Dielectric Elastomer Cooperative Microactuator Systems—DECMAS
Abstract
:1. Introduction
2. System Design
3. Modeling and Simulation
4. Electrodes
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bohringer, K.-F.; Donald, B.R.; MacDonald, N.C. Single-crystal silicon actuator arrays for micro manipulation tasks. In Proceedings of the Ninth International Workshop on Micro Electromechanical Systems, San Diego, CA, USA, 11–15 February 1996; pp. 7–12. [Google Scholar]
- Vandelli, N.; Wroblewski, D.; Velonis, M.; Bifano, T. Development of a MEMS Microvalve Array for Fluid Flow Control. J. Microelectromech. Syst. 1998, 7, 395–403. [Google Scholar] [CrossRef]
- Mineta, T.; Yanatori, H.; Hiyoshi, K.; Tsuji, K.; Ono, Y.; Abe, K. Tactile display MEMS device with SU8 micro-pin and spring on SMA film actuator array. IEEE Transducers 2017, 2017, 2031–2034. [Google Scholar]
- Hishinuma, Y.; Yang, E.-H. Piezoelectric Unimorph Microactuator Arrays for Single-Crystal Silicon Continuous-Membrane Deformable Mirror. J. Microelectromech Syst. 2006, 15, 370–379. [Google Scholar] [CrossRef]
- Kornbluh, R.D.; Pelrine, R.; Prahlad, H.; Heydt, R. Electroactive polymers: An emerging technology for MEMS. SPIE Mems/Moems Compon. Appl. 2004, 5344, 13–27. [Google Scholar]
- Balakrisnan, B.; Smela, E. Challenges in the microfabrication of dielectric elastomer actuators. SPIE Eapad 2010, 2010, 76420K. [Google Scholar]
- Akbari, S.; Shea, H.R. An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sens. Actuator A Phys. 2012, 186, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. A Self-Sensing Approach for Dielectric Elastomer Actuators Based on Online Estimation Algorithms. IEEE/ASME Trans. Mechatron. 2017, 22, 728–738. [Google Scholar] [CrossRef]
- Hodgins, M.; York, A.; Seelecke, S. Experimental comparison of bias elements for out-of-plane DEAP actuator system. Smart Mater. Struct. 2013, 22, 094016. [Google Scholar] [CrossRef]
- Neu, J.; Hubertus, J.; Croce, S.; Schultes, G.; Seelecke, S.; Rizzello, G. Fully Polymeric Domes as High-Stroke Biasing System for Soft Dielectric Elastomer Actuators. Front. Robot. AI 2021, 8, 171. [Google Scholar] [CrossRef]
- Neu, J.; Croce, S.; Hubertus, J.; Rizzello, G.; Schultes, G.; Seelecke, S. Design and characterization of polymeric domes as biasing elements for dielectric elastomer membrane actuators. Actuator 2021, 2021, 442–445. [Google Scholar]
- Neu, J.; Croce, S.; Hubertus, J.; Schultes, G.; Rizzello, G.; Seelecke, S. Assembly and characterization of a DE actuator based on polymeric domes as biasing element. Proceedings 2020, 64, 24. [Google Scholar]
- Neu, J.; Croce, S.; Willian, T.; Hubertus, J.; Schultes, G.; Seelecke, S.; Rizzello, G. Distributed Electro-Mechanical Coupling Effects in Dielectric Elastomer Membrane Arrays: System Design and Experimental Characterization. Exp. Mech. 2023, 63, 79–95. [Google Scholar] [CrossRef]
- Neu, J.; Croce, S.; Hubertus, J.; Schultes, G.; Seelecke, S.; Rizzello, G. Characterization and Modeling of an Array of Dielectric Elastomer Taxels. SPIE Eapad 2021, XXIII, 115870R. [Google Scholar]
- Neu, J.; Croce, S.; Hubertus, J.; Schultes, G.; Seelecke, S.; Rizzello, G. Experimental characterization of the mechanical coupling in a DE-array. SPIE Eapad 2022, XXIV, 120420H. [Google Scholar]
- Fasolt, B.; Hodgins, M.; Rizzello, G.; Seelecke, S. Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes. Sens. Actuator A Phys. 2017, 265, 10–19. [Google Scholar] [CrossRef]
- Croce, S.; Neu, J.; Hubertus, J.; Seelecke, S.; Schultes, G.; Rizzello, G. Model-Based Design Optimization of Soft Polymeric Domes Used as Nonlinear Biasing Systems for Dielectric Elastomer Actuators. Actuators 2021, 10, 209. [Google Scholar] [CrossRef]
