Effects of Prolonged Leaching on the Acute Ecotoxicity of Spruce-Pine Oriented Strand Board for Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oriented Strand Board
2.2. Preparation of Leachates
2.3. Concentration of Inorganic Elements
2.4. Concentration of Biogenic Elements
2.5. Algal Toxicity Test
2.6. Duckweed Aquatic Toxicity Test
2.7. Plant Root Elongation Test
2.8. Statistical Evaluation
3. Results
3.1. Chemical Analysis
3.2. Ecotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, F.; Xu, D.; Xu, X. Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions. Energies 2020, 13, 3468. [Google Scholar] [CrossRef]
- Lopes, M.A.M.; de Souza Pádua, M.; de Carvalho, J.P.R.G.; Simonassi, N.T.; Lopez, F.P.D.; Colorado, H.A.; Vieira, C.M.F. Natural based polyurethane matrix composites reinforced with bamboo fiber waste for use as oriented strand board. J. Mater. Res. Technol. 2021, 12, 2317–2324. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Luedtke, J.; Nopens, M.; Krause, A. Production of wood-based panel from recycled wood resource: A literature review. Eur. J. Wood Wood Prod. 2023, 81, 557–570. [Google Scholar] [CrossRef]
- Yorur, H. Utilization of Waste Polyethylene and its Effects on Physical and Mechanical Properties of Oriented Strand Board. Bioresources 2016, 11, 2483–2491. [Google Scholar] [CrossRef]
- Barbirato, G.H.A.; Lopes Junior, W.E.; Hellmeister, V.; Pavesi, M.; Fiorelli, J. OSB Panels with Balsa Wood Waste and Castor Oil Polyurethane Resin. Waste Biomass Valoris. 2020, 11, 743–751. [Google Scholar] [CrossRef]
- Hybská, H.; Mordáčová, M.; Samešová, D.; Čabalová, I. Ecotoxicological tests of the particleboards containing rubber waste. Wood Res. 2023, 68, 758–767. [Google Scholar] [CrossRef]
- Joscák, T.; Teischinger, A.; Mueller, U.; Mauritz, R. Production and material performance of long-strand wood composites: Review. Wood Res. 2006, 51, 37–49. [Google Scholar]
- Böhm, M. The influence of moisture content on thickness swelling and modulus of elasticity in oriented strand board bending. Wood Res. 2009, 54, 79–90. [Google Scholar]
- Hodousek, M.; Böhm, M.; Lemaster, R.L.; Bures, M.; Berankova, J.; Cvach, J. Air Permeation Rate of Oriented Strand Boards (OSB/3 and OSB/4). Bioresources 2015, 10, 1137–1148. [Google Scholar] [CrossRef]
- Jeong, G.Y. Forest Management on Mechanical Properties of Oriented Strand Board. For. Prod. J. 2016, 66, 371–377. [Google Scholar] [CrossRef]
- Stombock, L.B.; Jeremic-Nicolic, D.; Baldwin, B.; Borazjani, H.; Diehl, S.V. Bioremediation of oriented strand board (OSB) Process Wastewater. Bioresources 2016, 11, 10002–10013. [Google Scholar] [CrossRef]
- Widhalm, B.; Ters, T.; Srebotnik, E.; Rieder-Gradinger, C. Reduction of aldehydes and terpenes within pine wood by microbial activity. Holzforschung 2016, 70, 895–900. [Google Scholar] [CrossRef]
- Crisostomo, M.C.; Soares Del Menezzi, C.H. Evaluation of the Effect of Thermo-mechanical Treatment on the Resistance of Commercial OSB to Decay Fungi. Mater. Sci.-Medziag. 2019, 25, 190–194. [Google Scholar] [CrossRef]
- Brown, S.K. Chamber assessment of formaldehyde and VOC emissions from wood-based panels. Indoor Air 1999, 9, 209–215. [Google Scholar] [CrossRef]
- Makowski, M.; Ohlmeyer, M. Influences on VOC emissions of wood-based panels. In Proceedings of the Ninth Panel Products Symposium, Llandudno, Wales, UK, 5–7 October 2005. [Google Scholar]
- Gminski, R.; Tang, T.; Mersch-Sundermann, V. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards. Toxicol. Lett. 2010, 196, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Rybinski, P.; Syrek, B.; Szwed, M.; Bradło, D.; Zukowski, W.; Marzec, A.; Śliwka-Kaszynska, M. Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases. Energies 2021, 14, 324. [Google Scholar] [CrossRef]
