High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Growth Conditions, and Biofilm Development
2.2. Biofilm Formation onto Polystyrene and Silicone
2.3. Antifungal Susceptibility
2.4. Agar Invasion Capacity
2.5. Microscopy
2.6. Cell Wall Isolation
2.7. Mass Spectrometric Analysis
2.8. MS/MS Database Searching
3. Results
3.1. The Cell Wall Proteome of Reference Strain CDC317 under Planktonic Conditions
3.2. Selection and Characteristics of C. parapsilosis Isolates with Different Biofilm Formation Status
3.3. The Core Cell Wall Proteome of C. parapsilosis
3.4. Incorporation of Wall Adhesins Is Increased in C. parapsilosis Isolates with High Biofilm-Formation Capacity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemedez, C.; Trail-Burns, E.; Mao, Q.; Chu, S.; Shaw, S.K.; Bliss, J.M.; De Paepe, M.E. Pathology of neonatal non-albicans candidiasis: Autopsy study and literature review. Pediatr. Dev. Pathol. 2019, 22, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.M.; Mukherjee, P.K.; Clark, T.A.; Pujol, C.; Chandra, J.; Hajjeh, R.A.; Warnock, D.W.; Soil, D.R.; Ghannoum, M.A. Candida parapsilosis characterization in an outbreak setting. Emerg. Infect. Dis. 2004, 10, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M.; Holland, L.; Butler, G.; Gácser, A.; Bliss, J.M. Candida parapsilosis is a significant neonatal pathogen: A systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2013, 32, e206–e216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, X.S.; Liu, Y.; Cai, X.; Zhan, L.; Hu, K. Association of different Candida species with catheter-related candidemia, and the potential antifungal treatments against their adhesion properties and biofilm-forming capabilities. J. Clin. Lab. Anal. 2021, e23738. [Google Scholar] [CrossRef]
- Gómez-Molero, E.; Willis, J.R.; Dudakova, A.; Carreté, L.; Weig, M.; Groß, U.; Gácser, A.; Gabaldon, T.; Bader, O. Phenotypic variability in a coinfection with three independent Candida parapsilosis lineages. Front. Microbiol. 2020, 11, 1994. [Google Scholar] [CrossRef]
- De Toro, M.; Torres, M.J.; Maite, R.; Aznar, J. Characterization of Candida parapsilosis complex isolates. Clin. Microbiol. Infect. 2011, 17, 418–424. [Google Scholar] [CrossRef]
- Lattif, A.A.; Mukherjee, P.K.; Chandra, J.; Swindell, K.; Lockhart, S.R.; Diekema, D.J.; Pfaller, M.A.; Ghannoum, M.A. Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis. Int. J. Med. Microbiol 2010, 300, 265–270. [Google Scholar] [CrossRef]
- D’Enfert, C.; Janbon, G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res. 2016, 16, fov111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, D.M.; George, T.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Antifungal susceptibility of Candida biofilms: Unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob. Agents Chemother. 2002, 46, 1773–1780. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Molero, E.; De-la-Pinta, I.; Fernández-Pereira, J.; Groß, U.; Weig, M.; Quindós, G.; De Groot, P.W.J.; Bader, O. Candida parapsilosis colony morphotype forecasts biofilm formation of clinical isolates. J. Fungi 2021, 7, 33. [Google Scholar] [CrossRef]
- Laffey, S.F.; Butler, G. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 2005, 151, 1073–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, N.A.; van de Veerdonk, F.L.; Brown, A.J.; Netea, M.G. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat. Rev. Microbiol. 2011, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Klis, F.M.; De Groot, P.; Hellingwerf, K. Molecular organization of the cell wall of Candida albicans. Med. Mycol. 2001, 39 (Suppl. S1), 1–8. [Google Scholar] [PubMed]
