Current Advances in Biodegradation of Polyolefins
Abstract
:1. Introduction
2. Biodegradation of Polyolefins
2.1. Isolated Microorganisms
2.1.1. Single Bacteria
2.1.2. Microbial Consortia
Polyolefin | Phylum/Class | Microorganism | Microorganism Source | Pretreatment | Experimental Condition | Biodegradation Result | Reference |
---|---|---|---|---|---|---|---|
PE | Bacteria | ||||||
Terrabacteria group/Actinobacteria | R. ruber C208 | PE agricultural waste in soil | Unpretreated LDPE film | Incubation for 8 weeks at 37 °C | Weight loss: 7.5% | [7] | |
Terrabacteria group/Actinobacteria | R. ruber C208 | PE agricultural waste in soil | UV-pretreated LDPE film | Incubation for 4 weeks at 30 °C | Weight loss: 8% | [32] | |
Terrabacteria group/Actinobacteria | R. ruber C208 | PE agricultural waste in soil | Unpretreated LDPE film | Incubation for 30 days at 30 °C | Weight loss: 1.5–2.5%; reduction of 20.0% in Mw and 15.0% in Mn | [8] | |
Terrabacteria group/Actinobacteria | Rhodococcus sp. | Three forest soils | Preoxidized LDPE film | Incubation for 30 days at 25 °C | Confirmation of adherence | [24] | |
Terrabacteria group/Firmicutes | Staphylococcus arlettae | Various soil environments | Unpretreated PE film and PE powder | Incubation for 30 days at 37 °C | Weight loss: 13.6% | [22] | |
Proteobacteria/Gammaproteobacteria | Enterobacter asburiae YT1 and Bacillus sp. YP1 | Guts of plastic-eating waxworms | Unpretreated LLDPE film | Shaken flasks incubated for 60 days at 30 °C | Weight losses of 6.1% and 10.7% after incubation with E. asburiae YT1 and Bacillus sp. YP1, respectively | [23] | |
Proteobacte-ria/Gammaproteobacteria | Stentrophomonas sp. | Plastic debris in soil | Unpretreated LDPE film | Incubation for 30 days at 28 °C | Change in chemical properties | [49] | |
Proteobacte-ria/Gammaproteobacteria | Stentrophomonas pavanii | Solid waste dump site | Modified LDPE | Incubation for 56 days at 30 °C | Confirmed by FTIR | [50] | |
Proteobacte-ria/Gammaproteobacteria | Serratia marcescens | Soil | LLDPE powder made of LLDPE film | Incubation for 70 days at 30 °C | Weight loss: 36.0% | [51] | |
Proteobacte-ria/Gammaproteobacteria | Alcanivorax borkumensis | Mediterranean Sea | Unpretreated LDPE film | Incubation for 7 days at 30 °C | Weight loss: 3.5% | [46] | |
Terrabacteria group/Actinobacteria | Streptomyces spp. | Nile River Delta | 30 °C heat-treated degradable PE film | Incubation for 1 month at 30 °C | Three species showed slight weight loss. | [52] | |
Terrabacteria group/Firmicutes | Pseudomonas aeruginosa PAO1 | ATCC | Unpretreated LDPE film | Incubation for 120 days at 37 °C | Maximum weight loss: 20.0% | [11] | |
Terrabacteria group/Firmicute Dikarya/Ascomycota | Pseudomonas, Bacillus, Brevibacillus, Cellulosimicrobium, Lysinibacillus and Aspergillus | Dump site | Unpretreated PE films | Incubation for 16 weeks in shaken flasks at 37 °C and 28 °C | Gravimetric weight reductions of up to 36.4 % and 35.7% recorded for Aspergillus sp. and Bacillus sp. isolates, respectively. | [53] | |
Fungi | |||||||
Dikarya/Ascomycota | Aspergillus clavatus JASK1 | Landfill soil | Unpretreated LDPE films (bags) | Shaken flasks incubated for 90 days | Weight loss: 35.0% | [35] | |
PP | Bacteria | ||||||
Proteobacte-ria/Gammaproteobacteria | Stenotrophomonas panacihumi PA3–2 | Soil | Unpretreated PP powder | Incubation for 90 days at 37 °C | Mw decreased | [54] | |
Terrabacteria group/Actinobacteria | R. rhodochrous ATCC 29672 | ATCC | PP film with pro-oxidant (Mn, Mn/Fe or Co) additives | Incubation for 180 days | Changes in ATP levels | [33] | |
Terrabacteria group/Firmicute | Bacillus flexus | A soil consortium enriched from a plastic dumping site | UV-pretreated PP film | Incubation for 1 year | Weight loss: 2.5% | [55] | |
Terrabacteria group/Firmicute | Bacillus cereus | Mangrove sediments | UV-pretreated PP granules | Incubation for 40 days at 3 °C | Weight loss: 12.0% | [56] | |
