossRef]
- McNamara, A.J.; Sepasgozar, S.M.E. Developing a theoretical framework for intelligent contract acceptance. Constr. Innov. 2020, 20, 421–445. [Google Scholar] [CrossRef]
- Osunsanmi, T.O.; Aigbavboa, C.O.; Emmanuel Oke, A.; Liphadzi, M. Appraisal of stakeholders’ willingness to adopt construction 4.0 technologies for construction projects. Built Environ. Proj. Asset Manag. 2020, 10, 547–565. [Google Scholar] [CrossRef]
- Xiong, F.; Xu, C.; Ren, W.; Zheng, R.; Gong, P.; Ren, Y. A blockchain-based edge collaborative detection scheme for construction internet of things. Autom. Constr. 2022, 134, 104066. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Yuen, K.V. Construction site information decentralized management using blockchain and smart contracts. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1450–1467. [Google Scholar] [CrossRef]
- Adel, K.; Elhakeem, A.; Marzouk, M. Decentralizing construction AI applications using blockchain technology. Expert Syst. Appl. 2022, 194, 116548. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Tian, X.; Zhang, R.; Qi, Q. Certificateless Authentication Scheme Based on Blockchain in Smart Home Network. Math. Probl. Eng. 2022, 2022, 6458461. [Google Scholar] [CrossRef]
- Teisserenc, B.; Sepasgozar, S.M.E. Software Architecture and Non-Fungible Tokens for Digital Twin Decentralized Applications in the Built Environment. Buildings 2022, 12, 1447. [Google Scholar] [CrossRef]
- Sheng, D.; Ding, L.; Zhong, B.; Love, P.E.D.; Luo, H.; Chen, J. Construction quality information management with blockchains. Autom. Constr. 2020, 120, 103373. [Google Scholar] [CrossRef]
- Yang, R.; Wakefield, R.; Lyu, S.; Jayasuriya, S.; Han, F.; Yi, X.; Yang, X.; Amarasinghe, G.; Chen, S. Public and private blockchain in construction business process and information integration. Autom. Constr. 2020, 118, 103276. [Google Scholar] [CrossRef]
- Gurgun, A.P.; Genc, M.I.; Koc, K.; Arditi, D. Exploring the Barriers against Using Cryptocurrencies in Managing Construction Supply Chain Processes. Buildings 2022, 12, 357. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. Role of blockchain-enabled smart contracts in automating construction progress payments. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2021, 13, 04520038. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. Measuring the impact of blockchain and smart contracts on construction supply chain visibility. Adv. Eng. Inform. 2021, 50, 101444. [Google Scholar] [CrossRef]
- Huang, H.; Zeng, X.; Zhao, L.; Qiu, C.; Wu, H.; Fan, L. Fusion of building information modeling and blockchain for metaverse: A survey. IEEE Open J. Comput. Soc. 2022, 3, 195–207. [Google Scholar] [CrossRef]
- Xiong, F.; Xiao, R.; Ren, W.; Zheng, R.; Jiang, J. A key protection scheme based on secret sharing for blockchain-based construction supply chain system. IEEE Access 2019, 7, 126773–126786. [Google Scholar] [CrossRef]
- Elghaish, F.; Rahimian, F.P.; Hosseini, M.R.; Edwards, D.; Shelbourn, M. Financial management of construction projects: Hyperledger fabric and chaincode solutions. Autom. Constr. 2022, 137, 104185. [Google Scholar] [CrossRef]
- Ibrahim, R.; Harby, A.A.; Nashwan, M.S.; Elhakeem, A. Financial Contract Administration in Construction via Cryptocurrency Blockchain and Smart Contract: A Proof of Concept. Buildings 2022, 12, 1072. [Google Scholar] [CrossRef]
- Saygili, M.; Mert, I.E.; Tokdemir, O.B. A decentralized structure to reduce and resolve construction disputes in a hybrid blockchain network. Autom. Constr. 2022, 134, 104056. [Google Scholar] [CrossRef]
- Ahmadisheykhsarmast, S.; Sonmez, R. A smart contract system for security of payment of construction contracts. Autom. Constr. 2020, 120, 103401. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Diamantopoulos, A. Integrating advanced technologies to uphold security of payment: Data flow diagram. Autom. Constr. 2020, 114, 103158. [Google Scholar] [CrossRef]
