Human Breast Milk: A Source of Potential Probiotic Candidates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacteria from Breast Milk
2.2. Identification of Isolates
2.3. Microbial Strains
2.4. Hydrophobicity
2.5. Auto-Aggregation Assay
2.6. Adhesion to Differentiated Caco-2 Cells
2.7. Antibiotic Susceptibility
2.8. Antagonistic Activity against Spoilage and Pathogenic Species
2.9. Inhibition of Development of Intestinal Pathogens Biofilms
2.10. Fermentation Kinetics in Milk and Viability at Refrigerated Storage
2.11. Analysis of Volatile Molecule Profiles in Fermented Milk
2.12. Strain Survival under Simulated GIT Conditions in Milk
2.13. Statistical Analysis
3. Results and Discussion
3.1. Hydrophobicity and Auto-Aggregation
3.2. Adhesion of Breast Milk Strains to Intestinal Cells
3.3. Antibiotic Susceptibility
3.4. Antagonistic Activity against Spoilage and Pathogenic Species of Food Interest
3.5. Antagonistic Activity against Intestinal Pathogenic Species
3.6. Fermentation Kinetics in Pasteurized Milk and Viability at Refrigerated Storage
3.7. Volatile Molecules Profiles of Inoculated Pasteurized Milks
3.8. Strain Survival under Simulated GIT Conditions in Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zacarías, M.F.; Vinderola, G. Safety, functional properties and technological performance in whey-based media of probiotic candidates from human breast milk. Int. Microbiol. 2019, 22, 265–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, T.; Lacroix, C.; Braegger, C.P.; Rochat, F.; Chassard, C. Vertical mother—Neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014, 16, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Quercia, S.; Aceti, A.; Beghetti, I.; Rampelli, S.; Turroni, S.; Faldella, G.; Candela, M.; Brigidi, P.; Corvaglia, L. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front. Microbiol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains Bacterial Strains and Growth Conditions. Front. Nutr. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Cabrera-rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Jeurink, P.V.; van Bergenhenegouwen, J.; Jiménez, E.; Knippels, L.M.; Fernández, L.; Garssen, J.; Knol, J.; Rodríguez, J.M.; Martín, R. Human milk: A source of more life than we imagine. Benef. Microbes 2013, 4, 17–30. [Google Scholar] [CrossRef]
- Zacarías, M.F.; Binetti, A.; Laco, M.; Reinheimer, J.; Vinderola, G. Preliminary technological and potential probiotic characterisation of bi fi dobacteria isolated from breast milk for use in dairy products. Int. Dairy J. 2011, 21, 548–555. [Google Scholar] [CrossRef]
- Giordani, B.; Maria, L.; Parolin, C.; Foschi, C.; Marangoni, A.; Abruzzo, A.; Dalena, F.; Cerchiara, T.; Bigucci, F.; Luppi, B.; et al. Vaginal Bi fi dobacterium breve for preventing urogenital infections: Development of delayed release mucoadhesive oral tablets. Int. J. Pharm. 2018, 550, 455–462. [Google Scholar] [CrossRef]
