Effectiveness of Household Disinfection Techniques to Remove SARS-CoV-2 from Cloth Masks
Abstract
:1. Introduction
2. Results
2.1. SARS-CoV-2 Genome Detection by RT-qPCR after Washing Processes
2.2. Relationship between Viral Dilutions and Washing Products
2.3. Effect of the Washing Processes on B.1.1.28 and P.1 Variants
2.4. Detecting the Presence of Virions in the Fabric Treated with Disinfectants through Cell Culturing
3. Discussion
4. Materials and Methods
4.1. Inoculation of Viral Suspensions with Tricoline Fabric
4.2. Washing and Soaking with Disinfectant Solutions
4.3. RNA Extraction
4.4. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) Detection of SARS-CoV-2 RNA
4.5. Inoculation of Vero Cells with Virus Particles
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int (accessed on 20 January 2022).
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses. Coronaviridae—Positive Sense RNA Viruses—Positive Sense RNA Viruses (2011)—ICTV. 2022. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae (accessed on 20 January 2022).
- Hoffmann, M.; Arora, P.; Groß, R.; Seidel, A.; Hörnich, B.F.; Hahn, A.S.; Krüger, N.; Graichen, L.; Hofmann-Winkler, H.; Kempf, A.; et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021, 184, 2384–2393.e12. [Google Scholar] [CrossRef] [PubMed]
- Giovanetti, M.; Benedetti, F.; Campisi, G.; Ciccozzi, A.; Fabris, S.; Ceccarelli, G.; Tambone, V.; Caruso, A.; Angeletti, S.; Zella, D.; et al. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem. Biophys. Res. Commun. 2021, 538, 88–91. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Tracking SARS-CoV-2 Variants. 2022. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 20 January 2022).
- Candido, D.S.; Claro, I.M.; De Jesus, J.G.; Souza, W.M.; Moreira, F.R.R.; Dellicour, S.; Mellan, T.A.; Du Plessis, L.; Pereira, R.H.M.; Sales, F.C.S.; et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 2020, 369, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Naveca, F.G.; Nascimento, V.; de Souza, V.C.; Corado, A.D.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 2021, 27, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Pangolin Lineages. Cov-Lineages. Lineage List. 2022. Available online: https://cov-lineages.org/lineage_list.html (accessed on 5 February 2022).
- Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2523. [Google Scholar] [CrossRef]
- Dejnirattisai, W.; Zhou, D.; Supasa, P.; Liu, C.; Mentzer, A.J.; Ginn, H.M.; Zhao, Y.; Duyvesteyn, H.M.; Tuekprakhon, A.; Nutalai, R.; et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 2021, 184, 2939–2954.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wei, P.; Zhang, Q.; Chen, Z.; Aviszus, K.; Downing, W.; Peterson, S.; Reynoso, L.; Downey, G.P.; Frankel, S.K.; et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimab in vitro. mAbs 2021, 13, 1919285. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Claro, I.M.; Candido, D.; Franco, L.A.M.; Andrade, P.S.; Coletti, T.M.; Silva, C.A.M.; Sales, F.C.; Manuli, E.R.; Aguiar, R.S. Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in Manaus: Preliminary Findings—SARS-CoV-2 Coronavirus/nCoV-2019 Genomic Epidemiology. 2021. Available online: https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 (accessed on 5 February 2022).
