Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses and Cell Cultures
Envelope | Genome | Family | Genus | Virus | Strain | Reference |
---|---|---|---|---|---|---|
+ | ds-DNA | Herpesviridae | Varicellovirus | infectious bovine rhinotracheitis virus (IBRV) | Los Angeles | [21] |
pseudorabies virus (PrV) | MY-1 | [22] | ||||
canine herpesvirus 1 (CHV-1) | GCH-1 | [23] | ||||
equine herpesvirus 1 (EHV-1) | HH1 | [24] | ||||
- | ds-DNA | Adenoviridae | Atadenovirus | bovine adenovirus 7 (BAdV-7) | Fukuroi | [25] |
- | ss-DNA | Parvoviridae | Protoparvovirus | canine parvovirus 2 (CPV-2) | 97-008 | this study |
+ | ss-RNA | Paramyxoviridae | Respirovirus | bovine parainfluenza virus 3 (BPIV-3) | BN-1 | [26] |
Pneumovirus | bovine respiratory syncytial virus (BRSV) | rs-52 | [27] | |||
Morbillivirus | canine distemper virus (CDV) | KDK-1 | [28] | |||
Avulavirus | Newcastle disease virus (NDV) | Miyadera | [29] | |||
+ | ss-RNA | Rhabdoviridae | Vesiculovirus | vesicular stomatitis virus (VSV) | New Jersey | [30] |
+ | ss-RNA | Coronaviridae | Betacoronavirus | SARS-CoV-2 | JPN/TY/WK-521 | [31] |
bovine coronavirus (BCoV) | Kakegawa | [32] | ||||
+ | ss-RNA | Orthomyxoviridae | AlphaInfluenzavirus | swine influenza A virus (pdm09, H1N1) (SwIV) | A/swine/Ibaraki/46/ 2010 | [33] |
equine influenza A virus (H3N8) (EqIV) | A/Equine/Hayakita/ 1/2007 | this study | ||||
+ | ss-RNA | Flaviviridae | Pestivirus | bovine viral diarrhea virus I (BVDV-I) | Nose | [34] |
bovine viral diarrhea virus II (BVDV-II) | KZ-91CP | [35] | ||||
- | ss-RNA | Picornaviridae | Aphthovirus | foot-and-mouth disease virus (FMDV) | A/Vietnam/HSMD05/2003 | this study |
O/Vietnam/HSMD03/2005 | this study | |||||
Asia1/Vietnam/HSMD04/2005 | this study | |||||
bovine rhinitis B virus (BRBV) | EC11 | [36] | ||||
- | ss-RNA | Caliciviridae | Vesivirus | feline calicivirus (FCV) | F9 | [37] |
- | ds-RNA | Reoviridae | Rotavirus | bovine rotavirus (BRoV) | strain 22R (G6P [5]) | [38] |
Orthoreovirus | bulbul orthoreovirus (BuORV) | Pycno-1 | [39] |
2.2. Disinfectant
2.3. Disinfection Procedure
2.4. Viral Infectivity Assay
2.5. Influence of an Organic Substance on the Virucidal Effects of CAC-717
2.6. DNA and RNA Extraction
2.7. Direct Effect of CAC-717 on Viral Genomes
2.8. Real-Time PCR
2.9. Statistical Analysis
3. Results
3.1. Virucidal Activity of CAC-717
3.2. Influence of an Organic Substance on the Virucidal Effects of CAC-717
3.3. Effect of CAC-717 on the Viral Genome within the Virion
3.4. Direct Effect of CAC-717 on Viral Genomes
3.5. Virucidal Effect of CAC-717 after Long-Term Storage
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dvorak, G. Disinfection; Center for Food Security and Public Health, Iowa State University. 2008. Available online: http://www.cfsph.iastate.edu/Disinfection/Assets/Disinfection101.pdf (accessed on 8 December 2021).
