Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize
Abstract
:1. Introduction
2. Results
2.1. Inoculum Survival
2.2. Effects of Inoculum Level on Maize Development
2.3. Effects of Inoculum Level on Numbers of nifH, acdS and phlD Rhizobacteria
2.4. Effects of Inoculum Level on nifH and acdS Diversity of Maize Rhizosphere
2.5. Effects of Inoculum Level on the Genus Composition of the nifH and acdS Groups within the Maize Rhizosphere
2.6. Effects of Inoculum Level on the Total Bacterial Diversity of Maize Rhizosphere
3. Discussion
4. Materials and Methods
4.1. PGPR Strain and Inoculum Preparation
4.2. Field Trials and Treatments
4.3. Sampling of Maize
4.4. Plant Growth Monitoring
4.5. Quantitative PCR Analysis of Microbial Functional Groups
4.6. Metabarcoding of rrs (Bacterial Community), nifH (Diazotrophs) and acdS (ACC Deaminase Producers)
4.7. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Date, R.A. Advances in inoculant technology: A brief review. Aust. J. Exp. Agric. 2001, 41, 321–325. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Bruto, M.; Prigent-Combaret, C.; Luis, P.; Hoff, G.; Moënne-Loccoz, Y.; Muller, D. Horizontal Acquisition of Prokaryotic Genes for Eukaryote Functioning and Niche Adaptation. In Evolutionary Biology: Exobiology and Evolutionary Mechanisms; Pontarotti, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 165–179. [Google Scholar]
- Karadeniz, A.; Topcuoğlu, Ş.; Inan, S. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 2006, 22, 1061–1064. [Google Scholar] [CrossRef]
- Richardson, A.; Baréa, J.; McNeill, A.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [Green Version]
- Vacheron, J.; Desbrosses, G.; Bouffaud, M.-L.; Touraine, B.; Moënne-Loccoz, Y.; Muller, D.; Legendre, L.; Wisniewski-Dyé, F.; Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013, 4, 356. [Google Scholar] [CrossRef] [Green Version]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Okon, Y.; Labandera-Gonzalez, C.A. Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 1994, 26, 1591–1601. [Google Scholar] [CrossRef]
- Cassán, F.; Diaz-Zorita, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Nephali, L.; Moodley, V.; Piater, L.; Steenkamp, P.; Buthelezi, N.; Dubery, I.; Burgess, K.; Huyser, J.; Tugizimana, F. A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions. Front. Plant Sci. 2021, 12, 977. [Google Scholar] [CrossRef]
- Castro-Sowinski, S.; Herschkovitz, Y.; Okon, Y.; Jurkevitch, E. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 2007, 276, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhardson, B. Biological substitutes for pesticides. Trends Biotechnol. 2002, 20, 338–343. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Cesarz, S.; Koller, R.; Worm, K.; Reich, P.B. Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Chang. Biol. 2012, 18, 435–447. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; et al. An integrated approach to maintaining cereal productivity under climate change. Glob. Food Secur. 2016, 8, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Viveros, O.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Veresoglou, S.D.; Menexes, G. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: A meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 2010, 337, 469–480. [Google Scholar] [CrossRef]
- Souza, R.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Rozier, C.; Hamzaoui, J.; Lemoine, D.; Czarnes, S.; Legendre, L. Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Sci. Rep. 2017, 7, 7416. [Google Scholar] [CrossRef] [Green Version]
- Renoud, S.; Vacheron, J.; Abrouk, D.; Prigent-Combaret, C.; Legendre, L.; Muller, D.; Moënne-Loccoz, Y. Field site-specific effects of an Azospirillum seed inoculant on key microbial functional groups in the rhizosphere. Front. Microbiol. 2022, 12, 760512. [Google Scholar] [CrossRef]
