Quantifying the Influence of Different Block Types on the Urban Heat Risk in High-Density Cities
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Research Objectives and Structure
2. Study Area and Data
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Dataset for Urban Morphology Factors
2.2.2. Dataset for Heat Risk Assessment
3. Methodology
3.1. Framework for Heat Risk Assessment
3.2. Improved Heat Risk Assessment Model
3.2.1. Heat Hazard
3.2.2. Heat Vulnerability
3.2.3. Heat Exposure
3.3. Block Types Classification
3.3.1. Grid Resolution
3.3.2. Assessing Urban Morphology Factors
3.3.3. LCZ Mapping and Validation
3.4. Spatial Correlation Analysis
3.4.1. Pearson’s Correlation
3.4.2. Spatial Autocorrelation Method
3.5. Interpretable Machine Learning Model
4. Results
4.1. Classification Results of LCZ Types
4.2. Analysis of Heat Risk Distribution under Different Block Type
4.2.1. Spatial Distribution of Hazard, Vulnerability, and Exposure Indicators
4.2.2. Spatial Distribution of Heat Risk Levels
4.2.3. Spatial Autocorrelation between Different Heat Risk Levels
4.2.4. Relationship between Heat Risk and People’s Activity Preferences
4.3. Relationship between Urban Morphology and Heat Risk
4.3.1. Sensitivity Analysis of Different Urban Morphology Factors
4.3.2. Spatial Relationship between Heat Risk and Urban Morphology
4.3.3. Effect of Urban Morphology Factors on Heat Risk
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AHF | Anthropogenic heat flux |
BSF | Building surface fraction |
EWI | Enhanced water index |
Green | Green band |
HRE | Height of roughness elements |
ISF | Impervious surface fraction |
LISA | Local indicator of spatial autocorrelation |
LST | Land surface temperature |
MSE | Mean squared error |
NDVI | Normalized difference vegetation index |
NIR | Near-infrared |
NTL | Night-time light |
OPD | Density of population over 65 |
PD | Population density |
PSF | Pervious surface fraction |
R2 | Coefficient of determination |
RMSE | Root mean squared error |
SHAP | Shapley additive explanations |
SVF | Sky view factor |
SWIR1 | Short-wave infrared band |
TRC | Terrain roughness class |
References
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Chaseling, G.K.; Iglesies-Grau, J.; Juneau, M.; Nigam, A.; Kaiser, D.; Gagnon, D. Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Can. J. Cardiol. 2021, 37, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Lien, T.-C.; Tabata, T. Regional Incidence Risk of Heat Stroke in Elderly Individuals Considering Population, Household Structure, and Local Industrial Sector. Sci. Total Environ. 2022, 853, 158548. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.; Hess, J. Treatment and Prevention of Heat-Related Illness. N. Engl. J. Med. 2022, 387, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, Z.; Han, L.; Iyakaremye, V.; Xu, Z.; Miao, S.; Tong, S. Avoidable Heat-Related Mortality in China during the 21st Century. NPJ Clim. Atmos. Sci. 2023, 6, 81. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.C.; Huang, X.; Tao, Y.; Dong, C.; Das, S.; Liu, Y. Health-Integrated Heat Risk Assessment in Australian Cities. Environ. Impact Assess. Rev. 2023, 102, 107176. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.; Dong, X.; Zhao, Z.; Li, L.; Duo, L.; Li, J. Will Individuals Visit Hospitals When Suffering Heat-Related Illnesses? Yes, But…. Build. Environ. 2022, 208, 108587. [Google Scholar] [CrossRef]
- Huber, V.; Breitner-Busch, S.; He, C.; Matthies-Wiesler, F.; Peters, A.; Schneider, A. Heat-Related Mortality in the Extreme Summer of 2022: An Analysis Based on Daily Data. Dtsch. Arztebl. Int. 2024, 121, 79. [Google Scholar] [CrossRef]