- Richter, K.; Gugerli, H. Wood and wood products in comparative life cycle assessment. Holz Als Roh- und Werkstoff 1993, 54, 225–231. [Google Scholar] [CrossRef]
- Rivela, B.; Hospido, A.; Moreira, M.T.; Feijoo, G. Life cycle inventory of particleboard: A case study in the wood sector. Int. J. Life Cycle Assess. 2006, 11, 106–113. [Google Scholar] [CrossRef]
- Wilson, J.B. Life-cycle inventory of medium density fiberboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 2010, 42, 107–124. [Google Scholar]
- Ferro, F.S.; Silva, D.A.L.; Lahr, F.A.R.; Argenton, M.; Gonzalez-García, S. Environmental aspects of oriented strand boards production. A Brazilian case study. J. Clean. Prod. 2018, 183, 710–719. [Google Scholar] [CrossRef]
- Piekarski, C.M.; Francisco, A.C.; Luz, L.M.; Silva, D.A.L. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil. Sci. Total Environ. 2017, 575, 103–111. [Google Scholar] [CrossRef] [PubMed]
- CSN EN 300 (4926); Oriented Strand Boards (OSB)—Definitions, Classification and Specifications. CSNI: Prague, Czech Republic, 2006.
- Taylor, B.R.; Goudey, S.; Carmichael, N.B. Toxicity of aspen wood leachate to aquatic life: Laboratory studies. Environ. Toxicol. Chem. 1996, 15, 150–159. [Google Scholar] [CrossRef]
- Rex, F.J.; Dube, S.; Kruskopf, P.; Berch, S. Investigating potential toxicity of leachate from wood chip piles generated by roadside biomass operations. Forests 2016, 7, 40. [Google Scholar] [CrossRef]
- Libralato, G.; Losso, C.; Volpi, G.A. Toxicity of untreated wood leachates towards two salt water organisms (Crassostrea gigas and Artemia franciscana). J. Hazard. Mater. 2007, 144, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.S.; Santana, A.L.B.D.; Maranhao, L.S.; Bieber, L.S. Phenolic extractives and natural resistance of wood. In Biodegradation—Life of Science; IntechOpen: London, UK, 2013; pp. 349–370. [Google Scholar]
- Heisterkamp, I.; Gartiser, S.; Schoknecht, U.; Happel, O.; Kalbe, U.; Kretzschmar, M.; Ilvonen, O. Investigating the ecotoxicity of construction product leachates as multicomponent mixtures. Environ. Sci. Eur. 2023, 35, 7. [Google Scholar] [CrossRef]
- Machrafi, Y.; Prévost, D.; Beauchamp, C.J. Toxicity of phenolic compounds extracted from bark residues of different ages. J. Chem. Ecol. 2006, 32, 2595–2615. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Videira, R.; Pereira, H. Chemistry and ecotoxicity of heat treated pine wood extractives. Wood Sci. Technol. 2011, 45, 661–676. [Google Scholar] [CrossRef]
- Barbero-Lopez, A.; Akkanen, J.; Lappalainen, R.; Peraniemi, S.; Haapala, A. Bio-based wood preservatives: Their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. Sci. Total Environ. 2021, 753, 142013. [Google Scholar] [CrossRef] [PubMed]
- Pino-Otin, M.R.; Navarro, J.; Val, J.; Roig, F.; Mainar, A.M.; Ballestero, D. Spanish Satureja montana L. hydrolate: Ecotoxicological study in soil and water non-target organisms. Ind. Crops Prod. 2022, 178, 114553. [Google Scholar] [CrossRef]
- Taskaeva, A.A. Collembola Communities (Hexapoda, Collembola) of Coniferous Forests in the Zone of Influence of Pulp and Paper Industry. Contemp. Probl. Ecol. 2022, 14, 651–664. [Google Scholar] [CrossRef]
- Attoumani, R.B.; de Vaufleury, A.; Crini, N.; Fatin-Rouge, N. Assessing natural clays of a contaminated site to stabilize and reduce the ecotoxicity of a coal tar. Ecotoxicol. Environ. Saf. 2020, 190, 110081. [Google Scholar] [CrossRef] [PubMed]
- ČSN EN 12457-4 (838005); Charakterizace odpadů—Vyluhování—Ověřovací zkouška vyluhovatelnosti zrnitých odpadů a kalů—Část 4: Jednostupňová vsádková zkouška při poměru kapalné a pevné fáze 10 l/kg pro materiály se zrnitostí menší než 10 mm (bez zmenšení velikosti částic, nebo s ním). CSNI: Prague, Czech Republic, 2003.