- Nakkeeran, S.; Fernando, W.G.D.; Siddiqui, Z.A. Plant Growth Promoting Rhizobacteria Formulations and its Scope in Commercialization for the Management of Pests and Diseases. In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, The Netherlands, 2005; Volume 1, pp. 257–296. [Google Scholar]
- Bashan, Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 1998, 16, 729–770. [Google Scholar] [CrossRef]
- Bashan, Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol. Biochem. 1986, 18, 297–301. [Google Scholar] [CrossRef]
- Catroux, G.; Hartmann, A.; Revellin, C. Trends in rhizobial inoculant production and use. Plant Soil 2001, 230, 21–30. [Google Scholar] [CrossRef]
- Hume, D.J.; Blair, D.H. Effect of numbers of Bradyrhizobium japonicum applied in commercial inoculants on soybean seed yield in Ontario. Can. J. Microbiol. 1992, 38, 588–593. [Google Scholar] [CrossRef]
- Pillay, V.K.; Nowak, J. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol. 1997, 43, 354–361. [Google Scholar] [CrossRef]
- Bai, Y.; Pan, B.; Charles, T.C.; Smith, D.L. Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biol. Biochem. 2002, 34, 1953–1957. [Google Scholar] [CrossRef]
- Jacoud, C.; Job, D.; Wadoux, P.; Bally, R. Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Can. J. Microbiol. 1999, 45, 339–342. [Google Scholar] [CrossRef]
- El Zemrany, H.; Cortet, J.; Peter Lutz, M.; Chabert, A.; Baudoin, E.; Haurat, J.; Maughan, N.; Félix, D.; Défago, G.; Bally, R.; et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol. Biochem. 2006, 38, 1712–1726. [Google Scholar] [CrossRef]
- Florio, A.; Pommier, T.; Gervaix, J.; Bérard, A.; Le Roux, X. Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities. Sci. Rep. 2017, 7, 8411. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, E.; Nazaret, S.; Mougel, C.; Ranjard, L.; Moënne-Loccoz, Y. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol. Biochem. 2009, 41, 409–413. [Google Scholar] [CrossRef]
- Brazelton, J.N.; Pfeufer, E.E.; Sweat, T.A.; McSpadden Gardener, B.B.; Coenen, C. 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant-Microbe Interact. 2008, 21, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couillerot, O.; Bouffaud, M.-L.; Baudoin, E.; Muller, D.; Caballero-Mellado, J.; Moënne-Loccoz, Y. Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol. Biochem. 2010, 42, 2298–2305. [Google Scholar] [CrossRef]
- Jacoud, C.; Faure, D.; Wadoux, P.; Bally, R. Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiol. Ecol. 1998, 27, 43–51. [Google Scholar] [CrossRef]
- Rozier, C.; Gerin, F.; Czarnes, S.; Legendre, L. Biopriming of maize germination by the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. J. Plant Physiol. 2019, 237, 111–119. [Google Scholar] [CrossRef]
- El Zemrany, H.; Czarnes, S.; Hallett, P.D.; Alamercery, S.; Bally, R.; Jocteur Monrozier, L. Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 2007, 291, 109–118. [Google Scholar] [CrossRef]
- Walker, V.; Bertrand, C.; Bellvert, F.; Moënne-Loccoz, Y.; Bally, R.; Comte, G. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol. 2011, 189, 494–506. [Google Scholar] [CrossRef]
- Walker, V.; Couillerot, O.; Von Felten, A.; Bellvert, F.; Jansa, J.; Maurhofer, M.; Bally, R.; Moënne-Loccoz, Y.; Comte, G. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 2012, 356, 151–163. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Erkomaa, K.; Kukkonen, S.; Vestberg, M.; Wallenius, K.; Niemi, R.M. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant Soil 2004, 264, 273–286. [Google Scholar] [CrossRef]