- de Bont, J.; Nori-Sarma, A.; Stafoggia, M.; Banerjee, T.; Ingole, V.; Jaganathan, S.; Mandal, S.; Rajiva, A.; Krishna, B.; Kloog, I. Impact of Heatwaves on All-Cause Mortality in India: A Comprehensive Multi-City Study. Environ. Int. 2024, 184, 108461. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S.H.; Rothmore, P.; Giles, L.C.; Bi, P. Outdoor Ambient Temperatures and Occupational Injuries and Illnesses: Are There Risk Differences in Various Regions within a City? Sci. Total Environ. 2022, 826, 153945. [Google Scholar] [CrossRef]
- Jang, J.; Lee, W.; Choi, M.; Kang, C.; Kim, H. Roles of Urban Heat Anomaly and Land-Use/Land-Cover on the Heat-Related Mortality in the National Capital Region of South Korea: A Multi-Districts Time-Series Study. Environ. Int. 2020, 145, 106127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yuan, C. Urban Heat Health Risk Assessment in Singapore to Support Resilient Urban Design—By Integrating Urban Heat and the Distribution of the Elderly Population. Cities 2023, 132, 104103. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Q.; Huang, C.; Li, H. Spatiotemporal Variation Analysis of the Fine-Scale Heat Wave Risk along the Jakarta-Bandung High-Speed Railway in Indonesia. Int. J. Environ. Res. Public Health 2021, 18, 12153. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Thorne, J.H.; Hashimoto, S.; Lee, D.K.; Takahashi, K. Differing Spatial Patterns of the Urban Heat Exposure of Elderly Populations in Two Megacities Identifies Alternate Adaptation Strategies. Sci. Total Environ. 2021, 781, 146455. [Google Scholar] [CrossRef]
- Freychet, N.; Hegerl, G.C.; Lord, N.S.; Lo, Y.E.; Mitchell, D.; Collins, M. Robust Increase in Population Exposure to Heat Stress with Increasing Global Warming. Environ. Res. Lett. 2022, 17, 064049. [Google Scholar] [CrossRef]
- Chen, B.; Xie, M.; Feng, Q.; Li, Z.; Chu, L.; Liu, Q. Heat Risk of Residents in Different Types of Communities from Urban Heat-Exposed Areas. Sci. Total Environ. 2021, 768, 145052. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; Guo, Y.; Zheng, D.; Qi, M. Assessing Urban Risk to Extreme Heat in China. Sustainability 2020, 12, 2750. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, S.; Duan, M. Wind Potential Evaluation with Urban Morphology-A Case Study in Beijing. Energy Procedia 2018, 153, 62–67. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Jin, L.; Pan, X.; Liu, L.; Liu, L.; Liu, J.; Gao, Y. Block-Based Local Climate Zone Approach to Urban Climate Maps Using the UDC Model. Build. Environ. 2020, 186, 107334. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Jin, L.; Liu, L.; Gao, Y.; Pan, X. Climate-Conscious Spatial Morphology Optimization Strategy Using a Method Combining Local Climate Zone Parameterization Concept and Urban Canopy Layer Model. Build. Environ. 2020, 185, 107301. [Google Scholar] [CrossRef]
- Maharoof, N.; Emmanuel, R.; Thomson, C. Compatibility of Local Climate Zone Parameters for Climate Sensitive Street Design: Influence of Openness and Surface Properties on Local Climate. Urban. Clim. 2020, 33, 100642. [Google Scholar] [CrossRef]
- Wu, J.; Liu, C.; Wang, H. Analysis of Spatio-Temporal Patterns and Related Factors of Thermal Comfort in Subtropical Coastal Cities Based on Local Climate Zones. Build. Environ. 2022, 207, 108568. [Google Scholar] [CrossRef]
- Zhang, L.; Nikolopoulou, M.; Guo, S.; Song, D. Impact of LCZs Spatial Pattern on Urban Heat Island: A Case Study in Wuhan, China. Build. Environ. 2022, 226, 109785. [Google Scholar] [CrossRef]