- Kobetičová, K.; Böhm, M.; Jerman, M.; Dušek, J.; Černý, R. Ecotoxicity and Biodegradation of Sustainable Environment-Friendly Bone-Glue-Based Adhesive Suitable for Insulation Materials. Polymers 2022, 14, 2209. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Test No. 201; Alga, Growth Inhibition Test; OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems; OECD Publishing: Paris, France, 2006. [Google Scholar]
- OECD. OECD Test No. 221; Lemna sp. Growth Inhibition Test; OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems; OECD Publishing: Paris, France, 2006. [Google Scholar]
- OECD. OECD Test No. 208; Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems; OECD Publishing: Paris, France, 2006. [Google Scholar]
- Scott, G.T. The mineral composition of phosphate deficient cells of chlorella pyreniodosa during the restoration of phosphate. J. Cell. Comp. Physiol. 1945, 26, 35–42. [Google Scholar] [CrossRef]
- Silva, A.R.R.; Cardoso, D.N.; Cruz, A.; Lourenço, J.; Mendo, S.; Soares, A.M.V.M.; Loureiro, S. Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicol. Environ. Saf. 2015, 115, 279–290. [Google Scholar] [CrossRef] [PubMed]
- De Laender, F.; Janssen, C.R.; De Schamphelaere, K.A.C. Non-simultaneous ecotoxicity testing of single chemicals and their mixture results in erroneous conclusions about the joint action of the mixture. Chemosphere 2009, 76, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Angerville, R.; Boillot, C.; Perrodin, Y. Evaluation of the combined effects of binary mixtures of sodium hypochlorite and surfactants against Daphnia magna Straus. Int. J. Environ. Technol. Manag. 2009, 10, 353–370. [Google Scholar] [CrossRef]
- Eom, H.; Kim, S.; Oh, S.E. Evaluation of joint toxicity of BTEX mixtures using sulfur-oxidizing bacteria. J. Environ. Manag. 2023, 325, 116435. [Google Scholar] [CrossRef] [PubMed]
- Osma, E.; Elveren, M.; Karakoyun, G. Heavy metal accumulation affects growth of Scots pine by causing oxidative damage. Air Qual. Atmos. Health 2017, 10, 85–92. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Aflaki, F.; Sobhanardakani, S.; Tayebi, L.; Lashkan, A.B.; Regenstein, J.M. Analysis of mercury, selenium, and tin concentrations in canned fish marketed in Iran. Environ. Monit. Assess. 2013, 185, 6407–6412. [Google Scholar] [CrossRef]
- Nepal, A.; Antonious, G.F.; Bebe, F.N.; Webster, T.C.; Gyawali, B.R.; Neupane, B. Heavy Metal Accumulation in Three Varieties of Mustard Grown under Five Soil Management Practices. Environments 2024, 11, 77. [Google Scholar] [CrossRef]
- Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169249/nutrients (accessed on 25 May 2024).
