Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation and Treatment
2.2. Design of Strain-Specific Primers
2.3. Primers Specificity and In Vivo Tests
2.4. Statistical Analyses
3. Results
3.1. Streptomyces sp. DEF39 as a Biocontrol Agent
3.2. Streptomyces sp. DEF39 Specific Primer Validation and Systemic Colonization of the Plant
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goswami, R.S.; Kistler, H.C. Heading for Disaster: Fusarium graminearum on Cereal Crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.-L.; Chrpová, J.; Czembor, E.; Gagkaeva, T.; et al. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [Green Version]
- Palazzini, J.M.; Ramirez, M.L.; Torres, A.M.; Chulze, S.N. Potential Biocontrol Agents for Fusarium Head Blight and Deoxynivalenol Production in Wheat. Crop Prot. 2007, 26, 1702–1710. [Google Scholar] [CrossRef]
- Zhao, Y.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Song, H.; Tan, X.; Sun, L.; Sangare, L.; Folly, Y.M.E.; et al. Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum. PLoS ONE 2014, 9, e92486. [Google Scholar] [CrossRef] [PubMed]
- Jochum, C.C.; Osborne, L.E.; Yuen, G.Y. Fusarium Head Blight Biological Control with Lysobacter enzymogenes Strain C3. Biol. Control 2006, 39, 336–344. [Google Scholar] [CrossRef]
- Khan, M.R.; Doohan, F.M. Bacterium-Mediated Control of Fusarium Head Blight Disease of Wheat and Barley and Associated Mycotoxin Contamination of Grain. Biol. Control 2009, 48, 42–47. [Google Scholar] [CrossRef]
- Pal, K.K.; Tilak, K.V.B.R.; Saxcna, A.K.; Dey, R.; Singh, C.S. Suppression of Maize Root Diseases Caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by Plant Growth Promoting Rhizobacteria. Microbiol. Res. 2001, 156, 209–223. [Google Scholar] [CrossRef]
- Jung, B.; Park, S.-Y.; Lee, Y.-W.; Lee, J. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum. Plant Pathol. J. 2013, 29, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Newitt, J.T.; Prudence, S.M.M.; Hutchings, M.I.; Worsley, S.F. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [Green Version]
- Yekkour, A.; Sabaou, N.; Zitouni, A.; Errakhi, R.; Mathieu, F.; Lebrihi, A. Characterization and Antagonistic Properties of Streptomyces Strains Isolated from Saharan Soils, and Evaluation of Their Ability to Control Seedling Blight of Barley Caused by Fusarium culmorum. Lett. Appl. Microbiol. 2012, 55, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, P.; Saracchi, M.; Quaroni, S.; Petrolini, B.; Borgonovi, G.E.; Merli, S. Isolation of Endophytic Streptomyces Strains from Surface-Sterilized Roots. Appl. Environ. Microbiol. 1992, 58, 2691–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Pizzatti, C.; Bonaldi, M.; Saracchi, M.; Erlacher, A.; Kunova, A.; Berg, G.; Cortesi, P. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front. Microbiol. 2016, 7, 714. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.M.; Kunova, A.; Pizzatti, C.; Saracchi, M.; Cortesi, P.; Pasquali, M. Selection of an Endophytic Streptomyces sp. Strain DEF09 From Wheat Roots as a Biocontrol Agent Against Fusarium graminearum. Front. Microbiol. 2019, 10, 2356. [Google Scholar] [CrossRef] [Green Version]
- Colombo, E.M.; Kunova, A.; Gardana, C.; Pizzatti, C.; Simonetti, P.; Cortesi, P.; Saracchi, M.; Pasquali, M. Investigating Useful Properties of Four Streptomyces Strains Active against Fusarium graminearum Growth and Deoxynivalenol Production on Wheat Grains by QPCR. Toxins 2020, 12, 560. [Google Scholar] [CrossRef]
- Meggio, F.; Prinsi, B.; Negri, A.S.; Di Lorenzo, G.S.; Lucchini, G.; Pitacco, A.; Failla, O.; Scienza, A.; Cocucci, M.; Espen, L. Biochemical and Physiological Responses of Two Grapevine Rootstock Genotypes to Drought and Salt Treatments. Aust. J. Grape Wine Res. 2014, 20, 310–323. [Google Scholar] [CrossRef]