- Ma, L.; Huang, G.; Johnson, B.A.; Chen, Z.; Li, M.; Yan, Z.; Zhan, W.; Lu, H.; He, W.; Lian, D. Investigating Urban Heat-Related Health Risks Based on Local Climate Zones: A Case Study of Changzhou in China. Sustain. Cities Soc. 2023, 91, 104402. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milošević, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat Wave Risk Assessment and Mapping in Urban Areas: Case Study for a Midsized Central European City, Novi Sad (Serbia). Nat. Hazard. 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Liu, H.; Liang, J.; Liu, Y.; Wu, H. A Review of Data-Driven Building Energy Prediction. Buildings 2023, 13, 532. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, L.; Song, J.; Huang, L.; Zheng, J. Revealing the Impact of Urban Form on COVID-19 Based on Machine Learning: Taking Macau as an Example. Sustainability 2022, 14, 14341. [Google Scholar] [CrossRef]
- Chung, J.; Lee, Y.; Jang, W.; Lee, S.; Kim, S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sens. 2020, 12, 3231. [Google Scholar] [CrossRef]
- Zekar, A.; Milojevic-Dupont, N.; Zumwald, M.; Wagner, F.; Creutzig, F. Urban Form Features Determine Spatio-Temporal Variation of Ambient Temperature: A Comparative Study of Three European Cities. Urban. Clim. 2023, 49, 101467. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sens. 2019, 11, 959. [Google Scholar] [CrossRef]
- Guangzhou Statistics Bureau. Available online: https://lwzb.gzstats.gov.cn:20001/datav/admin/home/www_nj/ (accessed on 29 December 2023).
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The First 1-Meter Resolution National-Scale Land-Cover Map of China Created with the Deep Learning Framework and Open-Access Data. Earth Syst. Sci. Data 2023, 2023, 1–38. [Google Scholar]
- Kinney, P.L.; Ge, B.; Sampath, V.; Nadeau, K. Health-Based Strategies for Overcoming Barriers to Climate Change Adaptation and Mitigation. J. Allergy Clin. Immunol. 2023, 152, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.C.; Knudby, A.; Chi, G.; Aminipouri, M.; Lai, D.Y.-F. Spatiotemporal Analysis of Regional Socio-Economic Vulnerability Change Associated with Heat Risks in Canada. Appl. Geogr. 2018, 95, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Qin, H.; He, B.-J.; Han, G.; Chen, M. Heat Vulnerability Caused by Physical and Social Conditions in a Mountainous Megacity of Chongqing, China. Sustain. Cities Soc. 2022, 80, 103792. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Jin, W.; Dijk, M.P.V. Assessing Heat Wave Vulnerability in Beijing and Its Districts, Using a Three Dimensional Model. Int. J. Glob. Warm. 2019, 17, 297–314. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022:Impacts, Adaptation and Vulnerability; GIEC: Geneva, Switzerland, 2022. [Google Scholar]
- Crichton, D. The Risk Triangle. Nat. Disaster Manag. 1999, 102, 102–103. [Google Scholar]
- Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-Induced Human Health Risk Assessment in Megacities Based on Heat Stress-Social Vulnerability-Human Exposure Framework. Landsc. Urban. Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- Li, J.; Sun, R.; Liu, T.; Xie, W.; Chen, L. Prediction Models of Urban Heat Island Based on Landscape Patterns and Anthropogenic Heat Dynamics. Landsc. Ecol. 2021, 36, 1801–1815. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, L.; Schlink, U.; Meng, Q.; Liu, X.; Janscó, T. High Spatial and Temporal Resolution Multi-Source Anthropogenic Heat Estimation for China. Resour. Conserv. Recycl. 2024, 203, 107451. [Google Scholar] [CrossRef]
- Sajib, M.Q.U.; Wang, T. Estimation of Land Surface Temperature in an Agricultural Region of Bangladesh from Landsat 8: Intercomparison of Four Algorithms. Sensors 2020, 20, 1778. [Google Scholar] [CrossRef] [PubMed]