Sporosarcina globispora | Mangrove sediments | UV-pretreated PP granules | incubation for 40 days at 33 °C | Weight loss: 11.0% | [56] | ||
Terrabacteria group/Firmicute | Bacillus sp. | Municipal compost waste | Unpretreated PP powder | Incubation for 15 days at 37 °C | Weight loss: 10.0–12.0% | [57] | |
Fungi | |||||||
Proteobacteria /Gammaproteobacteria | Phanerochaete chrysosporium NCIM 1170, Engyodontium album MTP091 | 100 °C or UV for 10 days | Shaken flasks incubated for 12 months | Weight loss: 18.8% and 9.4% with P. chrysosporium and E. album, respectively | [37] | ||
PS | Bacteria | ||||||
Terrabacteria group/Firmicute | Exiguobacterium sp. strain YT2 | Guts of the larvae of Tenebrio molitor Linnaeus | Unpretreated styrofoam PS films | Incubation for 60 days | Weight loss: 7.4 % Mw decrease: 11.0% | [58] | |
Terrabacteria group/Firmicute | Pseudomonas sp. | Soil | Unpretreated high-impact PS films | Incubation for 30 days at 30 °C | Weight loss: more than 10.0% | [59] | |
Terrabacteria group/Firmicute | Bacillus sp. | Soil | Unpretreated high-impact PS films | Incubation for 30 days at 30 °C | Weight loss: 23.7% | [59] | |
Terrabacteria group/Firmicute | Pseudomonas aeruginosa | Degraded polymer nanocomposite | PS: PLA and PS: PLA:organically modified montmorillonite (OMMT) composites | Incubation for 28 days at 30 °C in MSM | 9.9% degradation at 10 and 25% PS: PLA composites | [60] | |
Terrabacteria group/Firmicute | Pseudomonas putida CA-3 | Industrial bioreactor | Pyrolyzed PS | 48 h of fermentation at 30 °C, 500 rpm | A single pyrolysis run and four fermentation runs resulted in the conversion of 64 g of PS to 6.4 g of PHA | [25] | |
Terrabacteria group/Firmicute | Exiguobacterium sp. strain YT2 | Degraded plastic waste | High-impact PS | Incubation for 30 days at 30 °C | Weight loss: 12.4% | [61] | |
Terrabacteria group/Actinobacteria | R. ruber C208 | Unpretreated styrofoam PS films | Incubation for 8 weeks at 28 °C | Weight loss: 0.8% | [62] | ||
Fungi | |||||||
Dikarya/Ascomycota | Curvularia sp. | Soil samples | Chemically oxidized PS | Incubation for 9 weeks at 30 °C | Microscopic examination showed adherence and penetrance to the polymer | [36] |
2.2. Engineered Strains
2.2.1. Hydrolases Capable of Polyolefin Degradation
2.2.2. Engineered Chassis for Polyolefin Biodegradation
Plastics | Enzymes | Enzyme Source | Pretreatment | Experimental Condition | Result | Reference |
---|---|---|---|---|---|---|
PE | Laccase | R. ruber C208 | Unpretreated LDPE film | Incubation for 30 days at 30 °C | Weight loss: 1.5–2.5%; reduction of 20% in Mw and 15% in Mn | [7] |
Manganese peroxidase | Phanerochaete chrysosporium | Unpretreated PE film | Incubation for 12 days at 37 °C | Mw decreased | [9] | |
Soybean peroxidase | Soybean | Unpretreated HDPE film | Reaction for 2 h at 60 °C | Hydrophilicity increased | [10] | |
Alkane hydroxylase | Pseudomonas sp. E4 | Unpretreated LMWPE sheet | Incubation for 80 days at 37 °C | Weight loss: 19.3% | [28] | |
Alkane hydroxylase | Pseudomonas aeruginosa E7(uniport Q9I0R2) | Unpretreated LMWPE film | Incubation for 50 days at 37 °C | Weight loss: 19.6–30.5% | [12] | |
PS | Hydroquinone peroxidase | Azotobacter beijerinckii HM121 | Unpretreated PS film | Incubation for 20 min | Mw decreased | [13] |
Alkane hydroxylase | A. johnsonii JNU01 | Unpretreated low-molecular-weight PS powder | Incubation for 7 days at 28 °C | Confirmed by FTIR and SEM | [72] |
3. Artificial Microbial Consortia in Polyolefin Biodegradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamas, A.; Moon, H.; Zheng, J.J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 2022, 60, 107991. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J.; et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef]
- Sivan, A.; Szanto, M.; Pavlov, V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 2006, 72, 346–352. [Google Scholar] [CrossRef]
- Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme—Laccase—In the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegrad. 2013, 84, 204–210. [Google Scholar] [CrossRef]