- D’alessandro, M.; Parolin, C.; Bukvicki, D.; Siroli, L.; Vitali, B.; De Angelis, M.; Lanciotti, R.; Patrignani, F. Probiotic and metabolic characterization of vaginal lactobacilli for a potential use in functional foods. Microorganisms 2021, 9, 883. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Reinheimer, J.A. Lactic acid starter and probiotic bacteria: A comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res. Int. 2003, 36, 895–904. [Google Scholar] [CrossRef]
- Del Re, B.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000, 31, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Mathara, J.M.; Schillinger, U.; Guigas, C.; Franz, C.; Kutima, P.M.; Mbugua, S.K.; Shin, H.K.; Holzapfel, W.H. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 2008, 126, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lucke, F.; Schillinger, U. Antibacterial Activity of Lactobacillus sake Isolated from Meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Giordani, B.; Costantini, P.E.; Fedi, S.; Cappelletti, M.; Abruzzo, A.; Parolin, C.; Foschi, C.; Frisco, G.; Calonghi, N.; Cerchiara, T.; et al. Liposomes containing biosurfactants isolated from Lactobacillus gasseri exert antibiofilm activity against methicillin resistant Staphylococcus aureus strains. Eur. J. Pharm. Biopharm. 2019, 139, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.G.; Patrignani, F.; Tabanelli, G.; Vinderola, G.C.; Siroli, L.; Reinheimer, J.A.; Gardini, F.; Lanciotti, R. Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. J. Funct. Foods 2015, 13, 126–136. [Google Scholar] [CrossRef]
- Vinderola, G.; Céspedes, M.; Mateolli, D.; Cárdenas, P.; Lescano, M.; Aimaretti, N.; Reinheimer, J. Changes in gastric resistance of Lactobacillus casei in flavoured commercial fermented milks during refrigerated storage. Int. J. Dairy Technol. 2011, 64, 269–275. [Google Scholar] [CrossRef]
- Schillinger, U.; Guigas, C.; Holzapfel, W.H. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int. Dairy J. 2005, 15, 1289–1297. [Google Scholar] [CrossRef]
- Tabanelli, G.; Patrignani, F.; Vinderola, G.; Reinheimer, J.A.; Gardini, F.; Lanciotti, R. Effect of sub-lethal high pressure homogenization treatments on the invitro functional and biological properties of lactic acid bacteria. LWT Food Sci. Technol. 2013, 53, 580–586. [Google Scholar] [CrossRef]
- Abdulla, A. Adhesion, Autoaggregation and Hydrophobicity of Six Lactobacillus Strains. Br. Microbiol. Res. J. 2014, 4, 381–391. [Google Scholar] [CrossRef]
- Boris, S.; Suárez, J.E.; Vázquez, F.; Barbés, C. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect. Immun. 1998, 66, 1985–1989. [Google Scholar] [CrossRef] [Green Version]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiol. Mol. Biol. Rev. 2008, 72, 728–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedajo, B. Lactic Acid Bacteria: Benefits, Selection Criteria and Probiotic Potential in Fermented Food. J. Probiotics Health 2015, 3, 1–9. [Google Scholar] [CrossRef]
- Ammor, M.S.; Flórez, A.B.; Mayo, B. ARTICLE IN PRESS FOOD Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef]