- Sekertekin, A. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-Situ Measurements. J. Atmos. Sol. Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Xiao, Q.-L.; Wang, Y.; Zhou, W.-X. Regional Economic Convergence in China: A Comparative Study of Nighttime Light and GDP. Front. Phys. 2021, 9, 525162. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, X.; Wang, C.; Cheng, G.; Ma, C.; Wang, H.; Sun, B. Analysis of the Spatial and Temporal Evolution of the GDP in Henan Province Based on Nighttime Light Data. Remote Sens. 2023, 15, 716. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, G.; Zhang, W.; Samson, E.L. Tweets or Nighttime Lights: Comparison for Preeminence in Estimating Socioeconomic Factors. ISPRS J. Photogramm. Remote Sens. 2018, 146, 1–10. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Xu, Y.; Liu, C.; Li, M.; Zhang, D.; Liu, G.; Li, W.; Zhang, Q.; Li, Q. Correlation Analysis between Nighttime Light Data and Socioeconomic Factors on Fine Scales. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Varlamova, E.; Solovyev, V. Study of NDVI Vegetation Index in East Siberia under Global Warming. In Proceedings of the 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 30 June–3 July 2016; SPIE: Bellingham, WA, USA, 2016; Volume 10035, pp. 1190–1195. [Google Scholar]
- Liu, S.; Wu, Y.; Zhang, G.; Lin, N.; Liu, Z. Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sens. 2023, 15, 1678. [Google Scholar] [CrossRef]
- Rodler, A.; Leduc, T. Local Climate Zone Approach on Local and Micro Scales: Dividing the Urban Open Space. Urban. Clim. 2019, 28, 100457. [Google Scholar] [CrossRef]
- Wu, Y.; Sharifi, A.; Yang, P.; Borjigin, H.; Murakami, D.; Yamagata, Y. Mapping Building Carbon Emissions within Local Climate Zones in Shanghai. Energy Procedia 2018, 152, 815–822. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y. The Urban Morphology Classification under Local Climate Zone Scheme Based on the Improved Method-A Case Study of Changsha, China. Urban. Clim. 2022, 45, 101271. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Huang, X.; Liu, A.; Li, J. Mapping and Analyzing the Local Climate Zones in China’s 32 Major Cities Using Landsat Imagery Based on a Novel Convolutional Neural Network. Geo Spat. Inf. Sci. 2021, 24, 528–557. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Ren, C.; Shi, Y.; Zheng, V.; Yim, S.; Lai, D. Determining the Optimal Size of Local Climate Zones for Spatial Mapping in High-Density Cities. In Proceedings of the 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, Toulouse, France, 20–24 July 2015; pp. 20–24. [Google Scholar]
- Chen, T.; Sun, A.; Niu, R. Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images. Int. J. Environ. Res. Public Health 2019, 16, 971. [Google Scholar] [CrossRef]
- Fan, C.; Zou, B.; Li, J.; Wang, M.; Liao, Y.; Zhou, X. Exploring the Relationship between Air Temperature and Urban Morphology Factors Using Machine Learning under Local Climate Zones. Case Stud. Therm. Eng. 2024, 55, 104151. [Google Scholar] [CrossRef]
- Unger, J.; Lelovics, E.; Gál, T. Local Climate Zone Mapping Using GIS Methods in Szeged. Hungarian Geogr. Bull. 2014, 63, 29–41. [Google Scholar] [CrossRef]
- Davenport, A.G.; Grimmond, C.S.B.; Oke, T.R.; Wieringa, J. Estimating the Roughness of Cities and Sheltered Country. 12 Th Conf. on Applied Climatology, 8–11 May 2000, Asheville, NC. Am. Meteorol. Soc. Search 2000, 96. [Google Scholar]
- Hammond, D.; Chapman, L.; Thornes, J. Roughness Length Estimation along Road Transects Using Airborne LIDAR Data. Meteorol. Appl. 2012, 19, 420–426. [Google Scholar] [CrossRef]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef]
- Estacio, I.; Babaan, J.; Pecson, N.; Blanco, A.; Escoto, J.; Alcantara, C. GIS-Based Mapping of Local Climate Zones Using Fuzzy Logic and Cellular Automata. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 199–206. [Google Scholar] [CrossRef]
- Pearson, K. On the Theory of Contingency and Its Relation to Association and Normal Correlation; Drapers’ Co. Memoirs: London, UK, 1904. [Google Scholar]
