Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location and Sampling
2.2. Chemical-Physical and Microbiological Analysis
2.3. Water Sample Processing
2.4. DNA Extraction and Quantitative Detection of Legionella Species Using Droplet Digital PCR
2.5. Statistical Analysis
3. Results
3.1. Characterization and Concentrations of Legionella 23S rRNA and Five Pathogenic Legionella Species
3.2. Detection of 23S rRNA and Five Legionella Species from Groundwater Source to the Taps in the Buildings, to the Cooling Towers
3.3. Water Quality Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fraser, D.W.; Tsai, T.R.; Orenstein, W.; Parkin, W.E.; Beecham, H.J.; Sharrar, R.G.; Harris, J.; Mallison, G.F.; Martin, S.M.; McDade, J.E.; et al. Legionnaires’ disease: Description of an epidemic of pneumonia. N. Engl. J. Med. 1977, 297, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Steigerwalt, A.G.; McDade, J.E. Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova. Ann. Intern. Med. 1979, 90, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.Z.; Liao, H.Y.; Luo, L.Z.; He, S.S.; Qin, T.; Zhou, H.J.; Li, H.X.; Chen, D.L.; Chen, J.P. An Investigation on the Molecular Characteristics and Intracellular Growth Ability among Environmental and Clinical Isolates of Legionella pneumophila in Sichuan Province, China. Biomed. Environ. Sci. BES 2019, 32, 520–530. [Google Scholar] [CrossRef]
- Brady, M.F.; Sundareshan, V. Legionnaires’ Disease (Legionella Infection). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. Available online: http://www.ncbi.nlm.nih.gov/books/nbk430807/ (accessed on 25 March 2020).
- Waldron, P.R.; Martin, B.A.; Ho, D.Y. Mistaken identity: Legionella micdadei appearing as acid fast bacilli on lung biopsy of a hematopoietic stem cell transplant patient. Transpl. Infect. Dis. 2015, 17, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Muder, R.R.; Victor, L.Y. Infection Due to Legionella Species Other Than L. pneumophila. Clin. Infect. Dis. 2002, 35, 990–998. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.C.; Sebti, R.; Hassoun, P.; Mannion, C.; Goy, A.H.; Feldman, T.; Mato, A.; Hong, T. Osteomyelitis of the patella caused by Legionella anisa. J. Clin. Microbiol. 2013, 51, 2791–2793. [Google Scholar] [CrossRef] [Green Version]
- Lachant, D.; Prasad, P. Legionella micdadei: A Forgotten Etiology of Growing Cavitary Nodules: A Case Report and Literature Review. Case Rep. Pulmonol. 2015, 2015, 535012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.L.; Hayden, R.; Gaur, A. Legionella Bozemanii Pulmonary Abscess in a Pediatric Allogeneic Stem Cell Transplant Recipient. Pediatric Infect. Dis. J. 2007, 26, 760–762. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Legionella (Legionnaires’ Disease and Pontiac Fever). Surveillance Report 2016–2017. Available online: https://www.cdc.gov/legionella/health-depts/surv-reporting/2016-17-report-tables/index.html#figure1 (accessed on 28 October 2020).
- Brunkard, J.M.; Ailes, E.; Roberts, V.A.; Hill, V.; Hilborn, E.D.; Craun, G.F.; Rajasingham, A.; Kahler, A.; Garrison, L.; Hicks, L.; et al. Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2007–2008. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2011, 60, 38–68. [Google Scholar]
- United States Geological Survey. Summary of Estimated Water Use in the United States in 2015. Available online: https://pubs.usgs.gov/fs/2018/3035/fs20183035.pdf (accessed on 27 May 2020).
- Department of Environmental Quality. Fact Sheet. Groundwater Statistics. Available online: https://www.michigan.gov/documents/deq/deq-wd-gws-wcu-groundwaterstatistics_270606_7.pdf (accessed on 2 April 2020).