- Coutinho, R.M.; Marquitti, F.M.D.; Ferreira, L.S.; Borges, M.E.; da Silva, R.L.P.; Canton, O.; Portella, T.P.; Poloni, S.; Franco, C.; Plucinski, M.M.; et al. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant. Commun. Med. 2021, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Milton, D.K.; Fabian, M.P.; Cowling, B.J.; Grantham, M.L.; McDevitt, J.J. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013, 9, e1003205. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.-L.; Li, Y.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.A.; Wang, C.C. Schooley RT. Reducing transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Mello, V.M.; Eller, C.M.; Salvio, A.L.; Nascimento, F.F.; Figueiredo, C.M.; Silva, E.S.R.F.; Sousa, P.S.F.; Costa, P.F.; Paiva, A.A.P.; Mares-Guias, M.A.M.M.; et al. Effectiveness of face masks in blocking the transmission of SARS-CoV-2: A preliminary evaluation of masks used by SARS-CoV-2-infected individuals. PLoS ONE 2022, 17, e0264389. [Google Scholar] [CrossRef] [PubMed]
- Swain, I.D. Why the mask? The effectiveness of face masks in preventing the spread of respiratory infections such as COVID-19—A home testing protocol. J. Med. Eng. Technol. 2020, 44, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Thompson, K.A.; Giri, K.; Kafatos, G.; Walker, J.; Bennett, A. Testing the efficacy of homemade masks: Would they protect in an influenza pandemic? Disaster Med. Public Health Prep. 2013, 7, 413–418. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mask Use in the Context of COVID-19: Interim Guidance, 1 December 2020, Licença: CC BY-NC-SA 3.0 IGO. 2020. Available online: https://apps.who.int/iris/handle/10665/337199 (accessed on 5 February 2022).
- Guan, L.; Zhou, L.; Zhang, J.; Peng, W.; Chen, R. More awareness is needed for severe acute respiratory syndrome coronavirus 2019 transmission through exhaled air during non-invasive respiratory support: Experience from China. Eur. Respir. J. 2020, 55, 2000352. [Google Scholar] [CrossRef]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Choi, S.; Ki, M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health 2020, 42, e2020011. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.X.; Shan, H.; Zhang, H.L.; Li, G.M.; Yang, R.M.; Chen, J.M. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J. Med. Virol. 2020, 92, 1567–1571. [Google Scholar] [CrossRef] [PubMed]
- Morais, F.G.; Sakano, V.K.; de Lima, L.N.; Franco, M.A.; Reis, D.C.; Zanchetta, L.M.; Jorge, F.; Landulfo, E.; Catalani, L.H.; Barbosa, H.M.J.; et al. efficiency of a large set of COVID-19 face masks commonly used in Brazil. Aerosol Science and Technology. Aerosol. Sci. Technol. 2021, 55, 1028–1041. [Google Scholar] [CrossRef]
- Ji, D.; Fan, L.; Li, X.; Ramakrishna, S. Addressing the worldwide shortages of face masks. BMC Mater. 2020, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Ortelan, N.; Ferreira, A.J.F.; Leite, L.; Pescarini, J.M.; Souto, A.C.; Barreto, M.L.; Aquino, E.M.L. Cloth masks in public places: An essential intervention to prevent COVID-19 in Brazil. Cien. Saude Colet. 2021, 26, 669–692. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.O.E.; Almeida, A.M.; Freire, M.E.M.; Nogueira, J.A.; Gir, E.; Nogueira, W.P. Cloth masks as respiratory protections in the COVID-19 pandemic period: Evidence gaps. Rev. Bras. Enferm. 2020, 73 (Suppl. S2), e20200239. [Google Scholar] [CrossRef]
- Fernandes, L.A.C.; Silva, C.A.F.; Dameda, C.; Bicalho, P.P.G. COVID-19 and the Brazilian Reality: The Role of Favelas in Combating the Pandemic. Front. Sociol. 2021, 5, 611990. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Lu, X.; Xu, C.; Sun, W.; Pan, B. Understanding of COVID-19 based on current evidence. J. Med. Virol. 2020, 92, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Cowling, B.J.; Chan, K.H.; Fang, V.J.; Cheng, C.K.; Fung, R.O.; Wai, W.; Sin, J.; Seto, W.H.; Yung, R.; Chu, D.W.; et al. Facemasks and hand hygiene to prevent influenza transmission in households: A cluster randomized trial. Ann. Intern. Med. 2009, 151, 437–446. [Google Scholar] [CrossRef]