- Klis, F.M.; Sosinska, G.J.; de Groot, P.W.; Brul, S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 2009, 9, 1013–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satala, D.; Karkowska-Kuleta, J.; Zelazna, A.; Rapala-Kozik, M.; Kozik, A. Moonlighting proteins at the candidal cell surface. Microorganisms 2020, 8, 1046. [Google Scholar] [CrossRef]
- De Groot, P.W.; Bader, O.; De Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryot. Cell 2013, 12, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, L.L.; Cota, E. Candida albicans agglutinin-like sequence (Als) family vignettes: A review of Als protein structure and function. Front. Microbiol. 2016, 7, 280. [Google Scholar] [CrossRef] [Green Version]
- Staab, J.F.; Bahn, Y.S.; Tai, C.H.; Cook, P.F.; Sundstrom, P. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem. 2004, 279, 40737–40747. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Diderrich, R.; Reithofer, V.; Friederichs, S.; Kock, M.; Essen, L.O.; Mösch, H.U. Functional reprogramming of Candida glabrata epithelial adhesins: The role of conserved and variable structural motifs in ligand binding. J. Biol. Chem. 2020, 295, 12512–12524. [Google Scholar] [CrossRef] [PubMed]
- Zupancic, M.L.; Frieman, M.; Smith, D.; Alvarez, R.A.; Cummings, R.D.; Cormack, B.P. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 2008, 68, 547–559. [Google Scholar] [CrossRef]
- Butler, G.; Rasmussen, M.D.; Lin, M.F.; Santos, M.A.; Sakthikumar, S.; Munro, C.A.; Rheinbay, E.; Grabherr, M.; Forche, A.; Reedy, J.L.; et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkowska-Kuleta, J.; Zajac, D.; Bochenska, O.; Kozik, A. Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach. Acta Biochim. Pol. 2015, 62, 807–819. [Google Scholar] [CrossRef]
- Neale, M.N.; Glass, K.A.; Longley, S.J.; Kim, D.J.; Laforce-Nesbitt, S.S.; Wortzel, J.D.; Shaw, S.K.; Bliss, J.M. Role of the inducible adhesin CpAls7 in binding of Candida parapsilosis to the extracellular matrix under fluid shear. Infect. Immun. 2018, 86, e00892-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignol, T.; Ding, C.; Guida, A.; d’Enfert, C.; Higgins, D.G.; Butler, G. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 2009, 8, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Pravin Charles, M.V.; Kali, A.; Joseph, N.M. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials. Pharmacogn. Res. 2015, 7, S69–S73. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Florl, C.; Hope, W.; Eucast, A. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.W.J.; De Boer, A.D.; Cunningham, J.; Dekker, H.L.; De Jong, L.; Hellingwerf, K.J.; De Koster, C.; Klis, F.M. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 2004, 3, 955–965. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.W.J.; Kraneveld, E.A.; Yin, Q.Y.; Dekker, H.L.; Groß, U.; Crielaard, W.; De Koster, C.G.; Klis, F.M.; Weig, M. The cell wall of the human pathogen Candida glabrata: Differential incorporation of novel adhesin-like wall proteins. Eukaryot. Cell 2008, 7, 1951–1964. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Molero, E.; De Boer, A.D.; Dekker, H.L.; Moreno-Martínez, A.; Kraneveld, E.A.; Chauhan, N.; Weig, M.; De Soet, J.J.; De Koster, C.G.; Bader, O.; et al. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res. 2015, 15, fov098. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.Y.; De Groot, P.W.J.; Dekker, H.L.; De Jong, L.; Klis, F.M.; De Koster, C.G. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 2005, 280, 20894–20901. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.W.J.; Brandt, B.W. ProFASTA: A pipeline web server for fungal protein scanning with integration of cell surface prediction software. Fungal. Genet. Biol. 2012, 49, 173–179. [Google Scholar] [CrossRef] [PubMed]