- Srivastava, A.; Jawaid, S.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Khan, B. Imperative role of technology intervention and implementation for automation in the construction industry. Adv. Civ. Eng. 2022, 2022, 6716987. [Google Scholar] [CrossRef]
- Bakhshi, S.; Chenaghlou, M.R.; Rahimian, F.P.; Edwards, D.J.; Dawood, N. Integrated BIM and DfMA parametric and algorithmic design based collaboration for supporting client engagement within offsite construction. Autom. Constr. 2022, 133, 104015. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Motie, M.; Hall, D.M. Digital building twins and blockchain for performance-based (smart) contracts. Autom. Constr. 2022, 133, 103981. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. Construction payment automation using blockchain-enabled smart contracts and robotic reality capture technologies. Autom. Constr. 2021, 132, 103926. [Google Scholar] [CrossRef]
- Das, M.; Luo, H.; Cheng, J.C.P. Securing interim payments in construction projects through a blockchain-based framework. Autom. Constr. 2020, 118, 103284. [Google Scholar] [CrossRef]
- Lu, W.; Wu, L.; Zhao, R.; Li, X.; Xue, F. Blockchain technology for governmental supervision of construction work: Learning from digital currency electronic payment systems. J. Constr. Eng. Manag. 2021, 147, 04021122. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. The application of blockchain-based crypto assets for integrating the physical and financial supply chains in the construction & engineering industry. Autom. Constr. 2021, 127, 103711. [Google Scholar]
- Alvarez, A.P.; Ordieres-Meré, J.; Loreiro, Á.P.; de Marcos, L. Opportunities in airport pavement management: Integration of BIM, the IoT and DLT. J. Air Transp. Manag. 2021, 90, 101941. [Google Scholar] [CrossRef]
- Ibrahim, F.S.B.; Ebekozien, A.; Khan, P.A.M.; Aigbedion, M.; Ogbaini, I.F.; Amadi, G.C. Appraising fourth industrial revolution technologies role in the construction sector: How prepared is the construction consultants? Facilities 2022, 40, 515–532. [Google Scholar] [CrossRef]
- Kim, E.W.; Park, M.S.; Kim, K.; Kim, K.J. Blockchain-Based Automatic Tracking and Extracting Construction Document for Claim and Dispute Support. KSCE J. Civ. Eng. 2022, 26, 3707–3724. [Google Scholar] [CrossRef]
- Adel, K.; Elhakeem, A.; Marzouk, M. Chatbot for construction firms using scalable blockchain network. Autom. Constr. 2022, 141, 104390. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, Z.; Bin Ahmad, M.; Khalid, A.; Waris, H.A.; Gilani, A. Blockchain-based authentication and trust management mechanism for smart cities. Sensors 2022, 22, 2604. [Google Scholar] [CrossRef]
- Cocco, L.; Tonelli, R.; Marchesi, M. A System Proposal for Information Management in Building Sector Based on BIM, SSI, IoT and Blockchain. Future Internet 2022, 14, 140. [Google Scholar] [CrossRef]
- Li, X.; Wu, L.; Zhao, R.; Lu, W.; Xue, F. Two-layer Adaptive Blockchain-based Supervision model for off-site modular housing production. Comput. Ind. 2021, 128, 103437. [Google Scholar] [CrossRef]
- Pan, X.; Zhong, B.; Sheng, D.; Yuan, X.; Wang, Y. Blockchain and deep learning technologies for construction equipment security information management. Autom. Constr. 2022, 136, 104186. [Google Scholar] [CrossRef]
- Tao, X.; Liu, Y.; Wong, P.K.-Y.; Chen, K.; Das, M.; Cheng, J.C.P. Confidentiality-minded framework for blockchain-based BIM design collaboration. Autom. Constr. 2022, 136, 104172. [Google Scholar] [CrossRef]
- Turk, Ž.; de Soto, B.G.; Mantha, B.R.K.; Maciel, A.; Georgescu, A. A systemic framework for addressing cybersecurity in construction. Autom. Constr. 2022, 133, 103988. [Google Scholar] [CrossRef]