- Gueimonde, M.; Sánchez, B.; de Los Reyes-Gavilán, C.G.; Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013, 4, 202. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria—A review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Shah, S. Vancomycin susceptibility as an aid to the identification of lactobacilli. Lett. Appl. Microbiol. 1998, 393, 153–154. [Google Scholar] [CrossRef]
- Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 1–11. [Google Scholar] [CrossRef]
- Temmerman, R.; Pot, B.; Huys, G.; Swings, J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 2003, 81, 1–10. [Google Scholar] [CrossRef]
- Delgado, S.; Flórez, A.B.; Mayo, B. Antibiotic Susceptibility of Lactobacillus and Bifidobacterium Species from the Human Gastrointestinal Tract. Curr. Microbiol. 2005, 50, 202–207. [Google Scholar] [CrossRef]
- Masco, L.; Van Hoorde, K.; De Brandt, E.; Swings, J.; Huys, G. Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J. Antimicrob. Chemother. 2006, 58, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.M.; Tornadijo, M.E.; Fresno, J.M.; Sandoval, H. Biocheese: A Food Probiotic Carrier. BioMed Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Lanciotti, R. Applications of high and ultra high pressure homogenization for food safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Parolin, C.; Palomino, R.A.N.; Vitali, B.; Lanciotti, R. Determination of antibacterial and technological properties of vaginal lactobacilli for their potential application in dairy products. Front. Microbiol. 2017, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Varalakshmi, S.; Balasubramanyam, B.V.; Surendranath, B.; Bagath, M.; Rajendran, D. Use of Novel Lactic Acid Bacterial Strains with Antagonistic Activity for the Preparation of Safe Indigenous Fermented Dairy Foods (Dahi and Raita). J. Food Saf. 2014, 34, 26–33. [Google Scholar] [CrossRef]
- Poppi, L.B.; Rivaldi, J.D.; Coutinho, T.S.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P.; Mancilha, I.M. Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157: H7 enhances the role of organic acids production as a factor for pathogen control. Pesqui. Vet. Bras. 2015, 35, 353–359. [Google Scholar] [CrossRef]
- Diez-Gonzalez, F.; Russell, J.B. Factors affecting the extreme acid resistance of Escherichia coli O157: H7. Food Microbiol. 1999, 16, 367–374. [Google Scholar] [CrossRef]
- Patrignani, F.; Serrazanetti, D.I.; Mathara, J.M.; Siroli, L.; Gardini, F.; Holzapfel, W.H.; Lanciotti, R. Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containing Lactobacillus rhamnosus BFE 5264. Int. J. Dairy Technol. 2016, 69, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Patrignani, F.; Iucci, L.; Lanciotti, R.; Vallicelli, M.; Mathara, J.M.; Holzapfel, W.H.; Guerzoni, M.E. Effect of high-pressure homogenization, nonfat milk solids, and milkfat on the technological performance of a functional strain for the production of probiotic fermented milks. J. Dairy Sci. 2007, 90, 4513–4523. [Google Scholar] [CrossRef]