- Breakspear, A.; Pasquali, M.; Broz, K.; Dong, Y.; Kistler, H.C. Npc1 Is Involved in Sterol Trafficking in the Filamentous Fungus Fusarium graminearum. Fungal Genet. Biol. 2011, 48, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Ireta, M.J.; Gilchrist, S.L. Fusarium Head Scab of Wheat (Fusarium graminearum Schwabe); CIMMYT Wheat Special Report (WPSR) no. 21b; CIMMYT: Mexico City, Mexico, 1994. [Google Scholar]
- Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Beuvin, M.; Burlot, L.; Bussell, X.; Fouteau, S.; Gautreau, G.; et al. MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions through Genomic, Pangenomic and Metabolic Comparative Analysis. Nucleic Acids Res. 2020, 48, D579–D589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dessel, W.; Van Mellaert, L.; Geukens, N.; Anné, J. Improved PCR-Based Method for the Direct Screening of Streptomyces Transformants. J. Microbiol. Methods 2003, 53, 401–403. [Google Scholar] [CrossRef]
- Lord, S.J.; Velle, K.B.; Mullins, R.D.; Fritz-Laylin, L.K. SuperPlots: Communicating Reproducibility and Variability in Cell Biology. J. Cell Biol. 2020, 219, e202001064. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, A.J.; Ly, A.; Gronau, Q.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical Statistical Software for Common Statistical Designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Colombo, E.M.; Pizzatti, C.; Kunova, A.; Gardana, C.; Saracchi, M.; Cortesi, P.; Pasquali, M. Evaluation of In-Vitro Methods to Select Effective Streptomycetes against Toxigenic Fusaria. PeerJ 2019, 7, e6905. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, M.; Piatti, P.; Gullino, M.L.; Garibaldi, A. Development of a Real-Time Polymerase Chain Reaction for the Detection of Fusarium oxysporum f. sp. basilici from Basil Seed and Roots. J. Phytopathol. 2006, 154, 632–636. [Google Scholar] [CrossRef]
- Xian, L.; Zhang, Y.; Hu, Y.; Zhu, S.; Wen, Z.; Hua, C.; Li, L.; Sun, Z.; Li, T. Mycotoxin DON Accumulation in Wheat Grains Caused by Fusarium Head Blight Are Significantly Subjected to Inoculation Methods. Toxins 2022, 14, 409. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.; Christensen, J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 1963, 53, 831–838. [Google Scholar]
- Kazan, K.; Lyons, R. Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 2014, 26, 2285–2309. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhou, Y.; Shen, Y.; Sun, Z.; Li, L.; Li, T. Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. Int. J. Mol. Sci. 2022, 23, 2280. [Google Scholar] [CrossRef]
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.R.; Sederoff, H.; Chiang, V.L.; Borriss, R. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Hu, L.; Jia, R.; Ma, Q.; Tang, J.; Wang, Y. Antagonistic Action of Streptomyces pratensis S10 on Fusarium graminearum and Its Complete Genome Sequence. Environ. Microbiol. 2021, 23, 1925–1940. [Google Scholar] [CrossRef]
- van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; van Wezel, G.P. Chemical Ecology of Antibiotic Production by Actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef]
- Tran, T.M.; Ameye, M.; Devlieghere, F.; De Saeger, S.; Eeckhout, M.; Audenaert, K. Streptomyces Strains Promote Plant Growth and Induce Resistance Against Fusarium verticillioides via Transient Regulation of Auxin Signaling and Archetypal Defense Pathways in Maize Plants. Front. Plant Sci. 2021, 12, 755733. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Bai, S.; Zhang, T.; Duan, C.; Zhao, J.; Xue, Q.; Yulong, L. Effects of Seed-Coating Preparations of Living Streptomyces globisporus on Plant Growth Promotion and Disease Control against Verticillium Wilt in Cotton. Sustainability 2021, 13, 6001. [Google Scholar] [CrossRef]