- Brooks, T.; Osicki, R.; Springthorpe, V.; Sattar, S.; Filion, L.; Abrial, D.; Riffard, S. Detection and identification of Legionella species from groundwaters. J. Toxicol. Environ. Health Part A 2004, 67, 1845–1859. [Google Scholar] [CrossRef]
- De Giglio, O.; Napoli, C.; Apollonio, F.; Brigida, S.; Marzella, A.; Diella, G.; Calia, C.; Scrascia, M.; Pacifico, C.; Pazzani, C.; et al. Occurrence of Legionella in groundwater used for sprinkler irrigation in Southern Italy. Environ. Res. 2019, 170, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Valciņa, O.; Pūle, D.; Mališevs, A.; Trofimova, J.; Makarova, S.; Konvisers, G.; Bērziņš, A.; Krūmiņa, A. Co-Occurrence of Free-Living Amoeba and Legionella in Drinking Water Supply Systems. Medicina 2019, 55, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapili, K.; Pieper, K.J.; Dai, D.; Pruden, A.; Edwards, M.A.; Tang, M.; Rhoads, W.J. Legionella pneumophila occurrence in drinking water supplied by private wells. Lett. Appl. Microbiol. 2020, 70, 232–240. [Google Scholar] [CrossRef]
- Johnson, C.D.; Nandi, A.; Joyner, T.A.; Luffman, I. Iron and Manganese in Groundwater: Using Kriging and GIS to Locate High Concentrations in Buncombe County, North Carolina. Ground Water 2018, 56, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Cianciotto, N.P. An update on iron acquisition by Legionella pneumophila: New pathways for siderophore uptake and ferric iron reduction. Future Microbiol. 2015, 10, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Donohue, M.J.; O’Connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread Molecular Detection of Legionella pneumophila Serogroup 1 in Cold Water Taps across the United States. Environ. Sci. Technol. 2014, 48, 3145–3152. [Google Scholar] [CrossRef]
- Llewellyn, A.C.; Lucas, C.E.; Roberts, S.E.; Brown, E.W.; Nayak, B.S.; Raphael, B.H.; Winchell, J.M. Distribution of Legionella and bacterial community composition among regionally diverse US cooling towers. PLoS ONE 2017, 12, e0189937. [Google Scholar] [CrossRef] [Green Version]
- Prussin, A.J.; Schwake, D.O.; Marr, L.C. Ten Questions Concerning the Aerosolization and Transmission of Legionella in the Built Environment. Build. Environ. 2017, 123, 684–695. [Google Scholar] [CrossRef]
- Dilger, T.; Melzl, H.; Gessner, A. Legionella contamination in warm water systems: A species-level survey. Int. J. Hyg. Environ. Health 2017, 221, 199–210. [Google Scholar] [CrossRef]
- Richards, C.L.; Broadaway, S.C.; Eggers, M.J.; Doyle, J.; Pyle, B.H.; Camper, A.K.; Ford, T.E. Detection of Pathogenic and Non-pathogenic Bacteria in Drinking Water and Associated Biofilms on the Crow Reservation, Montana, USA. Microb. Ecol. 2018, 76, 52–63. [Google Scholar] [CrossRef]
- Lesnik, R.; Brettar, I.; Höfle, M.G. Legionella species diversity and dynamics from surface reservoir to tap water: From cold adaptation to thermophily. ISME J. 2016, 10, 1064–1080. [Google Scholar] [CrossRef] [Green Version]
- Tsao, H.-F.; Scheikl, U.; Herbold, C.; Indra, A.; Walochnik, J.; Horn, M. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. Water Res. 2019, 159, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.P.A.; Peplies, J.; Brettar, I.; Höfle, M.G. Development of a genus-specific next generation sequencing approach for sensitive and quantitative determination of the Legionella microbiome in freshwater systems. BMC Microbiol. 2017, 17, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan-Jackson, A.; Rose, J.B. Cooccurrence of Five Pathogenic Legionella spp. And Two Free-Living Amoebae Species in a Complete Drinking Water System and Cooling Towers. Pathogens 2021, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Buse, H.; Struewing, I.; Zhao, A.; Lytle, D.; Ashbolt, N. Annual variations and effects of temperature on Legionella spp. And other potential opportunistic pathogens in a bathroom. Environ. Sci. Pollut. Res. 2017, 24, 2326–2336. [Google Scholar] [CrossRef]
- Totaro, M.; Valentini, P.; Costa, A.L.; Frendo, L.; Cappello, A.; Casini, B.; Miccoli, M.; Privitera, G.; Baggiani, A. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey. Int. J. Environ. Res. Public Health 2017, 14, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, N.M.; Holinger, E.P.; Ross, K.A.; Robertson, C.E.; Harris, J.K.; Stevens, M.J.; Pace, N.R. Longitudinal and Source-to-Tap New Orleans, LA, USA. Drinking Water Microbiology. Environ. Sci. Technol. 2017, 51, 4220–4229. [Google Scholar] [CrossRef]
- Li, L.; Qin, T.; Li, Y.; Zhou, H.; Song, H.; Ren, H.; Li, L.; Li, Y.; Zhao, D. Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments. Int. J. Environ. Res. Public Health 2015, 12, 12605–12617. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Wang, X.; Shangguan, Z.; Zhou, H.; Wu, Y.; Wang, L.; Ren, H.; Hu, Y.; Lin, M.; et al. High Prevalence and Genetic Polymorphisms of Legionella in Natural and Man-Made Aquatic Environments in Wenzhou, China. Int. J. Environ. Res. Public Health 2017, 14, 222. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.; Elfland, C.; Edwards, M. Impact of advanced water conservation features and new copper pipe on rapid chloramine decay and microbial regrowth. Water Res. 2012, 46, 611–621. [Google Scholar] [CrossRef]
- Rhoads, W.J.; Pruden, A.; Edwards, M.A. Survey of green building water systems reveals elevated water age and water quality concerns. Environ. Sci. Water Res. Technol. 2016, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Legionella (Legionnaires’ Disease and Pontiac Fever). History, Burden, and Trends. Available online: https://www.cdc.gov/legionella/about/history.html (accessed on 27 March 2020).