- Yoo, J.H. Review of disinfection and sterilization—Back to the basics. Infect. Chemother. 2018, 50, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. Disinfection, sterilization, and antisepsis: An overview. Am. J. Infect. Control 2019, 47S, A3–A9. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A. APIC guideline for selection and use of disinfectants. 1994, 1995, and 1996 APIC Guidelines Committee. Association for Professionals in Infection Control and Epidemiology, Inc. Am. J. Infect. Control 1996, 24, 313–342. [Google Scholar] [CrossRef]
- Maillard, J.-Y.; Sattar, S.A.; Pinto, F. Chapter 9 virucidal activity of microbicides. In Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization, 5th ed.; Fraise, A.P., Maillard, J.-Y., Sattar, S.A., Eds.; Blackwell Publishing: Oxford, UK, 2013; pp. 178–207. [Google Scholar]
- Benton, W.J.; Cover, M.S.; Rosenberger, J.K.; Lake, R.S. Physicochemical properties of the infectious bursal agent (IBA). Avian Dis. 1967, 11, 438–445. [Google Scholar] [CrossRef]
- Otsuki, K.; Yamamoto, H.; Tsubokura, M. Studies on avian infectious bronchitis virus (IBV). I. Resistance of IBV to chemical and physical treatments. Arch. Virol. 1979, 60, 25–32. [Google Scholar] [CrossRef]
- Stegmann, T.; Booy, F.P.; Wilschut, J. Effects of low pH on influenza virus. Activation and inactivation of the membrane fusion capacity of the hemagglutinin. J. Biol. Chem. 1987, 262, 17744–17749. [Google Scholar] [CrossRef]
- Weed, D.J.; Pritchard, S.M.; Gonzalez, F.; Aguilar, H.C.; Nicola, A.V. Mildly acidic pH triggers an irreversible conformational change in the fusion domain of herpes simplex virus 1 glycoprotein B and inactivation of viral entry. J. Virol. 2017, 91, e02123-16. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.E. Antisepsis, Disinfection, and Sterilization, 2nd ed.; ASM Press: Washington, DC, USA, 2017; pp. 36–38. [Google Scholar]
- The World Organisation for Animal Health (OIE). Technical Disease Card: Foot and Mouth Disease. Available online: http://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/FOOT_AND_MOUTH_DISEASE.pdf (accessed on 15 December 2021).
- Nakashima, R.; Kawamoto, M.; Miyazaki, S.; Onishi, R.; Furusaki, K.; Osaki, M.; Kirisawa, R.; Sakudo, A.; Onodera, T. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses. J. Vet. Med. Sci. 2017, 79, 939–942. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T.; Nishimura, T.; Uwamono, Y.; Kosaki, K.; Frusaki, K.; Onishi, R.; Onodera, T.; Haritani, M.; Sugiura, K.; Kirisawa, R.; et al. Virucidal effect of the mesoscopic structure of CAC-717 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Microorganisms 2021, 9, 2096. [Google Scholar] [CrossRef]
- Shimakura, H.; Gen-Nagata, F.; Haritani, M.; Furusaki, K.; Kato, Y.; Yamashita-Kawanishi, N.; Le, D.T.; Tsuzuki, M.; Tohya, Y.; Kyuwa, S.; et al. Inactivation of human norovirus and its surrogate by the disinfectant consisting of calcium hydrogen carbonate mesoscopic crystals. FEMS Microbiol. Lett. 2019, 366, fnz235. [Google Scholar] [CrossRef]