- Moran, P.A. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 73–89. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Li, Z. Extracting Spatial Effects from Machine Learning Model Using Local Interpretation Method: An Example of SHAP and XGBoost. Comput. Environ. Urban. Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Chen, S.; Bao, Z.; Lou, V. Assessing the Impact of the Built Environment on Healthy Aging: A Gender-Oriented Hong Kong Study. Environ. Impact Assess. Rev. 2022, 95, 106812. [Google Scholar] [CrossRef]
- Schug, F.; Frantz, D.; van der Linden, S.; Hostert, P. Gridded Population Mapping for Germany Based on Building Density, Height and Type from Earth Observation Data Using Census Disaggregation and Bottom-up Estimates. PLoS ONE 2021, 16, e0249044. [Google Scholar] [CrossRef]
Theme | Source | Period | Resolution | Application |
---|---|---|---|---|
Building footprint | https://www.resdc.cn/Default.aspx (accessed on 4 December 2023) | 2019 | - | LCZ mapping |
Water cover | https://www.openstreetmap.org/ (accessed on 4 December 2023) | 2020 | - | LCZ mapping |
Green cover | https://www.openstreetmap.org/ (accessed on 4 December 2023) | 2020 | - | LCZ mapping |
Land use [35] | https://zenodo.org/ (accessed on 5 December 2023) | 2022 | 1 m | LCZ mapping |
Landsat-8 | https://www.usgs.gov/ (accessed on 5 December 2023) | 2015–2020 | 30 m | Hazard/Exposure calculation |
Population density | https://www.worldpop.org/ (accessed on 8 December 2023) | 2020 | 100 m | Hazard/Exposure calculation |
Population density (>65) | https://www.worldpop.org/ (accessed on 8 December 2023) | 2020 | 100 m | Hazard/Exposure calculation |
Night-time Light | http://59.175.109.173:8888/app/login.html (accessed on 10 December 2023) | 2019 | 130 m | Hazard/Exposure calculation |
Anthropogenic heat flux | https://dataverse.harvard.edu/ (accessed on 7 February 2024) | 2019 | 500 m | Hazard calculation |
Mobile signaling data | China Unicom mobile phone | July 2022 | - | Residents’ activity preference |
Property | Methods | Formulas | Description |
---|---|---|---|
SVF | SAGA GIS | [60] | where Ssky indicates the visible sky area in the model space, m2; and Stotal indicates the total sky in the model space, m2. |
BSF | Building footprints, ArcGIS pro | [60] | where Sb indicates the total building footprint area, m2; and Stotal indicates the total block area, m2. |
HRE | Building height, ArcGIS | [60] | where Si indicates the building footprint area, m2; Hi indicates the building height, m; and n indicates the count of typical buildings within a block. |
PSF | Green cover, water cover, ArcGIS pro | [60] | where Sp indicates the total pervious area, m2; and Stotal indicates the total block area, m2. |
ISF | ArcGIS pro | [61] | where Si indicates the total impervious area, m2; and Stotal indicates the total block area, m2. |
TRC | Davenport classification of terrain roughness [62] | where Z0 represents the surface roughness length; represents the empirical coefficient; and represents the height of the surface elements [63]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, B.; Fan, C.; Li, J. Quantifying the Influence of Different Block Types on the Urban Heat Risk in High-Density Cities. Buildings 2024, 14, 2131. https://doi.org/10.3390/buildings14072131
Zou B, Fan C, Li J. Quantifying the Influence of Different Block Types on the Urban Heat Risk in High-Density Cities. Buildings. 2024; 14(7):2131. https://doi.org/10.3390/buildings14072131
Chicago/Turabian StyleZou, Binwei, Chengliang Fan, and Jianjun Li. 2024. "Quantifying the Influence of Different Block Types on the Urban Heat Risk in High-Density Cities" Buildings 14, no. 7: 2131. https://doi.org/10.3390/buildings14072131
APA StyleZou, B., Fan, C., & Li, J. (2024). Quantifying the Influence of Different Block Types on the Urban Heat Risk in High-Density Cities. Buildings, 14(7), 2131. https://doi.org/10.3390/buildings14072131