- Centers for Disease Control and Prevention. Legionnaires’ Disease Surveillance Summary Report, United States 2014–2015. Available online: https://www.cdc.gov/legionella/health-depts/surv-reporting/2014-15-surv-report-508.pdf (accessed on 27 May 2020).
- Dimitriadi, D.; Velonakis, E. Detection of Legionella spp. From Domestic Water in the Prefecture of Arta 2014, Greece. J. Pathog. 2014, 2014, 407385. [Google Scholar] [CrossRef] [PubMed]
- Fleres, G.; Couto, N.; Lokate, M.; van der Sluis, L.W.M.; Ginevra, C.; Jarraud, S.; Deurenberg, R.H.; Rossen, J.W.; García-Cobos, S.; Friedrich, A.W. Detection of Legionella anisa in Water from Hospital Dental Chair Units and Molecular Characterization by Whole-Genome Sequencing. Microorganisms 2018, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mee-Marquet, N.; van der Domelier, A.-S.; Arnault, L.; Bloc, D.; Laudat, P.; Hartemann, P.; Quentin, R. Legionella anisa, a Possible Indicator of Water Contamination by Legionella pneumophila. J. Clin. Microbiol. 2006, 44, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Edagawa, A.; Kimura, A.; Miyamoto, H. Investigations on Contamination of Environmental Water Samples by Legionella using Real-Time Quantitative PCR Combined with Amoebic Co-Culturing. Biocontrol Sci. 2019, 24, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Laganà, P.; Facciolà, A.; Palermo, R.; Delia, S. Environmental Surveillance of Legionellosis within an Italian University Hospital-Results of 15 Years of Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1103. [Google Scholar] [CrossRef] [Green Version]
- Leoni, E.; De Luca, G.; Legnani, P.P.; Sacchetti, R.; Stampi, S.; Zanetti, F. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J. Appl. Microbiol. 2005, 98, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Fragou, K.; Kokkinos, P.; Gogos, C.; Alamanos, Y.; Vantarakis, A. Prevalence of Legionella spp. In water systems of hospitals and hotels in South Western Greece. Int. J. Environ. Health Res. 2012, 22, 340–354. [Google Scholar] [CrossRef]
- Thornley, C.N.; Harte, D.J.; Weir, R.P.; Allen, L.J.; Knightbridge, K.J.; Wood, P.R.T. Legionella longbeachae detected in an industrial cooling tower linked to a legionellosis outbreak, New Zealand, 2015; possible waterborne transmission? Epidemiol. Infect. 2017, 145, 2382–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.F.; Huss, A.; Dorevitch, S.; Heijnen, L.; Arntzen, V.H.; Davies, M.; Robert-Du Ry van Beest Holle, M.; Fujita, Y.; Verschoor, A.M.; Raterman, B.; et al. Multiple Sources of the Outbreak of Legionnaires’ Disease in Genesee County, Michigan, in 2014 and 2015. Environ. Health Perspect. 2019, 127, 127001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwake, D.O.; Garner, E.; Strom, O.R.; Pruden, A.; Edwards, M.A. Legionella DNA Markers in Tap Water Coincident with a Spike in Legionnaires’ Disease in Flint, MI. Environ. Sci. Technol. Lett. 2016, 3, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.A.; Hamilton, M.T.; Johnson, W.; Jjemba, P.; Bukhari, Z.; LeChevallier, M.; Haas, C.N.; Gurian, P.L. Risk-Based Critical Concentrations of Legionella pneumophila for Indoor Residential Water Uses. Environ. Sci. Technol. 2019, 53, 4528–4541. [Google Scholar] [CrossRef] [Green Version]
- Legionellosis: Risk Management for Building Water Systems. Standard 188-2018. American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE). Available online: https://www.ashrae.org/technical-resources/bookstore/ansi-ashrae-standard-188-2018-legionellosis-risk-management-for-building-water-systems (accessed on 29 March 2020).