- Cruciata, M.; Sannino, C.; Ercolini, D.; Scatassa, M.L.; De Filippis, F.; Mancuso, I.; La Storia, A.; Moschetti, G.; Settanni, L. Animal rennets as sources of dairy lactic acid bacteria. Appl. Environ. Microbiol. 2014, 80, 2050–2061. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Arboleya, S.; Ruas-Madiedo, P.; Margolles, A.; Solís, G.; Salminen, S.; de los Reyes-Gavilán, C.G.; Gueimonde, M. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 2011, 149, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porras-Saavedra, J.; Palacios-González, E.; Lartundo-Rojas, L.; Garibay-Febles, V.; Yáñez-Fernández, J.; Hernández-Sánchez, H.; Gutiérrez-López, G.; Alamilla-Beltrán, L. Microstructural properties and distribution of components in microparticles obtained by spray-drying. J. Food Eng. 2015, 152, 105–112. [Google Scholar] [CrossRef]
- Reis, N.A.; Saraiva, M.A.F.; Duarte, E.A.A.; de Carvalho, E.A.; Vieira, B.B.; Evangelista-Barreto, N.S. Probiotic properties of lactic acid bacteria isolated from human milk. J. Appl. Microbiol. 2016, 121, 811–820. [Google Scholar] [CrossRef]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R.; Ouwehand, A.C. The production and delivery of probiotics: A review of a practical approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
Strains | Species | Isolation Source | Collection |
---|---|---|---|
3.6 D | L. plantarum | Breast milk | DISTAL |
11.3 C | L. plantarum | Breast milk | DISTAL |
M 6 C | L. plantarum | Breast milk | DISTAL |
29 T0 L | L. plantarum | Breast milk | DISTAL |
31 T0 C | L. plantarum | Breast milk | DISTAL |
32 T0 C | L. plantarum | Breast milk | DISTAL |
33.1 G | L. plantarum | Breast milk | DISTAL |
34 T0 B | L. plantarum | Breast milk | DISTAL |
35 T0 B.bis | L. plantarum | Breast milk | DISTAL |
30 b 6 A | L. plantarum | Breast milk | DISTAL |
32 T0 A | L. gasseri | Breast milk | DISTAL |
34 T0 C | L. gasseri | Breast milk | DISTAL |
g.1 | L. gasseri | Breast milk | DISTAL |
C F l 11 | L. gasseri | Breast milk | DISTAL |
32 T0 B.bis | B. longum | Breast milk | DISTAL |
BL6 | B. animalis | Breast milk | DISTAL |
Strain | Adhesion (n. Adherent Microbes/Caco-2 Cell) |
---|---|
L. plantarum 3.6D | 22.9 ± 8.6 a,c,l |
L. plantarum 11.3C | 14.3 ± 8.4 b,h,m |
L. plantarum M6C | 25.7 ± 11.2 a,g |
L. plantarum 29T0L | 34.2 ±13.4 d |
L. plantarum 31T0C | 24.7 ± 8.5 a,l |
L. plantarum 32T0C | 21.2 ± 6.8 c,f |
L. plantarum 33.1 G | 20.2 ± 7.7 c |
L. plantarum 34T0B | 28.7 ± 11.3 e |
L. plantarum 35T0Bbis | 17.1 ± 7.9 b,f |
L. plantarum 30b6A | 24.8 ± 9.0 a,g,l |
L. gasseri 32T0A | 14.7 ± 4.0 b,h |
L. gasseri 34T0C | 27.7 ± 12.1 e,g |
L. gasseri g.1 | 13.9 ± 6.9 h,m |
L. gasseri CFl11 | 4.4 ± 3.7 i |
B. longum 32T0Bbis | 22.5 ± 6.0 c,l |
B. animalis BL6 | 13.7 ± 5.4 h,m |
L. rhamnosus GG | 15.6 ± 3.2 m |
Strain | Gentamicin | Kanamycin | Streptomycin | Neomycin | Tetracycline | Erytromycin | Clindamycin | Chloramphenicol | Ampicillin | Penicillin | Vancomycin | Dalfopristin | Linezolid | Trimethoprim | Ciprofloxacin | Rifampicin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L. plantarum 3.6D | 128 | 612 | 128 | >64 | 16 | 1 | 4 | 8 | 0.25 | 0.25 | >128 | 8 | 4 | >64 | 64 | 1 |