- Sakudo, A.; Yamashiro, R.; Haritani, M.; Furusaki, K.; Onishi, R.; Onodera, T. Inactivation of non-enveloped viruses and bacteria by an electrically charged disinfectant containing meso-structure nanoparticles via modification of the genome. Int. J. Nanomed. 2020, 15, 1387–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirisawa, R.; Kawamoto, S.; Nagahata, H. Effects of disinfectant used in Japan on bovine rhinitis B virus and bovine adenovirus type 7 under mimic conditions of field usage. J. Jpn. Vet. Med. Assoc. 2012, 65, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Osiceanu, A.-M.; Murao, L.E.; Kollanur, D.; Swinnen, J.; De Vleeschauwer, A.R.; Lefebvre, D.J.; De Clercq, K.; Neyts, J.; Goris, N. In vitro surrogate models to aid in the development of antivirals for the containment of foot-and-mouth disease outbreaks. Antivir. Res. 2014, 105, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, H.A.; El-Banna, A.A.; Youssef, M.M.; Al-Sohaimy, S.A.; Goyal, S.M. Antiviral effects of Lactococcus lactis on feline calicivirus, a human norovirus surrogate. Food Environ. Virol. 2014, 6, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Kameo, Y.; Andoh, K.; Ohno, Y.; Mochizuki, M.; Maeda, K. Establishment of canine and feline cells expressing canine signaling lymphocyte activation molecule for canine distemper virus study. Vet. Microbiol. 2009, 133, 179–183. [Google Scholar] [CrossRef]
- Nao, N.; Sato, K.; Yamagishi, J.; Tahara, M.; Nakatsu, Y.; Seki, F.; Katoh, H.; Ohnuma, A.; Shirogane, Y.; Hayashi, M.; et al. Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS ONE 2019, 14, e0215822. [Google Scholar] [CrossRef] [Green Version]
- Madin, S.H.; York, C.J.; McKercher, D.G. Isolation of the infectious bovine rhinotracheitis virus. Science 1956, 124, 721–722. [Google Scholar] [CrossRef]
- Minamiguchi, K.; Kojima, S.; Sakumoto, K.; Kirisawa, R. Isolation and molecular characterization of a variant of Chinese gC-genotype II pseudorabies virus from a hunting dog infected by biting a wild boar in Japan and its pathogenicity in a mouse model. Virus Genes 2019, 55, 322–331. [Google Scholar] [CrossRef]
- Hashimoto, A.; Hirai, K.; Miyoshi, A.; Shimakura, S.; Yagami, K.; Kato, N.; Kunihiro, K.; Fujiura, A.; Kitazawa, K.; Okada, K.; et al. Naturally occurring canine herpesvirus infection in Japan. Jpn. J. Vet. Sci. 1978, 40, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, Y.; Tokui, T.; Nakano, K.; Kume, T.; Hiramune, T.; Murase, N. An outbreak of abortion due to equine rhinopneumonitis virus among mares in the Hidaka district, Hokkaido. I. Epizootiological survey and virus isolation. Bull. Natl. Inst. Anim. Health 1970, 61, 9–16. (In Japanese) [Google Scholar]
- Inaba, Y.; Tanaka, Y.; Sato, K.; Ito, H.; Ito, Y.; Omori, T.; Matumoto, M. Bovine adenovirus. II. A serotype, Fukuroi, recovered from Japanese cattle. Jpn. J. Microbiol. 1968, 12, 219–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, Y.; Omori, T.; Kono, M.; Matumoto, M. Parainfluenza 3 virus isolated from Japanese cattle. I. Isolation and identification. Jpn. J. Exp. Med. 1963, 33, 313–329. [Google Scholar] [PubMed]
- Kubota, M.; Fukuyama, S.; Kodama, K.; Sasaki, N. Establishment of an attenuated strain of bovine respiratory syncytial virus for live virus vaccine. Jpn. J. Vet. Sci. 1990, 52, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, M.; Hashimoto, M.; Hagiwara, S.; Yoshida, Y.; Ishiguro, S. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J. Clin. Microbiol. 1999, 37, 2936–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuda, M. Studies on Newcastle disease virus (Miyadera strain). J. Immunol. 1956, 77, 386–395. [Google Scholar] [PubMed]