- Recognition, Evaluation and Control of Legionella n Building Water Systems, 2nd ed.; American Industrial Hygiene Association (AIHA): Fairfax, VA, USA. 2016. Available online: https://online-ams.aiha.org/amsssa/ecssashop.show_product_detail?p_mode=detail&p_product_serno=1047&p_cust_id=257816&p_order_serno=&p_promo_cd=&p_price_cd=&p_category_id=&p_session_serno=5604896&p_trans_ty= (accessed on 29 March 2020).
- New York State Department of Health. Protection against Legionella. Available online: https://www.health.ny.gov/environmental/water/drinking/legionella/ (accessed on 2 April 2020).
- Schneiders, S.; Hechard, T.; Edgren, T.; Avican, K.; Fällman, M.; Fahlgren, A.; Wang, H. Spatiotemporal Variations in Growth Rate and Virulence Plasmid Copy Number during Yersinia pseudotuberculosis Infection. Infect. Immun. 2021, 89, e00710-20. [Google Scholar] [CrossRef]
- Katz, S.M.; Hammel, J.M. The effect of drying, heat, and pH on the survival of Legionella pneumophila. Ann. Clin. Lab. Sci. 1987, 17, 150–156. [Google Scholar] [PubMed]
- Nazarian, E.J.; Bopp, D.J.; Saylors, A.; Limberger, R.J.; Musser, K.A. Design and implementation of a protocol for the detection of Legionella in clinical and environmental samples. Diagn. Microbiol. Infect. Dis. 2008, 62, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Cross, K.E.; Mercante, J.W.; Benitez, A.J.; Brown, E.W.; Diaz, M.H.; Winchell, J.M. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay. Diagn. Microbiol. Infect. Dis. 2016, 85, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Legionella Species b | CT (n = 6) | ERC Taps (Cold n = 3) [Hot n = 3] | ERC_IN (n = 3) | Fa_Taps (Cold n = 6) [Hot n = 6] | Fa_IN (n = 3) | Res_EF (n = 6) | Res_In (n = 6) |
---|---|---|---|---|---|---|---|
Legionella spp. (23S rRNA) (%+) [%+] | 100% (6/6) | (100%: 3/3) [100%: 3/3] | 100% (3/3) | (100%: 6/6) [10%: 6/6] | 100% (3/3) | 100% (6/6) | 100% (6/6) |
Legionella spp. (23S rRNA) Geomean (Log 10GC/100 mL) | 4.5 | (4.5) [4.4] | 4.0 | (2.6) [2.2] | 2.2 | 2.7 | 3.1 |
L. pneumophila (%+) [%+] | 83% (5/6) | (100%: 3/3) [0%: 0/3] | 33% (1/3) | (33%: 2/6) [33%: 2/6] | 67% (2/3) | 83% (5/6) | 83% (5/6) |
L. pneumophila Geomean (Log 10GC/100 mL) | 2.8 | (1.4) [ND] | 1.4 | (1.4) [1.6] | 1.8 | 1.8 | 1.6 |
L. micdadei (%+) [%+] | 33% (2/6) | (0%: 0/3) [66%: 2/3] | 67% (2/3) | (16%: 1/6) [0%: 0/6] | 67% (2/3) | 0% (0/6) | 17% (1/6) |
L. micdadei Geomean (Log 10GC/100 mL) | 2.4 | (ND a) [2.5] | 1.6 | (1.1) [ND a] | 1.6 | ND a | 1.5 |
L. bozemanii (%+) [%+] | 100% (6/6) | (0%: 0/3) [33%: 1/3] | 100% (3/3) | (16%: 1/6) [16%: 1/6] | 0% (0/3) | 100% (6/6) | 67% (4/6) |
L. bozemanii Geomean (Log 10GC/100 mL) | 2.9 | (ND a) [1.8] | 1.6 | (1.4) [1.8] | ND a | 1.7 | 1.5 |
L. longbeachae (%+) [%+] | 50% (3/6) | (0%: 0/3) [33%: 1/3] | 100% (3/3) | (66%: 4/6) [50%: 3/6] | 33% (1/3) | 0% (0/6) | 0% (0/6) |
L. longbeachae Geomean (Log 10GC/100 mL) | 1.5 | (ND a) [1.7] | 1.4 | (1.2) [1.6] | 1.5 | ND a | ND a |
L. anisa (%+) [%+] | 67% (4/6) | (0%: 0/3) [0%: 0/3] | 0% (0/3) | (16%: 1/6) [66%: 4/6] | 0% (0/3) | 0% (0/6) | 0% (0/6) |