- Sabaratnam, S.; Traquair, J.A. Formulation of a Streptomyces Biocontrol Agent for the Suppression of Rhizoctonia Damping-off in Tomato Transplants. Biol. Control 2002, 23, 245–253. [Google Scholar] [CrossRef]
- Ma, Y. Seed Coating with Beneficial Microorganisms for Precision Agriculture. Biotechnol. Adv. 2019, 37, 107423. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, J.; Li, S.; Zhang, H.; Meng, L.; Liu, L.; Ping, W.; Du, C. Genomic and Biocontrol Potential of the Crude Lipopeptide by Streptomyces bikiniensis HD-087 Against Magnaporthe oryzae. Front. Microbiol. 2022, 13, 888645. [Google Scholar] [CrossRef]
A | ||||
---|---|---|---|---|
Streptomyces spp. Strain Code | Source of Isolation | Positive To DEF39 Specific Primers | Positive To 16S Primers | Genbank Accession Number |
DEF07 * | Camellia japonica | - | + | MK412001 |
DEF09 * | Triticum aestivum | - | + | MK412002 |
DEF10 * | Hordeum vulgare var. distichum | - | + | MK412003 |
DEF14 * | Arundo sp. | - | + | MK412005 |
DEF16 * | Zea mays | - | + | MK412007 |
DEF17 | Hordeum vulgare | - | + | |
DEF17B | Hordeum vulgare | - | + | |
DEF19 * | Camellia japonica | - | + | MK412008 |
DEF20 * | Carex sp. | - | + | MK412009 |
DEF21 | Zea mays | - | + | |
DEF26 | Triticum aestivum | - | + | MK412011 |
DEF35 | Secale cereale | - | + | MK412012 |
DEF36 | Crocus sativus | - | + | |
DEF39 * | Secale cereale | + | + | MK412014 |
DEF47 * | unknown plant | - | + | MK412018 |
DEF48 * | Zea mays | - | + | MK412019 |
B | ||||
Bacteria Re-Isolated on Plates from Wheat Plants Treated with DEF39 at the Seed Level | Source of Isolation (Triticum aestivum) | Positive to DEF39 Specific Primers | Positive to 16S Primers | |
Non-filamentous bacteria | Culm | - | + | |
Streptomyces sp. | Root | + | + | |
Streptomyces sp. | Root | + | + | |
Non-filamentous bacteria 1 | Root | - | + | |
Streptomyces sp. | Root | + | + | |
Non-filamentous bacteria 2 | Root | - | + | |
Non-filamentous bacteria 3 | Root | - | + | |
Non-filamentous bacteria 4 | Root | - | + | |
Non-filamentous bacteria 5 | Root | - | + | |
Non-filamentous bacteria 6 | Seed | - | + | |
Non-filamentous bacteria 7 | Culm | - | + | |
Streptomyces sp. | Seed | + | + | |
Streptomyces sp. | Root | + | + | |
C | ||||
Source of Isolation (Triticum aestivum) | Treatment with DEF 39 at Seed Level | Positive to DEF39. Specific Primers | Positive to 16S Primers | |
Spike | - | - | + | |
Spike | + | + | + | |
Spike | + | + | + | |
Spike | + | + | + | |
Spike | + | + | + | |
Spike | - | - | + | |
Spike | - | - | + | |
Spike | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattei, V.; Motta, A.; Saracchi, M.; Kunova, A.; Cortesi, P.; Pizzatti, C.; Pasquali, M. Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight. Microorganisms 2022, 10, 1536. https://doi.org/10.3390/microorganisms10081536
Mattei V, Motta A, Saracchi M, Kunova A, Cortesi P, Pizzatti C, Pasquali M. Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight. Microorganisms. 2022; 10(8):1536. https://doi.org/10.3390/microorganisms10081536
Chicago/Turabian StyleMattei, Valerio, Andrea Motta, Marco Saracchi, Andrea Kunova, Paolo Cortesi, Cristina Pizzatti, and Matias Pasquali. 2022. "Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight" Microorganisms 10, no. 8: 1536. https://doi.org/10.3390/microorganisms10081536
APA StyleMattei, V., Motta, A., Saracchi, M., Kunova, A., Cortesi, P., Pizzatti, C., & Pasquali, M. (2022). Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight. Microorganisms, 10(8), 1536. https://doi.org/10.3390/microorganisms10081536