- Cotton, W.E. Vesicular stomatitis. Vet. Med. 1927, 22, 169–175. [Google Scholar]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [Green Version]
- Akashi, H.; Inaba, Y.; Miura, Y.; Tokuhisa, S.; Sato, K.; Satoda, K. Properties of a coronavirus isolated from a cow with epizootic diarrhea. Vet. Microbiol. 1980, 5, 265–276. [Google Scholar] [CrossRef]
- Kirisawa, R.; Ogasawara, Y.; Yoshitake, H.; Koda, A.; Furuya, T. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan. J. Vet. Med. Sci. 2014, 76, 1457–1470. [Google Scholar] [CrossRef] [Green Version]
- Kodama, K.; Sasaki, N.; Fukuyama, S.; Izumida, A.; Ishii, F. Studies on cytopathogenic bovine viral diarrhea virus recovery, identification, and properties of the isolated virus. Bull. Nippon Vet. Zootech. Coll. 1974, 23, 51–60. [Google Scholar]
- Nagai, M.; Sato, M.; Nagano, H.; Pang, H.; Kong, X.; Murakami, T.; Ozawa, T.; Akashi, H. Nucleotide sequence homology to bovine viral diarrhea virus 2 (BVDV 2) in the 5’ untranslated region of BVDVs from cattle with mucosal disease or persistent infection in Japan. Vet. Microbiol. 1998, 60, 271–276. [Google Scholar] [CrossRef]
- Reed, S.E.; Tyrrell, D.A.; Betts, A.O.; Watt, R.G. Studies on a rhinovirus (EC11) derived from a calf. I. Isolation in calf tracheal organ cultures and characterization of the virus. J. Comp. Pathol. 1971, 81, 33–40. [Google Scholar] [CrossRef]
- Bittle, J.L.; York, C.J.; Newberne, J.W.; Martin, M. Serologic relationship of new feline cvtopathogenic viruses. Am. J. Vet. Res. 1960, 21, 547–550. [Google Scholar]
- Matsumura, T.; Itchoda, N.; Tsunemitsu, H. Production of immunogenic VP6 protein of bovine group A rotavirus in transgenic potato plants. Arch. Virol. 2002, 147, 1263–1270. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Ueda, H.; Kikuchi, N.; Kirisawa, R. Isolation and genomic characterization of a novel orthoreovirus from a brown-eared bulbul (Hypsipetes amaurotis) in Japan. J. Gen. Virol. 2015, 96, 1777–1786. [Google Scholar] [CrossRef]
- Sakudo, A.; Iwamaru, Y.; Furusaki, K.; Haritani, M.; Onishi, R.; Imamura, M.; Yokoyama, T.; Yoshikawa, Y.; Onodera, T. Inactivation of Scrapie prions by the electrically charged disinfectant CAC-717. Pathogens 2020, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Blakwell, J.H.; Chen, J.H.S. Effect of various germicidal chemicals on H.Ep.2 cell culture and herpes simplex virus. J. Assoc. Offic. Anal. Chem. 1970, 53, 1229–1236. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Schwebke, I.; Blümel, J.; Eggers, M.; Glebe, D.; Rapp, I.; Sauerbrei, A.; Steinmann, E.; Steinmann, J.; Willkommen, H.; et al. Guideline for testing chemical disinfectants regarding their virucidal activity within the field of human medicine: As of 1 December 2014. Prepared by the German Association for the Control of Virus Diseases (DVV) and the Robert Koch Institute (RKI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020, 63, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Miyaoka, Y.; Kabir, M.H.; Hasan, M.A.; Yamaguchi, M.; Shoham, D.; Murakami, H.; Takehara, K. Establishment and utilization of an evaluation system for virucidal activity of disinfectants against a coronavirus with apparent applicability to SARS-CoV-2. J. Vet. Med. Sci. 2021, 83, 48–52. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Rehenversuche. Arch. Exp. Pathol. Phamakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Appel, M.; Parrish, C.R. Canine parvovirus type 2. In Virus Infections of Carnivores; Appel, M.J., Ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1987; pp. 69–92. [Google Scholar]
- Garner, A.L. Pulsed electric field inactivation of microorganisms: From fundamental biophysics to synergistic treatments. Appl. Microbiol. Biotechnol. 2019, 103, 7917–7929. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.; Begley, R.; Harvey, A.R.; Hool, L.; Wallace, V.P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. R. Soc. Interface 2017, 14, 20170585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogomazova, A.N.; Vassina, E.M.; Goryachkovskaya, T.N.; Popik, V.M.; Sokolov, A.S.; Kolchanov, N.A.; Lagarkova, M.A.; Kiselev, S.L.; Peltek, S.E. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci. Rep. 2015, 5, 7749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemine, K.A.; Rodriguez, Y.Y.; McIntosh, M.T. Alkaline hydrolysis to remove potentially infectious viral RNA contaminants from DNA. Virol. J. 2016, 13, 88. [Google Scholar] [CrossRef] [Green Version]
- Marcén, M.; Cebrián, G.; Ruiz-Artiga, V.; Condón, S.; Mañas, P. Cellular events involved in E. coli cells inactivation by several agents for food preservation: A comparative study. Food Microbiol. 2019, 84, 103246. [Google Scholar] [CrossRef]
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.-J.; Rice, C.M. Flaviviridae. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 712–746. [Google Scholar]
- Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human coronaviruses: A review of virus-host interactions. Diseases 2016, 4, 26. [Google Scholar] [CrossRef]
- Ishihara, M.; Murakami, K.; Fukuda, K.; Nakamura, S.; Kuwabara, M.; Hattori, H.; Fujita, M.; Kiyosawa, T.; Yokoe, H. Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol. Sci. 2017, 22, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, I.; Kawata, H.; Nagao, T.; Imaohji, H.; Murakami, K.; Kino, Y.; Yamasaki, H.; Koyama, A.H.; Fujita, Y.; Goda, H.; et al. Antimicrobial activity and stability of weakly acidified chlorous acid water. Biocontrol. Sci. 2015, 20, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Kuwabara, M.; Takayama, T.; Hiruma, S.; Murakami, K.; Fujita, M.; Yokoe, H. Comparison of various disinfectants on bactericidal activity under organic matter contaminated environments. Biocontrol Sci. 2019, 24, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Goda, H.; Yamaoka, H.; Nakayama-Imaohji, H.; Kawata, H.; Horiuchi, I.; Fujita, Y.; Nagao, T.; Tada, A.; Terada, A.; Kuwahara, T. Microbicidal effects of weakly acidified chlorous acid water against feline calicivirus and Clostridium difficile spores under protein-rich conditions. PLoS ONE 2017, 12, e0176718. [Google Scholar] [CrossRef] [PubMed]
Viruses | Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
CAC-717 | CAC-717 + HEPES 1 | Tap Water | Maintenance Medium | ||||||