- Iiyoshi, Y.; Tsutsumi, Y.; Nishida, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci. 1998, 44, 222–229. [Google Scholar] [CrossRef]
- Zhao, J.C.; Guo, Z.; Ma, X.Y.; Liang, G.Z.; Wang, J.L. Novel surface modification of high-density polyethylene films by using enzymatic catalysis. J. Appl. Polym. Sci. 2004, 91, 3673–3678. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Champakalakshmi, R.; Sakharkar, M.K.; Lim, C.S.; Sakharkar, K.R. Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian J. Microbiol. 2012, 52, 411–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.J.; Kim, M.N. Comparison of the functional characterization between alkane monooxygenases for low-molecular-weight polyethylene biodegradation. Int. Biodeterior. Biodegrad. 2016, 114, 202–208. [Google Scholar] [CrossRef]
- Nakamiya, K.; Ooi, T.; Kinoshita, S. Non-heme hydroquinone peroxidase from Azotobacter beijerinckii HM121. J. Ferment. Bioeng. 1997, 84, 14–21. [Google Scholar] [CrossRef]
- Muenmee, S.; Chiemchaisri, W.; Chiemchaisri, C. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int. Biodeterior. Biodegrad. 2016, 113, 244–255. [Google Scholar] [CrossRef]
- Mukherjee, S.; RoyChaudhuri, U.; Kundu, P.P. Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. J. Chem. Technol. Biotechnol. 2018, 93, 1300–1311. [Google Scholar] [CrossRef]
- Panasia, G.; Philipp, B. LaoABCR, a Novel System for Oxidation of Long-Chain Alcohols Derived from SDS and Alkane Degradation in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2018, 84, e00626-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzeszcz, J.; Kaszycki, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018, 29, 359–407. [Google Scholar] [CrossRef] [Green Version]
- Ensign, S.A. Microbial Metabolism of Aliphatic Alkenes. Biochemistry 2001, 40, 5845–5853. [Google Scholar] [CrossRef]
- Williams, S.C.; Forsberg, A.P.; Lee, J.; Vizcarra, C.L.; Lopatkin, A.J.; Austin, R.N. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs). J. Inorg. Biochem. 2021, 219, 111409. [Google Scholar] [CrossRef]
- Krum, J.G.; Ensign, S.A. Evidence that a Linear Megaplasmid Encodes Enzymes of Aliphatic Alkene and Epoxide Metabolism and Coenzyme M (2-Mercaptoethanesulfonate) Biosynthesis in Xanthobacter Strain Py2. J. Bacteriol. 2001, 183, 2172–2177. [Google Scholar] [CrossRef] [Green Version]
- Restrepo-Flórez, J.-M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Divyalakshmi, S.; Athikayala, S. Screening and isolation of polyethylene degrading bacteria from various soil environments. J. Environ. Sci. 2016, 12, 01–07. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Wu, W.-M.; Zhao, J.; Jiang, L. Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms. Environ. Sci. Technol. 2014, 48, 13776–13784. [Google Scholar] [CrossRef] [PubMed]
- Koutny, M.; Amato, P.; Muchova, M.; Ruzicka, J.; Delort, A.-M. Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives. Int. Biodeterior. Biodegrad. 2009, 63, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.G.; Goff, M.; Donner, M.; Kaminsky, W.; O’Connor, K.E. A Two Step Chemo-biotechnological Conversion of Polystyrene to a Biodegradable Thermoplastic. Environ. Sci. Technol. 2006, 40, 2433–2437. [Google Scholar] [CrossRef]
- Jakubowicz, I. Evaluation of degradability of biodegradable polyethylene (PE). Polym. Degrad. Stab. 2003, 80, 39–43. [Google Scholar] [CrossRef]
- Nanda, S.; Smiti, S.S.; Jayanthi, A. Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manag. 2010, 14, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.G.; Jeon, H.J.; Kim, M.N. Biodegradation of Polyethylene by a Soil Bacterium and AlkB Cloned Recombinant Cell. J. Bioremediation Biodegrad. 2012, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, C.G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 2019, 222, 527–533. [Google Scholar] [CrossRef]