- De Groot, P.W.J.; Ram, A.F.; Klis, F.M. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet. Biol. 2005, 42, 657–675. [Google Scholar] [PubMed]
- Kulkarni, R.D.; Kelkar, H.S.; Dean, R.A. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 2003, 28, 118–121. [Google Scholar] [CrossRef]
- De Groot, P.W.J.; Brandt, B.W.; Horiuchi, H.; Ram, A.F.J.; De Koster, C.G.; Klis, F.M. Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, S72–S81. [Google Scholar] [CrossRef] [Green Version]
- Ecker, M.; Deutzmann, R.; Lehle, L.; Mrša, V.; Tanner, W. Pir-proteins of Saccharomyces cerevisiae are attached to b-1,3-glucan by a new protein-carbohydrate linkage. J. Biol. Chem. 2006, 281, 11523–11529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonhomme, J.; Chauvel, M.; Goyard, S.; Roux, P.; Rossignol, T.; d’Enfert, C. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol. Microbiol. 2011, 80, 995–1013. [Google Scholar] [CrossRef] [PubMed]
- Nobile, C.J.; Fox, E.P.; Nett, J.E.; Sorrells, T.R.; Mitrovich, Q.M.; Hernday, A.D.; Tuch, B.B.; Andes, D.R.; Johnson, A.D. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, R.; Ansari, F.A.; Raghunandanan, M.V.; Ramachandran, S. FungalRV: Adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 2011, 12, 192. [Google Scholar] [CrossRef] [Green Version]
- Sosinska, G.J.; de Koning, L.J.; De Groot, P.W.J.; Manders, E.M.; Dekker, H.L.; Hellingwerf, K.J.; de Koster, C.G.; Klis, F.M. Mass spectrometric quantitation of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 2011, 157, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ene, I.V.; Heilmann, C.J.; Sorgo, A.G.; Walker, L.A.; de Koster, C.G.; Munro, C.A.; Klis, F.M.; Brown, A.J. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 2012, 12, 3164–3179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorgo, A.G.; Heilmann, C.J.; Dekker, H.L.; Bekker, M.; Brul, S.; De Koster, C.G.; De Koning, L.J.; Klis, F.M. Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot. Cell 2011, 10, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, C.J.; Sorgo, A.G.; Siliakus, A.R.; Dekker, H.L.; Brul, S.; de Koster, C.G.; de Koning, L.J.; Klis, F.M. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 2011, 157, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Panagoda, G.J.; Ellepola, A.N.; Samaranayake, L.P. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses 2001, 44, 29–35. [Google Scholar] [CrossRef]
- Cassone, A.; De Bernardis, F.; Pontieri, E.; Carruba, G.; Girmenia, C.; Martino, P.; Fernández-Rodríguez, M.; Quindós, G.; Pontón, J. Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J. Infect. Dis. 1995, 171, 967–975. [Google Scholar] [CrossRef]
- Rupp, S.; Summers, E.; Lo, H.J.; Madhani, H.; Fink, G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999, 18, 1257–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmermans, B.; De Las Peñas, A.; Castano, I.; Van Dijck, P. Adhesins in Candida glabrata. J. Fungi 2018, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Smith, B.; Miller, A.N.; Staker, B.; Fields, C.; Hernandez, A.; Hoyer, L.L. Agglutinin-like sequence (ALS) genes in the Candida parapsilosis species complex: Blurring the boundaries between gene families that encode cell-wall proteins. Front. Microbiol. 2019, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Bliss, J.M.; Tollefson, G.A.; Cuevas, A.; Longley, S.J.; Neale, M.N.; Uzun, A.; Shaw, S.K. Transcription Profiles Associated with Inducible Adhesion in Candida parapsilosis. mSphere 2021, 6. [Google Scholar] [CrossRef]