L. plantarum 11.3C | 256 | 1024 | >256 | >64 | 16 | 1 | 4 | 4 | 0.12 | 0.5 | >128 | 4 | 4 | >64 | 64 | 1 |
L. plantarum M6C | 128 | 1024 | >256 | >64 | 16 | 1 | 2 | 4 | 0.25 | 0.5 | >128 | 4 | 4 | >64 | 64 | 1 |
L. plantarum 29T0L | 256 | >1024 | >256 | >64 | 16 | 2 | 4 | 8 | 0.12 | 0.5 | >128 | 4 | 4 | >64 | 64 | 2 |
L. plantarum 31T0C | >256 | 1024 | >256 | >64 | 16 | 2 | 4 | 8 | 0.12 | 0.5 | >128 | 4 | 4 | >64 | 64 | 2 |
L. plantarum 32T0C | 64 | 1024 | >256 | >64 | 16 | 2 | 8 | 8 | 0.12 | 0.5 | >128 | 2 | 2 | >64 | 32 | 1 |
L. plantarum 33.1 G | 256 | >1024 | >256 | >64 | 16 | 2 | 4 | 8 | 0.12 | 0.5 | >128 | 4 | 4 | >64 | 64 | 8 |
L. plantarum 34T0B | 256 | >1024 | >256 | >64 | 16 | 2 | 8 | 8 | 0.12 | 0.5 | >128 | 2 | 2 | >64 | 32 | 2 |
L. plantarum 35T0Bbis | 256 | >1024 | >256 | >64 | 16 | 2 | 4 | 8 | 0.12 | 1 | >128 | 4 | 2 | >64 | 32 | 1 |
L. plantarum 30b6A | 64 | 1024 | >256 | >64 | 16 | 1 | 4 | 4 | 0.1 | 0.5 | >128 | 4 | 2 | >64 | 64 | 1 |
L. gasseri 32T0A | 64 | 1024 | >256 | >64 | 16 | 1 | 4 | 8 | 0.25 | 0.06 | 2 | 1 | 2 | 8 | 32 | 0.12 |
L. gasseri 34T0C | 256 | 1024 | >256 | >64 | 32 | 2 | 8 | 8 | 0.12 | 0.5 | >128 | 2 | 2 | >64 | 64 | 1 |
L. gasseri g.1 | 128 | 1024 | 128 | >64 | 4 | 0.5 | 1 | 4 | 0.25 | 0.06 | 2 | 1 | 1 | 16 | 32 | 0.12 |
L. gasseri CFl11 | 32 | 256 | 8 | >64 | 2 | 0.12 | 0.6 | 4 | 0.12 | 0.06 | 2 | 1 | 1 | 16 | 32 | 0.12 |
B. longum 32T0Bbis | 32 | 1024 | 128 | >64 | 1 | 0.03 | 0.03 | 0.5 | 0.12 | 0.06 | 0.5 | 0.06 | 0.12 | 4 | 4 | 0.12 |
B. animalis BL6 | 256 | 1024 | 128 | >64 | 32 | 0.12 | 0.06 | 1 | 0.06 | 0.12 | 1 | 0.25 | 0.5 | 0.12 | 8 | 0.25 |
Strain | L. monocytogenes ATCC 13932 | L. monocytogenes SCOTT A | L. innocua ATCC 51742 | S. enteritidis MB1409 | S. enteritidis E5 | E. faecium BC104 | E. coli 555 | S. aureus DSM 20231 |
---|---|---|---|---|---|---|---|---|
L. plantarum 3.6D | +++ | +++ | +++ | +++ | +++ | +++ | ++++ | +++ |
L. plantarum 11.3C | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum M6C | ++ | ++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 29T0L | ++ | ++ | ++++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 31T0C | ++ | ++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 32T0C | ++ | ++ | ++++ | ++++ | +++ | +++ | ++ | ++++ |
L. plantarum 33.1 G | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 34T0B | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 35T0Bbis | ++ | + | +++ | +++ | +++ | +++ | +++ | +++ |
L. plantarum 30b6A | ++ | +++ | ++ | +++ | ++++ | +++ | +++ | +++ |
L. gasseri 32T0A | ++ | +++ | ++ | +++ | +++ | ++ | ++ | +++ |
L. gasseri 34T0C | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
L. gasseri g.1 | ++ | ++ | + | ++ | ++ | ++ | +++ | +++ |
L. gasseri CFl11 | ++ | ++ | ++ | ++ | ++ | ++ | +++ | ++ |
B. longum 32T0Bbis | + | + | + | ++ | + | + | + | - |
B. animalis BL6 | + | ++ | + | + | ++ | ++ | ++ | + |