- Kim, H.-W.; Jo, J.H.; Kim, Y.-B.; Le, T.-K.; Cho, C.-W.; Yun, C.-H.; Chi, W.S.; Yeom, S.-J. Biodegradation of polystyrene by bacteria from the soil in common environments. J. Hazard. Mater. 2021, 416, 126239. [Google Scholar] [CrossRef]
- Fontanella, S.; Bonhomme, S.; Koutny, M.; Husarova, L.; Brusson, J.-M.; Courdavault, J.-P.; Pitteri, S.; Samuel, G.; Pichon, G.; Lemaire, J.; et al. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym. Degrad. Stab. 2010, 95, 1011–1021. [Google Scholar] [CrossRef]
- Gilan, I.; Hadar, Y.; Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 2004, 65, 97–104. [Google Scholar] [CrossRef]
- Fontanella, S.; Bonhomme, S.; Brusson, J.-M.; Pitteri, S.; Samuel, G.; Pichon, G.; Lacoste, J.; Fromageot, D.; Lemaire, J.; Delort, A.-M. Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym. Degrad. Stab. 2013, 98, 875–884. [Google Scholar] [CrossRef]
- Sánchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef]
- Gajendiran, A.; Krishnamoorthy, S.; Abraham, J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 2016, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motta, O.; Proto, A.; De Carlo, F.; Santoro, E.; Brunetti, L.; Capunzo, M. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. Int. J. Hyg. Environ. Health 2009, 212, 61–66. [Google Scholar] [CrossRef]
- Jeyakumar, D.; Chirsteen, J.; Doble, M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour. Technol. 2013, 148, 78–85. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef]
- Montazer, Z.; Najafi, M.B.H.; Levin, D.B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers 2020, 12, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada-Onodera, K.; Mukumoto, H.; Katsuyaya, Y.; Saiganji, A.; Tani, Y. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym. Degrad. Stab. 2001, 72, 323–327. [Google Scholar] [CrossRef]
- Ru, J.K.; Huo, Y.X.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombelli, P.; Howe, C.J.; Bertocchini, F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 2017, 27, R292–R293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalup, A.; Ayup, M.M.; Garzia, A.C.M.; Malizia, A.; Martin, E.; De Cristóbal, R.; Galindo-Cardona, A. First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. J. Apic. Res. 2018, 57, 569–571. [Google Scholar] [CrossRef]
- Kundungal, H.; Gangarapu, M.; Sarangapani, S.; Patchaiyappan, A.; Devipriya, S.P. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. Res. 2019, 26, 18509–18519. [Google Scholar] [CrossRef] [PubMed]
- Sabirova, J.S.; Ferrer, M.; Regenhardt, D.; Timmis, K.N.; Golyshin, P.N. Proteomic Insights into Metabolic Adaptations in Alcanivorax borkumensis Induced by Alkane Utilization. J. Bacteriol. 2006, 188, 3763–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delacuvellerie, A.; Cyriaque, V.; Gobert, S.; Benali, S.; Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 2019, 380, 120899. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Pourbabaee, A.A.; Alikhani, H.A.; Shabani, F.; Esmaeili, E. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil. PLoS ONE 2013, 8, e71720. [Google Scholar] [CrossRef] [Green Version]
- Skariyachan, S.; Patil, A.A.; Shankar, A.; Manjunath, M.; Bachappanavar, N.; Kiran, S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 2018, 149, 52–68. [Google Scholar] [CrossRef]
- Peixoto, J.; Silva, L.P.; Krüger, R.H. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J. Hazard. Mater. 2017, 324, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, C.T.; Qazi, I.A.; Hashmi, I.; Bhargava, S.; Deepa, S. Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int. Biodeterior. Biodegrad. 2016, 113, 276–286. [Google Scholar] [CrossRef]
- Azeko, S.T.; Etuk-Udo, G.A.; Odusanya, O.S.; Malatesta, K.; Anuku, N.; Soboyejo, W.O. Biodegradation of Linear Low Density Polyethylene by Serratia marcescens subsp. marcescens and its Cell Free Extracts. Waste Biomass-Valorization 2015, 6, 1047–1057. [Google Scholar] [CrossRef]