- Xu, J.; Lu, W.; Wu, L.; Lou, J.; Li, X. Balancing privacy and occupational safety and health in construction: A blockchain-enabled P-OSH deployment framework. Saf. Sci. 2022, 154, 105860. [Google Scholar] [CrossRef]
- Kim, K.; Lee, G.; Kim, S. A study on the application of blockchain technology in the construction industry. KSCE J. Civ. Eng. 2020, 24, 2561–2571. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, B.; Wang, Y. Blockchain-based BIM digital project management mechanism research. IEEE Access 2021, 9, 161342–161351. [Google Scholar] [CrossRef]
- Mastos, T.D.; Nizamis, A.; Terzi, S.; Gkortzis, D.; Papadopoulos, A.; Tsagkalidis, N.; Ioannidis, D.; Votis, K.; Tzovaras, D. Introducing an application of an industry 4.0 solution for circular supply chain management. J. Clean. Prod. 2021, 300, 126886. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Jia, P. SecTEP: Enabling secure tender evaluation with sealed prices and quality evaluation in procurement bidding systems over blockchain. Comput. Secur. 2021, 103, 102188. [Google Scholar] [CrossRef]
- Helo, P.; Shamsuzzoha, A.H.M. Real-time supply chain—A blockchain architecture for project deliveries. Robot. Comput.-Integr. Manuf. 2020, 63, 101909. [Google Scholar] [CrossRef]
- Li, X.; Lu, W.; Xue, F.; Wu, L.; Zhao, R.; Lou, J.; Xu, J. Blockchain-enabled IoT-BIM platform for supply chain management in modular construction. J. Constr. Eng. Manag. 2022, 148, 04021195. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Shukla, V.; Islam, N.; Manghat, S. Construction industry 4.0 and sustainability: An enabling framework. IEEE Trans. Eng. Manag. 2021, 71, 1–19. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Zhao, R.; Lu, W.; Xu, J.; Xue, F. A blockchain-based model with an incentive mechanism for cross-border logistics supervision and data sharing in modular construction. J. Clean. Prod. 2022, 375, 133460. [Google Scholar] [CrossRef]
- de Villiers, C.; Kuruppu, S.; Dissanayake, D. A (new) role for business–Promoting the United Nations’ Sustainable Development Goals through the internet-of-things and blockchain technology. J. Bus. Res. 2021, 131, 598–609. [Google Scholar] [CrossRef]
- Qian, X.; Papadonikolaki, E. Shifting trust in construction supply chains through blockchain technology. Eng. Constr. Archit. Manag. 2021, 28, 584–602. [Google Scholar] [CrossRef]
- Lu, W.; Li, X.; Xue, F.; Zhao, R.; Wu, L.; Yeh, A.G.O. Exploring smart construction objects as blockchain oracles in construction supply chain management. Autom. Constr. 2021, 129, 103816. [Google Scholar] [CrossRef]
- Azmi, N.A.; Sweis, G.; Sweis, R.; Sammour, F. Exploring implementation of blockchain for the supply chain resilience and sustainability of the construction industry in Saudi Arabia. Sustainability 2022, 14, 6427. [Google Scholar] [CrossRef]
- Shojaei, A.; Wang, J.; Fenner, A. Exploring the feasibility of blockchain technology as an infrastructure for improving built asset sustainability. Built Environ. Proj. Asset Manag. 2020, 10, 184–199. [Google Scholar] [CrossRef]
- Shojaei, A.; Ketabi, R.; Razkenari, M.; Hakim, H.; Wang, J. Enabling a circular economy in the built environment sector through blockchain technology. J. Clean. Prod. 2021, 294, 126352. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, T.; Wang, F.; Osmani, M.; Demian, P. Blockchain Enhanced Construction Waste Information Management: A Conceptual Framework. Sustainability 2022, 14, 12145. [Google Scholar] [CrossRef]
- Cho, S.; Khan, M.; Pyeon, J.; Park, C. Blockchain-based network concept model for reliable and accessible fine dust management system at construction sites. Appl. Sci. 2021, 11, 8686. [Google Scholar] [CrossRef]