- Rice, J.A.; MacCarthy, P. Statistical evaluation of the elemental composition of humic substances. Org. Geochem. 1991, 17, 635–648. [Google Scholar] [CrossRef]
- Klavins, M.; Purmalis, O. Properties and structure of raised bog peat humic acids. J. Mol. Struct. 2013, 1050, 103–113. [Google Scholar] [CrossRef]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruto, M.; Prigent-Combaret, C.; Muller, D.; Moënne-Loccoz, Y. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci. Rep. 2014, 4, 6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renoud, S.; Bouffaud, M.L.; Dubost, A.; Prigent-Combaret, C.; Legendre, L.; Moënne-Loccoz, Y.; Muller, D. Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiol. Ecol. 2020, 96, fiaa062. [Google Scholar] [CrossRef] [PubMed]
- Orr, C.H.; James, A.; Leifert, C.; Cooper, J.M.; Cummings, S.P. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl. Environ. Microbiol. 2011, 77, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, Y.K.; Paungfoo-Lonhienne, C.; Dennis, P.G.; Robinson, N.; Ragan, M.A.; Schmidt, S.; Hugenholtz, P. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ. Microbiol. 2016, 18, 1338–1351. [Google Scholar] [CrossRef]
- Mendes, L.W.; Kuramae, E.E.; Navarrete, A.A.; van Veen, J.A.; Tsai, S.M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 2014, 8, 1577–1587. [Google Scholar] [CrossRef]
- Köberl, M.; Erlacher, A.; Ramadan, E.M.; El-Arabi, T.F.; Müller, H.; Bragina, A.; Berg, G. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol. Ecol. 2015, 92, fiv166. [Google Scholar] [CrossRef]
- Bouffaud, M.-L.; Renoud, S.; Dubost, A.; Moënne-Loccoz, Y.; Muller, D. 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 2018, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Amos, B.; Walters, D.T. Maize root biomass and net rhizodeposited carbon. Soil Sci. Soc. Am. J. 2006, 70, 1489–1503. [Google Scholar] [CrossRef]
- Murphy, M.T.; Moore, T.R. Linking root production to aboveground plant characteristics and water table in a temperate bog. Plant Soil 2010, 336, 219–231. [Google Scholar] [CrossRef]
- Aulakh, M.; Wassmann, R.; Bueno, C.; Kreuzwieser, J.; Rennenberg, H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001, 3, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Fages, J.; Mulard, D. Isolement de bactéries rhizosphériques et effet de leur inoculation en pots chez Zea mays. Agronomie 1988, 8, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, E.A. Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 1982, 44, 990–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-W.; Crowley, D.E. Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE. Biotechniques 2005, 38, 579–586. [Google Scholar] [CrossRef]
- Poly, F.; Jocteur Monrozier, L.; Bally, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 2001, 152, 95–103. [Google Scholar] [CrossRef]
- Bouffaud, M.-L.; Renoud, S.; Moënne-Loccoz, Y.; Muller, D. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? Sci. Rep. 2016, 6, 21690. [Google Scholar] [CrossRef]
- Almario, J.; Moënne-Loccoz, Y.; Muller, D. Monitoring of the relation between 2,4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils. Soil Biol. Biochem. 2013, 57, 144–155. [Google Scholar] [CrossRef]
- Couillerot, O.; Ramírez-Trujillo, A.; Walker, V.; von Felten, A.; Jansa, J.; Maurhofer, M.; Défago, G.; Prigent-Combaret, C.; Comte, G.; Caballero-Mellado, J.; et al. Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl. Microbiol. Biotechnol. 2013, 97, 4639–4649. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Qian, P.-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 2016, 17, 135. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA genedatabase and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Dolédec, S.; Chessel, D. Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: Description d’un plan d’observations complet par projection de variables. Acta Oecol. Oecol. Gen. 1987, 8, 403–426. [Google Scholar]