- Granger, B.L.; Flenniken, M.L.; Davis, D.A.; Mitchell, A.P.; Cutler, J.E. Yeast wall protein 1 of Candida albicans. Microbiology 2005, 151, 1631–1644. [Google Scholar] [CrossRef] [PubMed]
CGD Name (Proposed Name) | Ortholog (o) or Closest Homolog (h) in C. albicans | Functional Class or Family | Size (aa) | Exponential Growth | Stationary Phase | ||
---|---|---|---|---|---|---|---|
30 °C | 37 °C | 30 °C | 37 °C | ||||
Identified Peptides DP/TP a | |||||||
Putative adhesins | |||||||
CPAR2_404790 (Als6) | Als6/C3_06190C (o) | Als family | 2392 | 1/2 | 1/1 | ||
Rbt1/CPAR2_403510 | Rbt1/C4_03520C (o) | Hwp family | 812 | 1/2 | |||
Ywp1/CPAR2_806670 | Ywp1/C2_08590W (o) | Hwp family | 522 | 1/86 | 1/73 | 1/72 | 2/100 |
Carbohydrate active enzymes | |||||||
CPAR2_302140 (Phr1) | Phr1/C4_04530C (o) | CaZy GH72 Gas/Phr family | 532 | 7/9 | 10/13 | 3/3 | 3/3 |
CPAR2_109660 (Phr2) | Phr2/C1_00220W (o) | CaZy GH72 Gas/Phr family | 566 | 14/99 | 16/141 | 12/90 | 19/189 |
CPAR2_100110 (Pga4) | Pga4/C5_05390C (o) | CaZy GH72 Gas/Phr family | 464 | 12/92 | 13/91 | 12/84 | 13/108 |
CPAR2_407410 (MP65) | MP65/C2_10030C (o) | CaZy GH17 Bgl2 family | 372 | 12/75 | 12/96 | 9/45 | 12/77 |
CPAR2_401600 (Bgl2) | Bgl2/C4_02250C (o) | CaZy GH17 Bgl2 family | 308 | 4/12 | 6/10 | 3/3 | 6/12 |
CPAR2_400860 (Crh11) | Crh11/C4_02900C (o) | CaZy GH16 Crh family | 490 | 10/215 | 10/195 | 7/127 | 9/263 |
CPAR2_503190 (Utr2) | Utr2/C3_01730C (o) | CaZy GH16 Crh family | 461 | 4/24 | 3/31 | 4/16 | 3/31 |
CPAR2_502140 (Cht2) | Cht2/C5_04130C (o) | CaZy GH18 Chitinase | 584 | 28/604 | 34/506 | 24/393 | 24/326 |
Other enzymes | |||||||
CPAR2_213080 (Sod4) | Sod4/C2_00660C (o) | Superoxide dismutase | 215 | 1/1 | 1/2 | 1/3 | |
CPAR2_102610 (Sap9) | Sap9/C3_03870C (o) | Aspartic protease | 597 | 1/1 | 1/2 | 1/1 | |
CPAR2_702730 (Sap91) | Sap9/C3_03870C (h) | Aspartic protease | 528 | 4/7 | |||
CPAR2_804680 (Plb5) | Plb5/C1_08230C (o) | Phospholipase | 724 | 5/10 | 6/19 | 6/12 | 7/37 |
CPAR2_808920 (Plb51) | Plb5/C1_08230C (h) | Phospholipase | 884 | 5/23 | 8/27 | 6/27 | 11/70 |
Non-enzymatic or unknown function | |||||||
CPAR2_402910 (Rbt51) | Rbt5/C4_00130W (h) | Iron acquisition Rbt5 family | 232 | 1/24 | 1/25 | 1/3 | 1/45 |
CPAR2_108560 (Ecm33) | Ecm33/C1_03190C (o) | Ecm33 family | 433 | 14/112 | 18/201 | 11/115 | 18/302 |
Ecm331/CPAR2_100710 | Ecm331/C5_02460C (o) | Ecm33 family | 438 | 1/1 | 1/2 | 3/8 | |
CPAR2_603090 (Sun41) | Sun41/C6_00820W (o) | Sun family | 431 | 1/2 | |||
CPAR2_806490 (Pir1) | Pir1/C2_08870C (o) | Pir family | 400 | 9/149 | 16/203 | 13/282 | 20/547 |
Pga30/CPAR2_402000 | Pga30/C4_04070C (o) | Pga30 family | 285 | 5/9 | 2/8 | 11/60 | 8/19 |
Rhd3/CPAR2_402010 | Rhd3/C4_04050C (o) | Pga30 family | 273 | 1/2 | 1/1 | ||
CPAR2_603340 (Pga59) | Pga59/C4_02370C (o) | Pga59/Pga62 family | 138 | 1/9 | 1/12 | 1/5 | 1/8 |
CPAR2_503650 (Tos1) | Tos1/C3_01550C (o) | Unknown function | 444 | 2/5 | 3/9 | 2/3 | 3/6 |
CPAR2_301540 (Ssr1) | Ssr1/C7_00860W (o) | Unknown function | 241 | 11/133 | 13/213 | 10/144 | 14/258 |
CPAR2_200370 (Pga1) | Pga1/CR_10480W (o) | Unknown function | 129 | 1/1 | 1/1 | 1/2 |
Strain (Origin) | Dominant Morphotype (Sporadic) | Biofilm Formation | Invasiveness b | Cell Shape c | MIC (µg/mL) d | |||||
---|---|---|---|---|---|---|---|---|---|---|