L. anisa Geomean (Log 10GC/100 mL) | 2.1 | (ND a) [ND a] | ND a | (1.1) [1.6] | ND a | ND a | ND a |
Number of Different Legionella spp. | Percent Positive %+ (Sample Positive/Total Number of Samples) |
---|---|
0 | 7 (3/42) |
1 | 30 (13/42) |
2 | 30 (13/42) |
3 | 23 (10/42) |
4 | 4 (2/42) |
5 | 2 (1/42) |
No. of Pairs | Pairs | p-Value | Remarks |
---|---|---|---|
1 | CT vs. RES_IN | 0.0156 | Significant |
2 | CT vs. RES_EF | 0.0003 | Highly significant |
3 | CT vs. Fa_IN | 0.0006 | Highly significant |
4 | CT vs. Fa_H | <0.0001 | Highly significant |
5 | CT vs. Fa_C | 0.0001 | Highly significant |
6 | ERC_C vs. RES_EF | 0.0043 | Very significant |
7 | ERC_ vs. Fa_IN | 0.0036 | Very significant |
8 | ERC vs_Fa_H | 0.0002 | Highly significant |
9 | ERC_C vs Fa_C | 0.0020 | Very significant |
10 | ERC_H vs. RES_EF | 0.0152 | Significant |
11 | ERC_H vs. Fa_IN | 0.0107 | Significant |
12 | ERC_H vs. Fa_H | 0.0007 | Highly Significant |
13 | ERC_H vs. Fa_C | 0.0074 | Significant |
14 | ERC_IN vs. Fa_H | 0.0091 | Significant |
Temperature (°C) | Total Chlorine (mg/L) | Free Chlorine (mg/L) | Turbidity (NTU) | pH | Conductivity (mS) | HPC (CFU/100 mL) | Total Coliforms (MPN/100 mL) | E. coli (MPN/100 mL) |
---|---|---|---|---|---|---|---|---|
Reservoir Influent (n = 6) | ||||||||
12.1 | 0 | 0 | 4.1 | 7.2 | 851 | 3.52 × 101 | <1 | <1 |
Reservoir Effluent (n = 6) | ||||||||
11.9 | 0.64 | 0.33 | 3.85 | 7.2 | 855 | 2.10 × 100 | <1 | <1 |
Building Fa Influent (n = 3) | ||||||||
26.8 | 0.41 | 0.35 | 8.4 | 7.3 | 897 | 8.57 × 104 | <1 | <1 |
Building Fa 1 st Floor Cold; n = 3 (Hot Taps; n = 3) | ||||||||
26.7 (28.6) | 0.16 (0.04) | 0.14 (0.02) | 3.06 (0.53) | 7.2 (7.1) | 867 (815) | 1.02 × 104 (7.3 × 103) | <1 (<1) | <1 (<1) |
Building Fa 2nd Floor Cold; n = 3 (Hot Taps; n = 3) | ||||||||
26.8 (28.8) | 0.05 (0.02) | 0.03 (0) | 3.37 (0.67) | 7.0 (6.9) | 856 (822) | 2.00 × 104 (3.15 × 103) | <1 (<1) | <1 (<1) |
Building ERC Influent (n = 3) | ||||||||
31.5 | 0.31 | 0.20 | 12.5 | 7.4 | 883 | 4.32 × 105 | <1 | <1 |
Building ERC 1 st Floor Cold (n = 3) (Hot Taps; n = 3) | ||||||||
23.5 (24.5) | 0.09 (0.04) | 0.03 (0) | 5.97 (6.27) | 7.6 (7.5) | 866 (847) | 4.38 × 105 (6.80 × 105) | <1 (<1) | <1 (<1) |
CT (n = 6) | ||||||||
25.3 | 0.49 | 0.08 | 1.94 | 8.2 | 2564 | 2.35 × 107 | 666.6 | 17.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logan-Jackson, A.R.; Rose, J.B. Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers. Microorganisms 2022, 10, 81. https://doi.org/10.3390/microorganisms10010081
Logan-Jackson AR, Rose JB. Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers. Microorganisms. 2022; 10(1):81. https://doi.org/10.3390/microorganisms10010081
Chicago/Turabian StyleLogan-Jackson, Alshae R., and Joan B. Rose. 2022. "Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers" Microorganisms 10, no. 1: 81. https://doi.org/10.3390/microorganisms10010081
APA StyleLogan-Jackson, A. R., & Rose, J. B. (2022). Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers. Microorganisms, 10(1), 81. https://doi.org/10.3390/microorganisms10010081