- Zhou, S.S.; Lukula, S.; Chiossone, C.; Nims, R.W.; Suchmann, D.B.; Ijaz, M.K. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses. J. Thorac Dis. 2018, 10, 2059–2069. [Google Scholar] [CrossRef]
- Offeddu, V.; Yung, C.F.; Low, M.S.F.; Tam, C.C. Effectiveness of Masks and Respirators Against Respiratory Infections in Healthcare Workers: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 65, 1934–1942. [Google Scholar] [CrossRef]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.-H.; et al. An evidence review of face masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Ávila, F.M.V.; Lam, S.C.; Góes, F.G.B.; Gir, E.; Pereira-Caldeira, N.M.V.; Teles, S.A.; Caetano, K.A.A.; Goulart, M.D.C.E.L.; Bazilio, T.R.; Silva, A.C.D.O.E. Factors associated with the use and reuse of face masks among Brazilian individuals during the COVID-19 pandemic. Rev. Lat. Am. Enfermagem. 2020, 28, e3360. [Google Scholar] [CrossRef]
- Szarpak, L.; Smereka, J.; Filipiak, K.J.; Ladny, J.R.; Jaguszewski, M. Cloth masks versus medical masks for COVID-19 protection. Cardiol. J. 2020, 27, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Chan, I.C.; Wong, O.P.; Ng, Y.H.; Ng, C.K.; Chan, M.H.; Ng, J.K.-C.; Koo, H.H.-T.; Lam, S.-T.; Chu, A.C.-W.; et al. Reuse of face masks among adults in Hong Kong during the COVID-19 pandemic. BMC Public Health 2021, 21, 1267. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- O’Hearn, K.; Gertsman, S.; Webster, R.; Tsampalieros, A.; Ng, R.; Gibson, J.; Sampson, M.; Sikora, L.; McNally, J. Efficacy and safety of disinfectants for decontamination of N95 and SN95 filtering facepiece respirators: A systematic review. J. Hosp. Infect. 2020, 106, 504–521. [Google Scholar] [CrossRef]
- Everts, R.J.; Al Ghusaini, S.; Telfar-Barnard, L.; Barclay, E.; Tan, S.; Jekel, S.; Jennings, L.; Choi, D.H.; Hilson, D.; Gibson, B. Liquid-Immersion Reprocessing Effects on Filtration Efficiency of ‘Single-Use’ Commercial Medical Face Masks. Ann. Work Expo. Health 2022, 66, 246–259. [Google Scholar] [CrossRef]
- World Health Organization. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19 2020. Available online: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19 (accessed on 10 March 2022).
- Xiling, G.; Yin, C.; Ling, W.; Xiaosong, W.; Jingjing, F.; Fang, L.; Xiaoyan, Z.; Yiyue, G.; Ying, C.; Lunbiao, C.; et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci. Rep. 2021, 11, 2418. [Google Scholar] [CrossRef]
- Lai, M.Y.; Cheng, P.K.; Lim, W.W. Survival of severe acute respiratory syndrome coronavirus. Clin. Infect. Dis. 2005, 41, e67–e71. [Google Scholar] [CrossRef]
- Li, J.Z.; Mack, E.C.; Levy, J.A. Virucidal efficacy of soap and water against human immunodeficiency virus in genital secretions. Antimicrob. Agents Chemother. 2003, 47, 3321–3322. [Google Scholar] [CrossRef]
- Nomura, T.; Nazmul, T.; Yoshimoto, R.; Higashiura, A.; Oda, K.; Sakaguchi, T. Ethanol Susceptibility of SARS-CoV-2 and Other Enveloped Viruses. Biocontrol. Sci. 2021, 26, 177–180. [Google Scholar] [CrossRef]
- Beaty, B.; Calisher, C.; Shope, R. Diagnostic Procedures for Viral, Rickettsial, and Chlamydialinfections; Lennette, E., Lennette, D., Lennette, E., Eds.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- World Health Organization. Coronavirus Disease (COVID-19): Masks. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-masks (accessed on 4 August 2022).
- World Health Organization. Coronavirus Disease (COVID-19): Masks. Coronavirus Disease (COVID-19) Advice for the Public: When and How to Use Masks. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks (accessed on 4 August 2022).