- Svenson, H. Characterization, Toxicity and Treatment of Wood Leachate Generated Out-Doors by the Wood-Based Industry. Doctoral Thesis, Linnaeus University, Kalmar, Sweden, 2014. [Google Scholar]
- Taylor, B.R.; Carmichael, N.B. Toxicity and chemistry of aspen wood leachate to aquatic life: Field study. Environ. Toxicol. Chem. 2003, 22, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Borga, P.; Elowson, T.; Liukko, K. Environmental loads from water-sprinkled softwood timber. 2. Influence of tree species and water characteristics on wastewater discharges. Environ. Toxicol. Chem. 1996, 15, 1445–1454. [Google Scholar]
- Kaczala, F.; Salomon, P.S.; Marques, M.; Granelli, E.; Hogland, W. Effects from log-yard stormwater runoff on the microalgae Scenedesmus subspicatus: Intra-storm magnitude and variability. J. Hazard. Mater. 2011, 185, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Libralato, G.; Avezzu, F.; Ghirardini, V.A. Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). J. Hazard. Mater. 2011, 194, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Schrimpelova, K.; Mala, J.; Bilkova, Z.; Hrich, K. Organic substances in woodchip aqueous leachates and their ecotoxicity. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Sofia, Bulgaria, 2–8 July 2018; pp. 597–604. [Google Scholar] [CrossRef]
- Locika Setá. Available online: https://cs.wikipedia.org/wiki/Locika_set%C3%A1 (accessed on 25 May 2024).
- Mindell, E.; Mundis, H. Nová vitaminová bible: Nejnovější informace o vitaminech, minerálních látkách, antioxidantech, léčivých rostlinách, o doplňcích stravy, léčebných účincích potravin i lécích používaných v homeopatii; Ikarus: Prague, Czech Republic, 2006; p. 572. [Google Scholar]
Sample | 0 h | 24 h | 168 h |
---|---|---|---|
Distilled water | 6.91 | - | - |
Tap water | 6.66 | - | - |
24 h leachate | - | 7.00 | - |
168 h leachate | - | - | 6.96 |
Sample | Ca | Fe | K | Mg | Mn | Na | Si | Zn |
---|---|---|---|---|---|---|---|---|
24 h leachate | 0.00 | 0.00 | 18.2 | 0.40 | 0.20 | 0.50 | 0.40 | 0.00 |
168 h leachate | 1.50 | 0.10 | 28.8 | 1.10 | 0.50 | 1.30 | 0.90 | 0.10 |
Species | 24 h-Leachate | 168 h-Leachate |
---|---|---|
Inhibition (%) ± SD | ||
D. subspicatus | 26 ± 4.38 | 20 ± 2.10 |
L. minor | 10 ± 2.36 | 20 ± 8.39 |
L. sativa | −37 ± 26.84 | −34 ± 10.00 |
Species | 24 h-Leachate | 168 h-Leachate | Time-Dependent NOEC |
---|---|---|---|
Symbol for significance: “*” statistically significant difference, “ns ” no statistically significant difference/p-value | |||
D. subspicatus | */p < 0.05 | */p > 0.05 | <24 h-leachate |
L. minor | ns/p > 0.05 | ns/p > 0.05 | 24 h-leachate |
L. sativa | ns/p > 0.05 | ns/p > 0.05 | Impossible to determine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobetičová, K.; Sedláčková, H.; Böhm, M.; Brich, J.; Nábělková, J.; Černý, R. Effects of Prolonged Leaching on the Acute Ecotoxicity of Spruce-Pine Oriented Strand Board for Plants. Buildings 2024, 14, 1721. https://doi.org/10.3390/buildings14061721
Kobetičová K, Sedláčková H, Böhm M, Brich J, Nábělková J, Černý R. Effects of Prolonged Leaching on the Acute Ecotoxicity of Spruce-Pine Oriented Strand Board for Plants. Buildings. 2024; 14(6):1721. https://doi.org/10.3390/buildings14061721
Chicago/Turabian StyleKobetičová, Klára, Hana Sedláčková, Martin Böhm, Jiří Brich, Jana Nábělková, and Robert Černý. 2024. "Effects of Prolonged Leaching on the Acute Ecotoxicity of Spruce-Pine Oriented Strand Board for Plants" Buildings 14, no. 6: 1721. https://doi.org/10.3390/buildings14061721
APA StyleKobetičová, K., Sedláčková, H., Böhm, M., Brich, J., Nábělková, J., & Černý, R. (2024). Effects of Prolonged Leaching on the Acute Ecotoxicity of Spruce-Pine Oriented Strand Board for Plants. Buildings, 14(6), 1721. https://doi.org/10.3390/buildings14061721