Strain | E. coli H10407 | S. choleraesuis serovar typhimurium | Y. enterocolitica |
---|---|---|---|
L. plantarum 3.6D | ++++ | ++++ | ++++ |
L. plantarum 11.3C | ++++ | +++ | ++++ |
L. plantarum M6C | +++ | +++ | ++++ |
L. plantarum 29T0L | +++ | +++ | +++ |
L. plantarum 31T0C | +++ | +++ | ++++ |
L. plantarum 32T0C | +++ | +++ | ++++ |
L. plantarum 33.1 G | ++++ | +++ | ++++ |
L. plantarum 34T0B | ++++ | +++ | ++++ |
L. plantarum 35T0Bbis | +++ | +++ | ++++ |
L. plantarum 30b6A | ++++ | +++ | +++ |
L. gasseri 32T0A | ++++ | +++ | ++++ |
L. gasseri 34T0C | ++++ | +++ | ++++ |
L. gasseri g.1 | +++ | +++ | ++++ |
L. gasseri CFl11 | +++ | +++ | ++++ |
B. longum 32T0Bbis | +++ | ++++ | ++++ |
B. animalis BL6 | +++ | +++ | ++++ |
Strain | t0 | t3 | t6 | t11 | t14 | t16 | t20 | t24 | t29 | t31 | t34 | t37 | t42 | t48 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L. plantarum 3.6D | 6.53 | 6.45 | 6.39 | 6.28 | 6.21 | 6.15 | 6.11 | 6.07 | 5.81 | 5.67 | 5.58 | 5.29 | 5.28 | 5.17 |
L. plantarum 11.3C | 6.50 | 6.42 | 6.27 | 6.17 | 6.11 | 6.03 | 5.97 | 5.95 | 5.88 | 5.78 | 5.69 | 5.61 | 5.35 | 5.04 |
L. plantarum M6C | 6.60 | 6.51 | 6.28 | 6.23 | 6.21 | 6.08 | 6.13 | 5.91 | 5.78 | 5.35 | 5.13 | 4.82 | 4.63 | 4.09 |
L. plantarum 29T0L | 6.57 | 6.40 | 6.25 | 6.22 | 6.02 | 5.87 | 5.77 | 5.68 | 5.62 | 5.51 | 5.44 | 5.31 | 5.25 | 5.02 |
L. plantarum 31T0C | 6.57 | 6.54 | 6.44 | 6.35 | 6.16 | 6.04 | 5.87 | 5.79 | 5.76 | 5.64 | 5.53 | 5.30 | 5.26 | 5.14 |
L. plantarum 32T0C | 6.56 | 6.51 | 6.36 | 6.31 | 6.06 | 5.95 | 5.79 | 5.72 | 5.61 | 5.59 | 5.51 | 5.27 | 5.25 | 5.10 |
L. plantarum 33.1 G | 6.55 | 6.49 | 6.34 | 6.27 | 6.10 | 6.01 | 5.84 | 5.67 | 5.68 | 5.60 | 5.50 | 5.31 | 5.30 | 5.13 |
L. plantarum 34T0B | 6.56 | 6.48 | 6.39 | 6.32 | 6.26 | 6.16 | 6.11 | 6.05 | 6.25 | 6.24 | 6.03 | 5.91 | 5.40 | 5.19 |
L. plantarum 35T0Bbis | 6.59 | 6.53 | 6.47 | 6.39 | 6.36 | 6.34 | 6.30 | 5.96 | 5.78 | 5.31 | 5.24 | 5.22 | 5.13 | 5.05 |
L. plantarum 30b6A | 6.59 | 6.52 | 6.41 | 6.34 | 6.23 | 6.21 | 6.09 | 6.07 | 6.05 | 6.02 | 5.92 | 5.76 | 5.68 | 5.80 |
L. gasseri 32T0A | 6.55 | 6.51 | 6.43 | 6.36 | 6.18 | 6.05 | 5.89 | 5.78 | 5.77 | 5.63 | 5.45 | 5.33 | 5.26 | 5.05 |
L. gasseri 34T0C | 6.62 | 6.54 | 6.39 | 6.32 | 6.23 | 6.09 | 6.11 | 6.07 | 6.04 | 6.01 | 5.97 | 5.94 | 5.92 | 5.88 |
L. gasseri g.1 | 6.56 | 6.50 | 6.35 | 6.33 | 6.27 | 6.13 | 6.02 | 5.91 | 5.84 | 5.79 | 5.67 | 5.45 | 5.26 | 5.24 |
L. gasseri CFl11 | 6.63 | 6.55 | 6.39 | 6.31 | 6.24 | 6.11 | 6.07 | 6.02 | 5.98 | 5.94 | 5.89 | 5.84 | 5.77 | 5.71 |
B. longum 32T0Bbis | 6.58 | 6.40 | 6.16 | 6.21 | 6.04 | 5.96 | 5.88 | 5.79 | 5.68 | 5.67 | 5.55 | 5.48 | 5.46 | 5.38 |
B. animalis BL6 | 6.48 | 6.43 | 6.39 | 6.31 | 6.27 | 6.18 | 6.12 | 6.03 | 5.98 | 5.92 | 5.88 | 5.81 | 5.76 | 5.69 |
Strain | t0 | t24 |
---|---|---|
L. plantarum 3.6D | 7.32 ± 0.23 | 7.49 ± 0.13 |
L. plantarum 11.3C | 6.12 ± 0.13 | 7.32 ± 0.15 |
L. plantarum M6C | 7.89 ± 0.19 | 8.77 ± 0.18 |
L. plantarum 29T0L | 6.70 ± 0.17 | 7.76 ± 0.18 |
L. plantarum 31T0C | 7.15 ± 0.23 | 8.6 ± 0.16 |