B.1.1.28 a | P.1 b | |||||
---|---|---|---|---|---|---|
Median | Viral Load Mean | p-Value | Median | Viral Load Mean | p-Value | |
Commercial disinfectant products | <0.001 | <0.001 | ||||
Soap Powder | 5.73 | 1.60 × 104 | 5.74 | 1.04 × 103 | ||
Soap Powder + Lysoform® | 4.37 | 1.43 × 104 | 7.72 | 1.01 × 103 | ||
Soap Powder + Sodium Hypochlorite | 0.0 | 1.44 × 10−1 | 0.0 | 0.04 | ||
Sodium Hypochlorite | 0.0 | 6.70 × 10−3 | 0.0 | 0.0 | ||
70% alcohol | 0.91 | 1.02 × 103 | 2.56 | 5.91 × 101 | ||
Virus Control | 0.0 | 4.2 × 10−2 | 0.0 | 0.0 | ||
Wash Control | 0.0 | 1.42 × 102 | 2.51 | 1.14 × 102 |
Samples Collected after Washing with Commercial Disinfectant Products | Days Post Infection | |||||||
---|---|---|---|---|---|---|---|---|
1st Day | Ct Value | 5th Day | Ct Value | 7th Day | Ct Value | 9th Day | Ct Value | |
A.1 R 1st VS1 | NO | NEG | LC | NEG | MLC | NEG | MLC | NEG |
A.2 R 1st VS1 | NO | NEG | LC | NEG | LC | NEG | LC | NEG |
A.1 R 2nd VS1 | NO | NEG | MLC | NEG | CTEcc | NEG | __ | X |
A.2 R 2nd VS1 | NO | NEG | MLC | NEG | CTEcc | NEG | __ | X |
A.1 R 3rd VS1 | NO | NEG | LC | NEG | MLC | NEG | MLC | NEG |
A.2 R 3rd VS1 | NO | NEG | LC | NEG | MLC | NEG | MLC | NEG |
A.1 R 1st VS2 | NO | NEG | NO | NEG | MLC | NEG | MLC | NEG |
A.2 R 1st VS2 | NO | NEG | NO | NEG | MLC | NEG | MLC | NEG |
A.1 R 2nd VS2 | NO | NEG | NO | NEG | MLC | NEG | MLC | 36.87 |
A.2 R 2nd VS2 | NO | NEG | NO | NEG | MLC | NEG | MLC | NEG |
A.1 R 3rd VS2 | NO | NEG | NO | NEG | LC | NEG | LC | NEG |
A.2 R 3rd VS2 | NO | NEG | NO | NEG | MLC | NEG | MLC | NEG |
Mock w.1 R 1st VS1 | NO | 33.76 | CPE | 35.46 | CPEcc | 34.69 | __ | X |
Mock w.2 R 1st VS1 | NO | 34.12 | CPE | NEG | CPEcc | 35.00 | __ | X |
Mock w.1 R 2nd VS1 | NO | 35.63 | CPE | 38.58 | CPEcc | 3.57 | __ | X |
Mock w.2 R 2nd VS1 | NO | 34.42 | CPE | 35.55 | CPEcc | 3.49 | __ | X |
Mock w.1 R 3rd VS1 | NO | 35.06 | CPE | NEG | CPEcc | 36.00 | __ | X |
Mock w.2 R 3rd VS1 | NO | NEG | CPE | NEG | CPEcc | NEG | __ | X |
Mock w.1 R 1st VS2 | NO | NEG | CPE | NEG | MLC | 15.78 | CPEcc | 11.47 |
Mock w.2 R 1st VS2 | NO | 28.20 | CPEcc | 10.01 | __ | X | __ | X |
Mock w.1 R 2nd VS2 | NO | NEG | CPE | NEG | MLC | NEG | MLC | NEG |
Mock w.2 R 2nd VS2 | NO | 30.60 | CPEcc | 10.00 | __ | X | __ | X |
Mock w.1 R 3rd VS2 | NO | __ | CPE | NEG | MLC | 20.43 | CPEcc | 13.77 |
Mock w.2 R 3rd VS2 | NO | 30.01 | CPEcc | 9.76 | __ | X | __ | X |
SP.1 R 3rd VS1 | NO | __ | LC | NEG | MLC | NEG | CPEcc | 36.12 |