2 s | 10 s | 30 s | 1 min | 15 min | 30 min & 60 min | 60 min | 60 min | 60 min | |
Enveloped | |||||||||
Herpesviridae | |||||||||
IBRV | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 6.71 ± 0.13 | 6.71 ± 0.13 | 6.96 ± 0.13 |
PrV | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.83 ± 0.25 | 4.83 ± 0.00 | 4.96 ± 0.13 |
CHV-1 | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.33 ± 0.25 | 2.96 ± 0.13 | 3.71 ± 0.13 |
EHV-1 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.83 ± 0.25 | 4.96 ± 0.13 | 4.96 ± 0.13 |
Non-enveloped | |||||||||
Adenoviridae | |||||||||
BAdV-7 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 6.46 ± 0.13 | 6.33 ± 0.25 | 6.21 ± 0.13 |
Parvoviridae | |||||||||
CPV-2 | 2.96 ± 0.13 | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.71 ± 0.13 | 3.46 ± 0.13 | 3.58 ± 0.00 |
Viruses | Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
CAC-717 | CAC-717 + HEPES 1 | Tap Water | Maintenance Medium | ||||||
2 s | 10 s | 30 s | 1 min | 15 min | 30 min and 60 min | 60 min | 60 min | 60 min | |
Enveloped | |||||||||
Paramyxoviridae | |||||||||
BPIV-3 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 6.21 ± 0.38 | 6.33 ± 0.25 | 6.58 ± 0.00 |
BRSV | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.58 ± 0.00 | 3.58 ± 0.00 | 3.83 ± 0.00 |
CDV | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.58 ± 0.25 | 3.46 ± 0.13 | 3.58 ± 0.00 |
NDV | 4.21 ± 0.13 | 4.08 ± 0.00 | 3.71 ± 0.13 | 3.46 ± 0.13 | 2.08 ± 0.00 ** | ≤0.58 * | 5.71 ± 0.13 | 5.33 ± 0.25 | 5.46 ± 0.13 |
Rhabdoviridae | |||||||||
VSV | 6.08 ± 0.00 | 6.25 ± 0.25 | 6.08 ± 0.00 | 5.46 ± 0.13 | 2.08 ± 0.25 * | ≤0.58 * | 6.33 ± 0.00 | 5.33 ± 0.00 | 6.08 ± 0.25 |
Coronaviridae | |||||||||
SARS-CoV-2 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.46 ± 0.13 | 4.46 ± 0.13 | 4.58 ± 0.00 |
BCoV | ≤0.58 * | ≤0.5 *8 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 5.08 ± 0.00 | 5.33 ± 0.25 | 5.33 ± 0.00 |
Orthomyxoviridae | |||||||||
SwIV (H1N1) | 2.83 ± 0.25 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.83 ± 0.25 | 5.08 ± 0.25 | 5.21 ± 0.13 |
EqIV (H3N8) | 3.08 ± 0.00 | 1.46 ± 0.13 | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.33 ± 0.00 | 3.21 ± 0.13 | 3.83 ± 0.00 |
Flaviviridae | |||||||||
BVDV-I | 4.58 ± 0.00 | 4.08 ± 0.00 | 3.83 ± 0.00 | 3.83 ± 0.25 | 1.96 ± 0.13 | ≤0.58 * | 4.21 ± 0.13 | 4.33 ± 0.00 | 4.71 ± 0.13 |
BVDV-II | 4.58 ± 0.00 | 4.33 ± 0.00 | 4.46 ± 0.13 | 4.71 ± 0.13 | 2.46 ± 0.13 | ≤0.58 * | 4.96 ± 0.13 | 4.71 ± 0.13 | 4.71 ± 0.13 |
Non-enveloped | |||||||||
Picornaviridae | |||||||||
FMDV type A | ≤0.5 *,2 | 5.00 ± 0.13 | 5.38 ± 0.13 | ||||||
type O | ≤0.5 **,2 | 4.25± 0.00 | 4.00 ± 0.00 | ||||||
type Asia 1 | ≤0.5 *,2 | 4.00± 0.00 | 4.63 ± 0.13 | ||||||
BRBV | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.21 ± 0.13 | 4.21 ± 0.13 | 4.71 ± 0.13 |
Caliciviridae | |||||||||
FCV | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 7.08 ± 0.25 | 6.33 ± 0.00 | 6.58 ± 0.00 |
Reoviridae | |||||||||
BRoV | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 4.83 ± 0.00 | 4.58 ± 0.00 | 4.96 ± 0.13 |
BuORV | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | ≤0.58 ** | 3.83 ± 0.00 | 3.71 ± 0.13 | 3.96 ± 0.13 |