L. plantarum 32T0C | 7.2 ± 0.16 | 9.25 ± 0.25 |
L. plantarum 33.1 G | 6.95 ± 0.13 | 9.3 ± 0.25 |
L. plantarum 34T0B | 7.5 ± 0.23 | 7.88 ± 0.19 |
L. plantarum 35T0Bbis | 6.69 ± 0.17 | 7.39 ± 0.21 |
L. plantarum 30b6A | 6.93 ± 0.21 | 7.55 ± 0.24 |
L. gasseri 32T0A | 7.12 ± 0.13 | 7.98 ± 0.19 |
L. gasseri 34T0C | 6.99 ± 0.17 | 7.39 ± 0.21 |
L. gasseri g.1 | 6.94 ± 0.21 | 7.95 ± 0.24 |
L. gasseri CFl11 | 6.74 ± 0.21 | 7.97 ± 0.22 |
B. longum 32T0Bbis | 7.23 ± 0.19 | 8.18 ± 0.19 |
B. animalis BL6 | 7.17 ± 0.18 | 8.88 ± 0.09 |
Strain | t7 | t14 | t21 |
---|---|---|---|
L. plantarum 3.6D | 7.53 ± 0.13 | 7.14 ± 0.15 | 6.89 ± 0.16 |
L. plantarum 11.3C | 7.22 ± 0.11 | 7.08 ± 0.23 | 6.32 ± 0.17 |
L. plantarum M6C | 7.57 ± 0.29 | 7.16 ± 0.08 | 6.69 ± 0.15 |
L. plantarum 29T0L | 7.60 ± 0.12 | 7.24 ± 0.12 | 6.06 ± 0.14 |
L. plantarum 31T0C | 7.75 ± 0.13 | 7.48 ± 0.17 | 6.93 ± 0.15 |
L. plantarum 32T0C | 7.92 ± 0.14 | 7.25 ± 0.15 | 6.85 ± 0.24 |
L. plantarum 33.1 G | 7.95 ± 0.33 | 7.43 ± 0.15 | 6.32 ± 0.45 |
L. plantarum 34T0B | 7.41 ± 0.23 | 6.97 ± 0.19 | 5.88 ± 0.29 |
L. plantarum 35T0Bbis | 7.29 ± 0.16 | 7.08 ± 0.11 | 5.69 ± 0.12 |
L. plantarum 30b6A | 6.99 ± 0.11 | 7.15 ± 0.14 | 6.05 ± 0.24 |
L. gasseri 32T0A | 7.64 ± 0.13 | 6.48 ± 0.19 | 6.07 ± 0.19 |
L. gasseri 34T0C | 8.02 ± 0.17 | 6.88 ± 0.21 | 6.39 ± 0.11 |
L. gasseri g.1 | 7.84 ± 0.11 | 6.15 ± 0.21 | 5.25 ± 0.27 |
L. gasseri CFl11 | 7.27 ± 0.21 | 5.92 ± 0.12 | 5.47 ± 0.12 |
B. longum 32T0Bbis | 7.94 ± 0.21 | 5.95 ± 0.14 | 5.45 ± 0.14 |
B. animalis BL6 | 7.89 ± 0.11 | 6.9 ± 0.22 | 6.17 ± 0.12 |
L. plantarum | L. gasseri | B. longum B. animalis | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.6D | 11.3C | M6C | 29T0L | 31T0C | 32T0C | 331G | 34T0B | 35T0Bbis | 30b6A | 32T0A | 34T0C | G.1 | CFl11 | 32T0Bbis | BL6 | |
Acetone | 9.90 | 11.15 | 12.07 | 15.11 | 11.18 | 12.28 | 9.96 | 12.34 | 11.41 | 10.74 | 10.46 | 8.00 | 10.83 | 8.91 | 3.08 | 2.71 |
Cyclopentanone | 2.40 | 3.03 | 2.53 | 4.05 | 2.04 | 2.52 | 2.32 | 2.37 | 2.24 | 1.98 | 2.27 | 1.48 | 1.67 | 2.73 | 0.81 | 0.73 |
2-Butanone | 5.81 | 6.15 | 6.33 | 7.38 | 5.83 | 6.51 | 6.41 | 6.56 | 6.41 | 6.02 | 6.17 | 3.70 | 5.86 | 4.98 | 1.44 | 1.34 |
Diacetyl | 0.87 | 0.26 | 0.29 | 0.46 | 0.18 | 0.12 | 0.23 | 0.81 | 0.33 | 0.22 | 0.50 | 0.91 | 1.97 | 1.78 | 0.70 | 1.84 |
2-Pentanone | 9.49 | 10.36 | 11.30 | 12.38 | 9.57 | 11.55 | 12.09 | 12.71 | 8.65 | 11.42 | 11.03 | 6.07 | 9.92 | 9.23 | 2.76 | 2.63 |
Isobutenyl ketone | 3.19 | 2.97 | 3.88 | 6.98 | 3.33 | 2.76 | 2.62 | 1.54 | 3.30 | 2.53 | 2.56 | 3.36 | 2.59 | 2.49 | 1.59 | 1.82 |
2-Hexanone | 2.11 | 2.48 | 1.81 | 11.92 | 1.35 | 1.69 | 4.77 | 1.41 | 1.57 | 4.68 | 1.87 | 3.55 | 1.82 | 1.17 | 0.77 | 0.92 |
2 Heptanone | 32.39 | 37.32 | 38.98 | 3.19 | 33.14 | 35.16 | 38.39 | 38.23 | 25.95 | 37.74 | 35.70 | 28.72 | 31.90 | 34.97 | 12.12 | 10.44 |
Acetoin | 0.31 | 0.22 | 0.22 | 0.66 | 0.40 | 0.29 | 0.47 | 0.32 | 1.31 | 0.48 | 1.73 | 0.21 | 0.27 | 1.64 | 0.11 | 0.16 |