AMB | FLZ | POS | VRZ | CAS | MFG | |||||
CDC317 (Ref. strain, skin) | Smooth | LBF a | 1 | Yeast | 0.125 | 4–16 | 0.125–0.25 | 0.125–0.25 | 1 | 1–2 |
PEU501 (Ear-nose swab) | Smooth | LBF | 1 | Yeast | 0.125–0.25 | 0.25–0.5 | 0.063–0.125 | 0.031–0.063 | 0.25 | 1 |
PEU582 (Urine) | Smooth (Crepe) | IBF | 2 | Yeast | 0.125 | 0.5–1 | 0.063–0.125 | 0.031 | 0.5–1 | 2 |
PEU651 (Indwelling device) | Smooth | IBF | 2 | Yeast | 0.125–0.25 | 4 | 0.063–0.125 | 0.031–0.063 | 0.5–1 | 0.125–0.25 |
PEU486 (Skin) | Crepe (Smooth/concentric) | HBF | 5 | Yeast & PH | 0.125 | 1 | 0.031–0.063 | 0.031–0.063 | 1 | 1–2 |
PEU495 (Urine) | Crepe (Smooth) | HBF | 5 | Yeast & PH | 0.125 | 0.5–1 | 0.031–0.063 | 0.125–0.25 | 0.25–0.5 | 1–2 |
PEU496 (Ear-nose swab) | Crepe (Smooth/crater) | HBF | 5 | Yeast & PH | 0.125 | 0.5 | 0.063 | 0.031 | 2 | 2 |
PEU586 (Ear-nose swab) | Crepe (Smooth/concentric) | HBF | 5 | Yeast & PH | 0.125 | 1 | 0.125 | 0.031 | 2 | 2 |
Identified Protein (Proposed Name) | C. albicans Ortholog (o) or Homolog (h) | Functional Class or Family | Characteristics | LBF | IBF | HBF | ||||
---|---|---|---|---|---|---|---|---|---|---|
PEU501 | PEU582 | PEU651 | PEU486 | PEU495 | PEU496 | PEU586 | ||||
St a | St/B_PS | St/B_PS | St/B_PS | St/B_PS | St/B_PS | St/B_PS/B_S | ||||
Putative adhesins | 117 b | 68/90 | 33/27 | 564/525 | 433/484 | 592/582 | 466/698/509 | |||
CPAR2_404780 (Als11) | Als1/C6_03700W (h) | Als family | SP, GPI | + c | +/+ | −/− | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_404790 (Als6) | Als6/C3_06190C (o) | Als family | SP, GPI | − | +/+ | −/− | +/+ | +/+ | +/+ | −/−/− |
Als7/CPAR2_404800 | Als7/C3_06320W (o) | Als family | SP, GPI | + | −/− | −/− | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_600430 (Hyr31) | Hyr3/C5_00730W (h) | Iff/Hyr family | SP, GPI | − | −/− | −/− | −/+ | −/− | −/+ | −/−/− |
Rbt1/CPAR2_403510 | Rbt1/C4_03520C (o) | Hwp family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Ywp1/CPAR2_806670 | Ywp1/C2_08590W (o) | Hwp family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Non-adhesin proteins—core proteome | 2206 | 2160/2000 | 2605/2261 | 1871/1550 | 1661/2139 | 1915/1693 | 1818/2046/2097 | |||
Carbohydrate active enzymes | ||||||||||
CPAR2_302140 (Phr1) | Phr1/C4_04530C (o) | Gas/Phr family | SP, GPI d | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_109660 (Phr2) | Phr2/C1_00220W (o) | Gas/Phr family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_100110 (Pga4) | Pga4/C5_05390C (o) | Gas/Phr family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_407410 (MP65) | MP65/C2_10030C (o) | Bgl2 family | SP, ASL | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_401600 (Bgl2) | Bgl2/C4_02250C (o) | Bgl2 family | SP, ASL | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_400860 (Crh11) | Crh11/C4_02900C (o) | Crh family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_503190 (Utr2) | Utr2/C3_01730C (o) | Crh family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_502140 (Cht2) | Cht2/C5_04130C (o) | Chitinase | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_502130 (Cht21) | Cht2/C5_04130C (h) | Chitinase | SP, GPI | − | −/− | −/− | +/+ | +/+ | −/− | +/+/+ |
CPAR2_502120 (Cht22) | Cht2/C5_04130C (h) | Chitinase | SP, GPI | − | −/− | −/− | −/+ | −/+ | −/− | −/−/+ |
Other enzymes | ||||||||||
CPAR2_213080 (Sod4) | Sod4/C2_00660C (o) | Superoxide dismutase | SP, GPI | + | −/− | −/+ | +/+ | −/+ | +/+ | −/−/− |
CPAR2_102610 (Sap9) | Sap9/C3_03870C (o) | Aspartic protease | SP, GPI | + | −/+ | +/+ | −/+ | −/+ | +/+ | +/+/+ |