- Croce, S.; Neu, J.; Hubertus, J.; Rizzello, G.; Seelecke, S.; Schultes, G. Modeling and simulation of compliant biasing systems for dielectric elastomer membranes based on polymeric domes. Actuator 2021, 2021, 446–449. [Google Scholar]
- Croce, S.; Neu, J.; Moretti, G.; Hubertus, J.; Schultes, G.; Rizzello, G. Finite element modeling and validation of a soft array of spatially coupled dielectric elastomer transducers. Smart Mater. Struct. 2022, 31, 084001. [Google Scholar] [CrossRef]
- Croce, S.; Neu, J.; Hubertus, J.; Schultes, G.; Seelecke, S.; Rizzello, G. Finite Element Modeling and Parameter Study of a Fully-Polymeric Array of Coupled Dielectric Elastomers. SPIE Eapad 2022, XXIV, 120420B. [Google Scholar]
- Croce, S.; Neu, J.; Hubertus, J.; Seelecke, S.; Schultes, G.; Rizzello, G. Modeling and simulation of an array of Dielectric Elestomeric Actuator Membranes. Proceedings 2020, 64, 28. [Google Scholar]
- Croce, S.; Moretti, G.; Neu, J.; Hubertus, J.; Seelecke, S.; Schultes, G.; Rizzello, G. Finite Element Modeling and Simulation of a Soft Array of Dielectric Elastomer Actuators. ASME Smasis 2021, 85499, V001T07A003. [Google Scholar]
- Hubertus, J.; Fasolt, B.; Linnebach, P.; Seelecke, S.; Schultes, G. Electromechanical evaluation of sub-micron NiCr-carbon thin films as highly conductive and compliant electrodes for dielectric elastomers. Sens. Actuators A Phys. 2020, 315, 112243. [Google Scholar] [CrossRef]
- Hubertus, J.; Croce, S.; Neu, J.; Seelecke, S.; Rizzello, G.; Schultes, G. Laser Structuring of Thin Metal Films of Compliant Electrodes on Dielectric Elastomers. Adv. Funct. Mater. 2023, 2214176. [Google Scholar] [CrossRef]
- Hubertus, J.; Neu, J.; Croce, S.; Rizzello, G.; Seelecke, S.; Schultes, G. Nanoscale nickel-based thin films as highly conductive electrodes for dielectric elastomer applications with extremely high stretchability up to 200%. ACS Appl. Mater. Interfaces 2021, 13, 39894–39904. [Google Scholar] [CrossRef]
- Gratz-Kelly, S.; Rizzello, G.; Fontana, M.; Seelecke, S.; Moretti, G. A Multi-Mode, Multi-Frequency Dielectric Elastomer Actuator. Adv. Funct. Mater. 2020, 32, 2201889. [Google Scholar] [CrossRef]
- Gratz-Kelly, S.; Krüger, T.; Rizzello, G.; Seelecke, S.; Moretti, G. An audio-tactile interface based on dielectric elastomer actuators. Smart Mater. Struct. 2023; accepted. [Google Scholar] [CrossRef]
- Chen, F.; Cao, J.; Zhang, H.; Wang, M.Y.; Zhu, J.; Zhang, Y.F. Programmable Deformations of Networked Inflated Dielectric Elastomer Actuators. IEEE/ASME Trans. Mechatron. 2019, 24, 45–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seelecke, S.; Neu, J.; Croce, S.; Hubertus, J.; Schultes, G.; Rizzello, G. Dielectric Elastomer Cooperative Microactuator Systems—DECMAS. Actuators 2023, 12, 141. https://doi.org/10.3390/act12040141
Seelecke S, Neu J, Croce S, Hubertus J, Schultes G, Rizzello G. Dielectric Elastomer Cooperative Microactuator Systems—DECMAS. Actuators. 2023; 12(4):141. https://doi.org/10.3390/act12040141
Chicago/Turabian StyleSeelecke, Stefan, Julian Neu, Sipontina Croce, Jonas Hubertus, Günter Schultes, and Gianluca Rizzello. 2023. "Dielectric Elastomer Cooperative Microactuator Systems—DECMAS" Actuators 12, no. 4: 141. https://doi.org/10.3390/act12040141
APA StyleSeelecke, S., Neu, J., Croce, S., Hubertus, J., Schultes, G., & Rizzello, G. (2023). Dielectric Elastomer Cooperative Microactuator Systems—DECMAS. Actuators, 12(4), 141. https://doi.org/10.3390/act12040141