- Thioulouse, J.; Prin, Y.; Duponnois, R. Multivariate analyses in soil microbial ecology: A new paradigm. Environ. Ecol. Stat. 2012, 19, 499–520. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
Site L | Site FC | Site C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Parameters | Control | Inoculated | Control | Inoculated | Control | Inoculated | ||||||
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | |
Shoot biomass (g plant−1) | 0.34 ± 0.07 (b) | 0.34 ± 0.07 (b) | 0.43 ± 0.11 (a) | 0.44 ± 0.1 (a) | 0.52 ± 0.14 (bc) | 0.50 ± 0.12 (c) | 0.59 ± 0.17 (ab) | 0.63 ± 0.15 (a) | 0.34 ± 0.08 (b) | 0.33 ± 0.07 (b) | 0.39 ± 0.07 (a) | 0.41 ± 0.08 (a) |
Leaf length (cm plant−1) | 13.1 ± 1.6 (b) | 13.8 ± 1.6 (b) | 14.0 ± 1.9 (b) | 15.2 ± 1.7 (a) | 20.7 ± 1.7 (a) | 18.8 ± 1.9 (b) | 19.8 ± 2.1 (ab) | 20.6 ± 2.1 (a) | 17.9 ± 2.4 (ab) | 16.8 ± 1.7 (b) | 17.2 ± 1.8 (ab) | 18.3 ± 2.3 (a) |
Leaf width (cm plant−1) | 1.53 ± 0.15 (b) | 1.61 ± 0.13 (ab) | 1.68 ± 0.12 (a) | 1.59 ± 0.17 (b) | 1.61 ± 0.11 (a) | 1.59 ± 0.12 (a) | 1.64 ± 0.14 (a) | 1.65 ± 0.14 (a) | 1.71 ± 0.13 (a) | 1.57 ± 0.11 (b) | 1.71 ± 0.17 (a) | 1.76 ± 0.14 (a) |
Stem diameter (mm) | 6.87 ± 0.73 (b) | 6.95 ± 0.72 (b) | 7.63 ± 0.78 (a) | 7.82 ± 0.89 (a) | 7.74 ± 1.07 (b) | 7.55 ± 1.07 (b) | 8.04 ± 0.99 (ab) | 8.48 ± 0.94 (a) | 7.24 ± 0.60 (ab) | 6.83 ± 0.81 (b) | 7.06 ± 0.84 (ab) | 7.52 ± 0.79 (a) |
Root biomass (g plant−1) | 0.20 ± 0.05 (b) | 0.23 ± 0.05 (ab) | 0.24 ± 0.05 (a) | 0.23 ± 0.05 (ab) | 0.28 ± 0.05 (a) | 0.26 ± 0.04 (ab) | 0.23 ± 0.05 (b) | 0.24 ± 0.05 (b) | 0.27 ± 0.05 (a) | 0.24 ± 0.06 (a) | 0.25 ± 0.05 (a) | 0.25 ± 0.05 (a) |
Total root length (cm plant−1) | 212 ± 60 (b) | 225 ± 56 (b) | 302 ± 86 (a) | 330 ± 107 (a) | 418 ± 109 (b) | 498 ± 90 (a) | 441 ± 90 (ab) | 461 ± 65 (ab) | 323 ± 86 (a) | 280 ± 66 (a) | 321 ± 61 (a) | 278 ± 68 (a) |
Total root surfaces (cm2 plant−1) | 52 ± 12 (b) | 58 ± 13 (b) | 73 ± 20 (a) | 72 ± 16 (a) | 115 ± 29 (a) | 124 ± 20 (a) | 116 ± 28 (a) | 121 ± 22 (a) | 90 ± 24 (a) | 79 ± 21 (ab) | 82 ± 17 (ab) | 71 ± 19 (b) |
Average root diameter (mm) | 0.79 ± 0.13 (a) | 0.83 ± 0.10 (a) | 0.78 ± 0.10 (ab) | 0.71 ± 0.10 (b) | 0.88 ± 0.08 (a) | 0.80 ± 0.08 (b) | 0.83 ± 0.08 (ab) | 0.83 ± 0.07 (ab) | 0.89 ± 0.07 (a) | 0.89 ± 0.09 (a) | 0.81 ± 0.08 (b) | 0.81 ± 0.09 (b) |
Number of roots | 413 ± 120 (c) | 793 ± 373 (b) | 789 ± 469 (b) | 2057 ± 1192 (a) | 569 ± 87 (b) | 595 ± 141 (b) | 671 ± 250 (ab) | 768 ± 273 (a) | 804 ± 536 (a) | 498 ± 213 (ab) | 497 ± 139 (a) | 390 ± 122 (b) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renoud, S.; Abrouk, D.; Prigent-Combaret, C.; Wisniewski-Dyé, F.; Legendre, L.; Moënne-Loccoz, Y.; Muller, D. Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms 2022, 10, 325. https://doi.org/10.3390/microorganisms10020325
Renoud S, Abrouk D, Prigent-Combaret C, Wisniewski-Dyé F, Legendre L, Moënne-Loccoz Y, Muller D. Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms. 2022; 10(2):325. https://doi.org/10.3390/microorganisms10020325
Chicago/Turabian StyleRenoud, Sébastien, Danis Abrouk, Claire Prigent-Combaret, Florence Wisniewski-Dyé, Laurent Legendre, Yvan Moënne-Loccoz, and Daniel Muller. 2022. "Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize" Microorganisms 10, no. 2: 325. https://doi.org/10.3390/microorganisms10020325
APA StyleRenoud, S., Abrouk, D., Prigent-Combaret, C., Wisniewski-Dyé, F., Legendre, L., Moënne-Loccoz, Y., & Muller, D. (2022). Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms, 10(2), 325. https://doi.org/10.3390/microorganisms10020325