CPAR2_702730 (Sap91) | Sap9/C3_03870C (h) | Aspartic protease | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_702720 (Sap92) | Sap9/C3_03870C (h) | Aspartic protease | SP, GPI | − | +/+ | +/+ | +/+ | −/− | −/− | −/−/− |
CPAR2_500920 (Sap10) | Sap10/C4_04470W (o) | Aspartic protease | SP, GPI | − | −/+ | +/+ | −/+ | −/− | −/− | −/−/− |
CPAR2_804680 (Plb5) | Plb5/C1_08230C (o) | Phospholipase | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_808920 (Plb51) | Plb5/C1_08230C (h) | Phospholipase | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Non-enzymatic or Unknown function | ||||||||||
CPAR2_402910 (Rbt51) | Rbt5/C4_00130W (h) | Rbt5 family | SP c, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_300120 (Csa1) | Csa1/C7_00090C (o) | Rbt5 family | SP, GPI | − | −/− | −/− | −/+ | −/+ | −/− | +/+/+ |
CPAR2_108560 (Ecm33) | Ecm33/C1_03190C (o) | Ecm33 family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Ecm331/CPAR2_100710 | Ecm331/C5_02460C (o) | Ecm33 family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_603090 (Sun41) | Sun41/C6_00820W (o) | Sun family | SP, ASL | − | +/+ | −/− | +/− | −/− | −/− | −/−/− |
CPAR2_806490 (Pir1) | Pir1/C2_08870C (o) | Pir family | SP, 8 Pir repeats, ASL | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Pga30/CPAR2_402000 | Pga30/C4_04070C (o) | Pga30 family | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
Rhd3/CPAR2_402010 | Rhd3/C4_04050C (o) | Pga30 family | SP, GPI | − | +/+ | +/+ | −/− | −/− | −/− | −/−/− |
CPAR2_603340 (Pga59) | Pga59/C4_02370C (o) | Pga59/Pga62 family | SP, GPI | + | −/− | −/− | −/− | +/+ | +/+ | −/−/− |
CPAR2_503650 (Tos1) | Tos1/C3_01550C (o) | Unknown function | SP, ASL | + | +/− | +/− | +/− | +/+ | +/+ | +/−/+ |
CPAR2_301540 (Ssr1) | Ssr1/C7_00860W (o) | Unknown function | SP, GPI | + | +/+ | +/+ | +/+ | +/+ | +/+ | +/+/+ |
CPAR2_200370 (Pga1) | Pga1/CR_10480W (o) | Unknown function | SP, GPI | − | −/− | −/− | +/− | +/− | +/− | −/−/− |
CPAR2_400900 (Pga53) | Pga53/C4_01360W (o) | Unknown function | SP, GPI | + | −/− | −/− | −/+ | −/− | +/+ | −/−/− |
CPAR2_701390 | No hits | Unknown function | SP, GPI | − | +/+ | +/+ | −/+ | −/− | −/− | −/−/+ |
CPAR2_805040 | C1_10170W (o) | Unknown function | SP | − | −/− | +/+ | −/− | −/− | −/− | −/+/+ |
CPAR2_403880 | No hits | Unknown function | SP | − | +/+ | −/− | −/− | −/− | −/− | −/−/− |
CPAR2_405510 (Nce102) | NCE102/C3_04910C (o) | Unknown function | SP | − | −/− | −/− | −/− | −/− | −/− | +/+/+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Martínez, A.E.; Gómez-Molero, E.; Sánchez-Virosta, P.; Dekker, H.L.; de Boer, A.; Eraso, E.; Bader, O.; de Groot, P.W.J. High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens 2021, 10, 493. https://doi.org/10.3390/pathogens10040493
Moreno-Martínez AE, Gómez-Molero E, Sánchez-Virosta P, Dekker HL, de Boer A, Eraso E, Bader O, de Groot PWJ. High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens. 2021; 10(4):493. https://doi.org/10.3390/pathogens10040493
Chicago/Turabian StyleMoreno-Martínez, Ana Esther, Emilia Gómez-Molero, Pablo Sánchez-Virosta, Henk L. Dekker, Albert de Boer, Elena Eraso, Oliver Bader, and Piet W. J. de Groot. 2021. "High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins" Pathogens 10, no. 4: 493. https://doi.org/10.3390/pathogens10040493
APA StyleMoreno-Martínez, A. E., Gómez-Molero, E., Sánchez-Virosta, P., Dekker, H. L., de Boer, A., Eraso, E., Bader, O., & de Groot, P. W. J. (2021). High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens, 10(4), 493. https://doi.org/10.3390/pathogens10040493