SP.2 R 3rd VS1 | NO | __ | NO | NEG | MLC | NEG | CEcc | 27.42 |
SP.1 R 3rd VS2 | NO | __ | LC | NEG | MLC | NEG | MLC | NEG |
SP.2 R 3rd VS2 | NO | __ | MLC | NEG | MLC | NEG | MLC | NEG |
SH.1 R 3rd VS2 | NO | NEG | LC | NEG | LC | NEG | LC | NEG |
SH.2 R 3rd VS2 | NO | 35.29 | LC | NEG | LC | NEG | LC | NEG |
SP + L30.1 R 3rd VS1 | NO | 35.30 | LC | NEG | LC | NEG | LC | NEG |
SP + L30.2 R 3rd VS1 | NO | NEG | MLC | NEG | MLC | NEG | MLC | NEG |
SP + L30.1 R 3rd VS2 | NO | NEG | MLC | NEG | MLC | NEG | MLC | NEG |
SP + L30.2 R 3rd VS2 | NO | NEG | MLC | NEG | MLC | NEG | MLC | NEG |
Solution | Volume | Volume of Water |
---|---|---|
Soap powder | 1/8 cup (or 11.20 g) of soap powder b | 13.5 L |
Soap powder + Lysoform® | 1/8 cup (or 11.20 g) of soap powder + 25 mL of Lysoform® | 13.5 L |
Soap powder + Hypochlorite sodium | 1/8 cup (or 11.20 g) of soap powder + 10 mL of Hypochlorite | 13.5 L |
Hypochlorite sodium | 10 mL of Hypochlorite | 0.5 L |
70% alcohol | 300 mL of 92.8% a | 0.7 L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mares-Guia, M.A.M.M.; Paiva, A.A.P.; Mello, V.M.; Eller, C.M.; Salvio, A.L.; Nascimento, F.F.; Silva, E.S.R.F.; Campos, V.T.M.G.; da Silva Mendes, Y.; Lemos, E.R.S.; et al. Effectiveness of Household Disinfection Techniques to Remove SARS-CoV-2 from Cloth Masks. Pathogens 2022, 11, 916. https://doi.org/10.3390/pathogens11080916
Mares-Guia MAMM, Paiva AAP, Mello VM, Eller CM, Salvio AL, Nascimento FF, Silva ESRF, Campos VTMG, da Silva Mendes Y, Lemos ERS, et al. Effectiveness of Household Disinfection Techniques to Remove SARS-CoV-2 from Cloth Masks. Pathogens. 2022; 11(8):916. https://doi.org/10.3390/pathogens11080916
Chicago/Turabian StyleMares-Guia, Maria Angélica Monteiro Mello, Anne Aline Pereira Paiva, Vinicius Motta Mello, Cristiane M. Eller, Andreza Lemos Salvio, Felipe F. Nascimento, Emanuelle S. R. F. Silva, Vinicius Tadeu Martins Guerra Campos, Ygara da Silva Mendes, Elba Regina Sampaio Lemos, and et al. 2022. "Effectiveness of Household Disinfection Techniques to Remove SARS-CoV-2 from Cloth Masks" Pathogens 11, no. 8: 916. https://doi.org/10.3390/pathogens11080916
APA StyleMares-Guia, M. A. M. M., Paiva, A. A. P., Mello, V. M., Eller, C. M., Salvio, A. L., Nascimento, F. F., Silva, E. S. R. F., Campos, V. T. M. G., da Silva Mendes, Y., Lemos, E. R. S., Sousa, I. P., Jr., & Horta, M. A. P. (2022). Effectiveness of Household Disinfection Techniques to Remove SARS-CoV-2 from Cloth Masks. Pathogens, 11(8), 916. https://doi.org/10.3390/pathogens11080916