Viruses | FBS Concentration (%) in CAC-717 | CAC-717 + HEPES 1 | DW | Maintenance Medium | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 20 | 30 | 40 | 50 | ||||
IBRV pH | 12.4 | 12.3 | 12.2 | 12.0 | 11.7 | 11.3 | 10.9 | 7.3 | 5.9 | 7.5 |
viral titer 2 | ≤0.58 * | ≤0.58 * | ≤0.58 * | 2.21 * ± 0.13 | 6.58 ± 0.25 | 6.33 ± 0.00 | 6.83 ± 0.00 | 7.08 ± 0.25 | 7.08 ± 0.25 | 6.96 ± 0.13 |
BAdV-7 pH | 12.3 | 12.2 | 12.1 | 11.8 | 11.4 | 11.0 | 10.5 | 7.3 | 5.8 | 7.5 |
viral titer | ≤0.58 * | ≤0.58 * | 2.46 ** ± 0.13 | 5.83 ± 0.25 | 6.96 ± 0.13 | 6.33 ± 0.25 | 6.46 ± 0.13 | 6.46 ± 0.13 | 6.46 ± 0.38 | 6.21 ± 0.13 |
Genome | Envelope | Family | Viruses | Solution | |
---|---|---|---|---|---|
CAC-717 | DW | ||||
DNA | + | Herpesviridae | PrV | 68.8 ± 3.5 1 | 121.4 ± 7.2 |
CHV-1 | 82.4 ± 2.8 | 96.6 ± 5.0 | |||
IBRV | 35.8 ± 4.6 | 91.4 ± 7.5 | |||
EHV-1 | 8.7 ± 0.4 | 106.8 ±0.9 | |||
− | Parvoviridae | CPV-2 | 131.0 ± 12.5 | 79.6 ± 2.1 | |
Adenoviridae | BAdV-7 | 70.2 ± 5.6 | 93.4 ± 2.0 | ||
RNA | + | Paramyxoviridae | BPIV-3 | 3.0 ± 0.3 | 90.6± 2.1 |
BRSV | 0.0 ± 0.0 | 114.6 ± 3.4 | |||
CDV | 0.0 ± 0.0 | 102.5 ± 1.2 | |||
NDV | 2.9 ± 0.1 | 119.4 ± 5.4 | |||
Rhabdoviridae | VSV | 0.0 ± 0.0 | 105.1 ± 9.9 | ||
Coronaviridae | SARS-CoV-2 | 88.5 ± 0.8 | 108.7 ± 0.7 | ||
BCoV | 2.4 ± 0.3 | 97.4 ± 4.7 | |||
Flaviviridae | BVDV-I | 68.4 ± 2.9 | 109.6 ± 11.8 | ||
BVDV-II | 22.0 ± 1.6 | 100.4 ± 2.5 | |||
Orthomyxoviridae | SwIV (H1N1) | 6.6 ± 0.1 | 107.2 ± 0.8 | ||
EqIV (H3N8) | 0.3 ± 0.0 | 40.3 ± 0.4 | |||
− | Picornaviridae | BRBV | 0.6 ± 0.1 | 75.0 ± 2.4 | |
Caliciviridae | FCV | 0.0 ± 0.0 | 82.0± 1.3 | ||
Reoviridae | BRoV | 0.0 ± 0.0 | 137.1 ± 3.3 | ||
BuORV | 0.1 ± 0.0 | 134.1 ± 3.1 |
Viral Genomes | CAC-717 |
---|---|
PrV DNA | 0.07 ± 0.01 1 |
CPV-2 DNA | 0.06 ± 0.01 |
BVDV-I RNA | 0.03 ± 0.00 |
BVDV-II RNA | 0.00 ± 0.00 |
Lot no. (Date of Storage) | Storage Period (Years Months) | Initial pH Value | pH Value after Storage | Log10 TCID50/25 μL (Mean ± SE) | |||||
---|---|---|---|---|---|---|---|---|---|
CAC-717 | CAC-717 + HEPES 1 | Maintenance Medium | |||||||
2 s | 10 s | 30 s | 1 min | 1 min | 1 min | ||||
A (7 January 2015) | 6 y 4 m | 12.4 | 12.4 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 7.21 ± 0.13 | 7.08 ± 0.25 |
B (17 October 2016) | 4 y 7 m | 12.4 | 12.4 | ≤0.58 * | ≤0.58 * | ≤0.58 * | ≤0.58 * | 6.96 ± 0.13 | 6.71 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirisawa, R.; Kato, R.; Furusaki, K.; Onodera, T. Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant. Microorganisms 2022, 10, 262. https://doi.org/10.3390/microorganisms10020262
Kirisawa R, Kato R, Furusaki K, Onodera T. Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant. Microorganisms. 2022; 10(2):262. https://doi.org/10.3390/microorganisms10020262
Chicago/Turabian StyleKirisawa, Rikio, Rika Kato, Koichi Furusaki, and Takashi Onodera. 2022. "Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant" Microorganisms 10, no. 2: 262. https://doi.org/10.3390/microorganisms10020262
APA StyleKirisawa, R., Kato, R., Furusaki, K., & Onodera, T. (2022). Universal Virucidal Activity of Calcium Bicarbonate Mesoscopic Crystals That Provides an Effective and Biosafe Disinfectant. Microorganisms, 10(2), 262. https://doi.org/10.3390/microorganisms10020262