2-Nonanone | 7.51 | 8.36 | 9.10 | 11.67 | 7.11 | 7.84 | 8.24 | 8.24 | 7.55 | 9.35 | 7.76 | 9.37 | 6.51 | 8.80 | 3.82 | 3.00 |
Total ketones | 73.98 | 82.31 | 86.50 | 73.80 | 74.13 | 80.71 | 85.50 | 84.53 | 68.73 | 85.17 | 80.06 | 65.39 | 73.34 | 76.72 | 27.21 | 25.59 |
1-Butanol | 0.48 | 0.91 | 0.42 | 1.08 | 0.08 | 0.22 | 0.44 | 0.48 | 0.41 | 0.65 | 0.25 | 0.59 | 0.37 | 1.15 | 0.57 | 0.39 |
3-Hexanol- | 3.53 | 3.56 | 3.86 | 2.88 | 3.46 | 2.90 | 3.89 | 3.02 | 4.36 | 2.83 | 3.17 | 3.79 | 3.78 | 3.22 | 1.76 | 1.75 |
1-Pentanol | 0.39 | 2.91 | 0.39 | 1.04 | 4.03 | 4.30 | 0.81 | 3.44 | 4.86 | 4.01 | 4.40 | 0.33 | 0.30 | 6.77 | 2.58 | 0.22 |
1-Octanol | 0.38 | 0.33 | 0.34 | 0.80 | 0.27 | 0.28 | 0.39 | 0.36 | 0.34 | 0.46 | 0.46 | 0.36 | 0.25 | 0.52 | 0.18 | 0.16 |
Ethanol | 0.67 | 2.25 | 0.42 | 1.89 | 0.53 | 0.81 | 0.40 | 0.78 | 4.83 | 0.46 | 0.38 | 0.84 | 0.66 | 0.69 | 0.60 | 0.46 |
Total alcohols | 5.46 | 9.96 | 5.43 | 7.69 | 8.37 | 8.50 | 5.93 | 8.09 | 14.81 | 8.42 | 8.66 | 5.92 | 5.36 | 12.36 | 5.69 | 2.98 |
Acetaldehyde | 4.86 | 3.80 | 4.33 | 5.25 | 11.89 | 2.78 | 3.64 | 3.49 | 5.37 | 1.06 | 5.65 | 2.92 | 4.36 | 2.97 | 3.83 | 17.08 |
Total aldehydes | 4.86 | 3.80 | 4.33 | 5.25 | 11.89 | 2.78 | 3.64 | 3.49 | 5.37 | 1.06 | 5.65 | 2.92 | 4.36 | 2.97 | 3.83 | 17.08 |
Acetic acid | 9.64 | 2.29 | 1.52 | 6.66 | 3.30 | 4.21 | 2.38 | 1.57 | 5.62 | 2.49 | 2.86 | 14.75 | 10.19 | 3.73 | 51.18 | 47.59 |
Hexanoic acid | 3.12 | 1.18 | 0.82 | 3.41 | 1.24 | 2.21 | 1.07 | 0.93 | 2.49 | 1.09 | 1.23 | 5.75 | 2.47 | 1.35 | 6.45 | 4.00 |
Butanoic acid | 0.29 | 0.28 | 0.51 | 0.71 | 0.29 | 0.25 | 0.52 | 0.52 | 0.32 | 0.65 | 0.56 | 0.58 | 1.40 | 0.59 | 0.64 | 0.30 |
Octanoic acid | 2.65 | 0.18 | 0.89 | 2.47 | 0.79 | 1.33 | 0.97 | 0.88 | 2.66 | 1.12 | 0.98 | 4.70 | 2.87 | 2.28 | 4.99 | 2.46 |
Total acids | 15.70 | 3.94 | 3.74 | 13.25 | 5.61 | 8.01 | 4.93 | 3.89 | 11.09 | 5.35 | 5.63 | 25.77 | 16.93 | 7.96 | 63.27 | 54.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, M.; Parolin, C.; Patrignani, S.; Sottile, G.; Antonazzo, P.; Vitali, B.; Lanciotti, R.; Patrignani, F. Human Breast Milk: A Source of Potential Probiotic Candidates. Microorganisms 2022, 10, 1279. https://doi.org/10.3390/microorganisms10071279
D’Alessandro M, Parolin C, Patrignani S, Sottile G, Antonazzo P, Vitali B, Lanciotti R, Patrignani F. Human Breast Milk: A Source of Potential Probiotic Candidates. Microorganisms. 2022; 10(7):1279. https://doi.org/10.3390/microorganisms10071279
Chicago/Turabian StyleD’Alessandro, Margherita, Carola Parolin, Silvia Patrignani, Gilda Sottile, Patrizio Antonazzo, Beatrice Vitali, Rosalba Lanciotti, and Francesca Patrignani. 2022. "Human Breast Milk: A Source of Potential Probiotic Candidates" Microorganisms 10, no. 7: 1279. https://doi.org/10.3390/microorganisms10071279
APA StyleD’Alessandro, M., Parolin, C., Patrignani, S., Sottile, G., Antonazzo, P., Vitali, B., Lanciotti, R., & Patrignani, F. (2022). Human Breast Milk: A Source of Potential Probiotic Candidates. Microorganisms, 10(7), 1279. https://doi.org/10.3390/microorganisms10071279