- Zhong, B.; Guo, J.; Zhang, L.; Wu, H.; Li, H.; Wang, Y. A blockchain-based framework for on-site construction environmental monitoring: Proof of concept. Build. Environ. 2022, 217, 109064. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mahmoudi, A.; Deng, X. Adopting distributed ledger technology for the sustainable construction industry: Evaluating the barriers using Ordinal Priority Approach. Environ. Sci. Pollut. Res. 2022, 29, 10495–10520. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Cai, Y.; Gao, C.; Chen, T.; Yao, Y.; Ming, H. Transactive energy in power distribution systems: Paving the path towards cyber-physical-social system. Int. J. Electr. Power Energy Syst. 2022, 142, 108289. [Google Scholar] [CrossRef]
- Rodrigo, M.N.N.; Perera, S.; Senaratne, S.; Jin, X. Potential application of blockchain technology for embodied carbon estimating in construction supply chains. Buildings 2020, 10, 140. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, J. Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Comput. Commun. 2020, 149, 332–342. [Google Scholar] [CrossRef]
- Jeyabharathi, D.; Thava, A.M.; Idas, S.J.P.; Sangeetha, T. Waste management in smart cities using blockchaining technology. In Blockchain for Smart Cities; Elsevier: Amsterdam, The Netherlands, 2021; pp. 171–181. [Google Scholar]
- Jiang, Y.; Zheng, W. Coupling mechanism of green building industry innovation ecosystem based on blockchain smart city. J. Clean. Prod. 2021, 307, 126766. [Google Scholar] [CrossRef]
- Eisele, S.; Barreto, C.; Dubey, A.; Koutsoukos, X.; Eghtesad, T.; Laszka, A.; Mavridou, A. Blockchains for transactive energy systems: Opportunities, challenges, and approaches. Computer 2020, 53, 66–76. [Google Scholar] [CrossRef]
- Gough, M.; Santos, S.F.; Almeida, A.; Lotfi, M.; Javadi, M.S.; Fitiwi, D.Z.; Osório, G.J.; Castro, R.; Catalão, J.P.S. Blockchain-based transactive energy framework for connected virtual power plants. IEEE Trans. Ind. Appl. 2021, 58, 986–995. [Google Scholar] [CrossRef]
- de Fátima Castro, M.; Colclough, S.; Machado, B.; Andrade, J.; Bragança, L. European legislation and incentives programmes for demand Side management. Sol. Energy 2020, 200, 114–124. [Google Scholar] [CrossRef]
- Jeoung, J.; Jung, S.; Hong, T.; Choi, J.-K. Blockchain-based IoT system for personalized indoor temperature control. Autom. Constr. 2022, 140, 104339. [Google Scholar] [CrossRef]
- Moretti, N.; Blanco Cadena, J.D.; Mannino, A.; Poli, T.; Re Cecconi, F. Maintenance service optimization in smart buildings through ultrasonic sensors network. Intell. Build. Int. 2021, 13, 4–16. [Google Scholar] [CrossRef]
- Chang, F.; Zhou, G.; Zhang, C.; Ding, K.; Cheng, W.; Chang, F. A maintenance decision-making oriented collaborative cross-organization knowledge sharing blockchain network for complex multi-component systems. J. Clean. Prod. 2021, 282, 124541. [Google Scholar] [CrossRef]
- Xue, F.; Lu, W. A semantic differential transaction approach to minimizing information redundancy for BIM and blockchain integration. Autom. Constr. 2020, 118, 103270. [Google Scholar] [CrossRef]
- Wu, L.; Lu, W.; Xue, F.; Li, X.; Zhao, R.; Tang, M. Linking permissioned blockchain to Internet of Things (IoT)-BIM platform for off-site production management in modular construction. Comput. Ind. 2022, 135, 103573. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Kang, K.; Wang, Z.; Zhong, R.Y.; Huang, G.Q. Blockchain-enabled cyber-physical smart modular integrated construction. Comput. Ind. 2021, 133, 103553. [Google Scholar] [CrossRef]
- Wu, L.; Lu, W.; Zhao, R.; Xu, J.; Li, X.; Xue, F. Using blockchain to improve information sharing accuracy in the onsite assembly of modular construction. J. Manag. Eng. 2022, 38, 04022014. [Google Scholar] [CrossRef]
- Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital twin as a service (DTaaS) in industry 4.0: An architecture reference model. Adv. Eng. Inform. 2021, 47, 101225. [Google Scholar] [CrossRef]
- Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [Google Scholar] [CrossRef]
- Pradeep, A.S.E.; Yiu, T.W.; Zou, Y.; Amor, R. Blockchain-aided information exchange records for design liability control and improved security. Autom. Constr. 2021, 126, 103667. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Deng, J.; Gong, Z.; Flood, I.; Wang, Y. Framework for a blockchain-based infrastructure project financing system. IEEE Access 2021, 9, 141555–141570. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R. Integrated project delivery with blockchain: An automated financial system. Autom. Constr. 2020, 114, 103182. [Google Scholar] [CrossRef]
- Dakhli, Z.; Lafhaj, Z.; Mossman, A. The potential of blockchain in building construction. Buildings 2019, 9, 77. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Xiong, X.; Wang, X.; Fang, X. Research on multi-person collaborative design of BIM drawing based on blockchain. Sci. Rep. 2022, 12, 16312. [Google Scholar] [CrossRef]
- Tao, X.; Das, M.; Liu, Y.; Cheng, J.C.P. Distributed common data environment using blockchain and Interplanetary File System for secure BIM-based collaborative design. Autom. Constr. 2021, 130, 103851. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, Y.; Gai, K.; Choo, K.-K.R. Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 2019, 91, 527–535. [Google Scholar] [CrossRef]
- Nawari, N.O.; Ravindran, S. Blockchain and the built environment: Potentials and limitations. J. Build. Eng. 2019, 25, 100832. [Google Scholar] [CrossRef]
- Lu, W.; Wu, L.; Xu, J.; Lou, J. Construction E-inspection 2.0 in the COVID-19 pandemic era: A blockchain-based technical solution. J. Manag. Eng. 2022, 38, 04022032. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, B.; Li, H.; Chi, H.-L.; Wang, Y. On-site safety inspection of tower cranes: A blockchain-enabled conceptual framework. Saf. Sci. 2022, 153, 105815. [Google Scholar] [CrossRef]
- Cheng, M.; Chong, H.-Y. Understanding the Determinants of Blockchain Adoption in the Engineering-Construction Industry: Multi-Stakeholders’ Analyses. IEEE Access 2022, 10, 108307–108319. [Google Scholar] [CrossRef]
- Xu, Y.; Chong, H.-Y.; Chi, M. Modelling the blockchain adoption barriers in the AEC industry. Eng. Constr. Archit. Manag. 2023, 30, 125–153. [Google Scholar] [CrossRef]
- Gao, Y.; Casasayas, O.; Wang, J.; Xu, X. Factors affecting the blockchain application in construction management in China: An ANP-SWOT hybrid approach. Archit. Eng. Des. Manag. 2022, 19, 665–680. [Google Scholar] [CrossRef]
- Aheleroff, S.; Mostashiri, N.; Xu, X.; Zhong, R.Y. Mass personalisation as a service in industry 4.0: A resilient response case study. Adv. Eng. Inform. 2021, 50, 101438. [Google Scholar] [CrossRef]
- Ciotta, V.; Mariniello, G.; Asprone, D.; Botta, A.; Manfredi, G. Integration of blockchains and smart contracts into construction information flows: Proof-of-concept. Autom. Constr. 2021, 132, 103925. [Google Scholar] [CrossRef]
- Coskun-Setirek, A.; Tanrikulu, Z. Digital innovations-driven business model regeneration: A process model. Technol. Soc. 2021, 64, 101461. [Google Scholar] [CrossRef]
- Deep, S.; Bhoola, V.; Verma, S.; Ranasinghe, U. Identifying the risk factors in real estate construction projects: An analytical study to propose a control structure for decision-making. J. Financ. Manag. Prop. Constr. 2022, 27, 220–238. [Google Scholar] [CrossRef]
- Ismail, L.; Buyya, R. Artificial intelligence applications and self-learning 6G networks for smart cities digital ecosystems: Taxonomy, challenges, and future directions. Sensors 2022, 22, 5750. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Lee, D.; Baek, C.; Park, C.-S. Converging technologies for safety planning and inspection information system of portable firefighting equipment. IEEE Access 2020, 8, 211173–211188. [Google Scholar] [CrossRef]
- Khan, N.; Saleem, M.R.; Lee, D.; Park, M.-W.; Park, C. Utilizing safety rule correlation for mobile scaffolds monitoring leveraging deep convolution neural networks. Comput. Ind. 2021, 129, 103448. [Google Scholar] [CrossRef]
- Kochovski, P.; Stankovski, V. Supporting smart construction with dependable edge computing infrastructures and applications. Autom. Constr. 2018, 85, 182–192. [Google Scholar] [CrossRef]
- Kochovski, P.; Stankovski, V. Building applications for smart and safe construction with the DECENTER Fog Computing and Brokerage Platform. Autom. Constr. 2021, 124, 103562. [Google Scholar] [CrossRef]
- Li, C.Z.; Chen, Z.; Xue, F.; Kong, X.T.R.; Xiao, B.; Lai, X.; Zhao, Y. A blockchain-and IoT-based smart product-service system for the sustainability of prefabricated housing construction. J. Clean. Prod. 2021, 286, 125391. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, F.; Ji, Y.; Tong, W.; Liu, G.; Li, H.X.; Hu, X. Quality control for offsite construction: Review and future directions. J. Constr. Eng. Manag. 2022, 148, 03122003. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.-L. Future living framework: Is blockchain the next enabling network? Technol. Forecast. Soc. Chang. 2018, 128, 226–234. [Google Scholar] [CrossRef]
- Sonmez, R.; Ahmadisheykhsarmast, S.; Güngör, A.A. BIM integrated smart contract for construction project progress payment administration. Autom. Constr. 2022, 139, 104294. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Hu, H.; Gong, J.; Ren, X.; Xiao, Q. Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Autom. Constr. 2020, 111, 103063. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, B.; Li, H.; Guo, J.; Wang, Y. On-site construction quality inspection using blockchain and smart contracts. J. Manag. Eng. 2021, 37, 04021065. [Google Scholar] [CrossRef]
- Yang, J.; Lee, D.; Baek, C.; Park, C.; Lan, B.Q.; Lee, D. Leveraging blockchain for scaffolding work management in construction. IEEE Access 2022, 10, 39220–39238. [Google Scholar] [CrossRef]
Themes | Topics | Number of Articles |
---|---|---|
Contract administration | Smart contracts | 59 |
Dispute resolution | 5 | |
Payment processes | Payment systems | 24 |
Procurement and supply chain management | Supply chain management | 22 |
Procurement | 3 | |
Material scheduling | 1 | |
Design and construction process | BIM | 24 |
Design management/review | 14 | |
Digital twins | 7 | |
Project delivery | 3 | |
Bidding | 2 | |
Facilities management | Occupant data and comfort | 4 |
Maintenance systems | 4 | |
Sustainability | Sustainable built environment | 14 |
Smart metering/energy | 7 | |
Sustainable waste management | 3 | |
Smart cities | 6 | |
Data storage and management | Cyber and information security | 14 |
Document management | 10 | |
Project risk and compliance | Safety | 13 |
Quality management | 11 | |
Project control | 5 | |
Risk management | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, B.G.; Abraham, Y.S.; Attaran, M. Unlocking Blockchain in Construction: A Systematic Review of Applications and Barriers. Buildings 2024, 14, 1600. https://doi.org/10.3390/buildings14061600
Celik BG, Abraham YS, Attaran M. Unlocking Blockchain in Construction: A Systematic Review of Applications and Barriers. Buildings. 2024; 14(6):1600. https://doi.org/10.3390/buildings14061600
Chicago/Turabian StyleCelik, Bilge Gokhan, Yewande Sonayon Abraham, and Mohsen Attaran. 2024. "Unlocking Blockchain in Construction: A Systematic Review of Applications and Barriers" Buildings 14, no. 6: 1600. https://doi.org/10.3390/buildings14061600
APA StyleCelik, B. G., Abraham, Y. S., & Attaran, M. (2024). Unlocking Blockchain in Construction: A Systematic Review of Applications and Barriers. Buildings, 14(6), 1600. https://doi.org/10.3390/buildings14061600