- El-Shafei, H.A.; El-Nasser, N.H.A.; Kansoh, A.L.; Ali, A.M. Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym. Degrad. Stab. 1998, 62, 361–365. [Google Scholar] [CrossRef]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.J.; Kim, M.N. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterior. Biodegrad. 2016, 115, 244–249. [Google Scholar] [CrossRef]
- Arkatkar, A.; Juwarkar, A.A.; Bhaduri, S.; Uppara, P.V.; Doble, M. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int. Biodeterior. Biodegrad. 2010, 64, 530–536. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Bhunia, H.; Reddy, M.S. Degradation of polypropylene–poly-L-lactide blend by bacteria isolated from compost. Bioremediation J. 2018, 22, 73–90. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.L.; Gao, L.C.; Yang, R.F.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environ. Sci. Technol. 2015, 49, 12087–12093. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.J.; Sekhar, V.C.; Bhaskar, T.; Nampoothiri, K.M. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresour. Technol. 2016, 213, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Shimpi, N.; Borane, M.; Mishra, S.; Kadam, M. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol. Res. 2012, 20, 181–187. [Google Scholar] [CrossRef]
- Sekhar, V.C.; Nampoothiri, K.M.; Mohan, A.J.; Nair, N.R.; Bhaskar, T.; Pandey, A. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J. Hazard. Mater. 2016, 318, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Mor, R.; Sivan, A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 2008, 19, 851–858. [Google Scholar] [CrossRef]
- Tribedi, P.; Dey, S. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environ. Monit. Assess. 2017, 189, 624. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.Y.; Xu, P.; Zhu, B.S.; Bai, M.Y.; Li, D.J. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Skariyachan, S.; Setlur, A.S.; Naik, S.Y.; Naik, A.A.; Usharani, M.; Vasist, K.S. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ. Sci. Pollut. Res. 2017, 24, 8443–8457. [Google Scholar] [CrossRef] [PubMed]
- Skariyachan, S.; Manjunatha, V.; Sultana, S.; Jois, C.; Bai, V.; Vasist, K.S. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ. Sci. Pollut. Res. 2016, 23, 18307–18319. [Google Scholar] [CrossRef]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.X.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE 2017, 12, e0183984. [Google Scholar] [CrossRef] [Green Version]
- Aravinthan, A.; Arkatkar, A.; Juwarkar, A.A.; Doble, M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep. Biochem. Biotechnol. 2016, 46, 109–115. [Google Scholar] [CrossRef]
- Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeterior. Biodegrad. 2009, 63, 106–111. [Google Scholar] [CrossRef]
- Cacciari, I.; Quatrini, P.; Zirletta, G.; Mincione, E.; Vinciguerra, V.; Lupattelli, P.; Sermanni, G.G. Isotactic polypropylene biodegradation by a microbial community: Physicochemical characterization of metabolites produced. Appl. Environ. Microbiol. 1993, 59, 3695–3700. [Google Scholar] [CrossRef] [Green Version]
- Santacruz-Juárez, E.; Buendia-Corona, R.E.; Ramírez, R.E.; Sánchez, C. Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. J. Hazard. Mater. 2021, 411, 125118. [Google Scholar] [CrossRef] [PubMed]
- Jolivalt, C.; Madzak, C.; Brault, A.; Caminade, E.; Malosse, C.; Mougin, C. Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl. Microbiol. Biotechnol. 2005, 66, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Crestini, C.; Jurasek, L.; Argyropoulos, D.S. On the Mechanism of the Laccase–Mediator System in the Oxidation of Lignin. Chem.—A Eur. J. 2003, 9, 5371–5378. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Hirai, H.; Nishida, T. Degradation of Polyethylene and Nylon-66 by the Laccase-Mediator System. J. Polym. Environ. 2001, 9, 103–108. [Google Scholar] [CrossRef]
- Johnnie, D.A.; Issac, R.; Prabha, M.L. Bio Efficacy Assay of Laccase Isolated and Characterized from Trichoderma viride in Biodegradation of Low Density Polyethylene (LDPE) and Textile Industrial Effluent Dyes. J. Pure Appl. Microbiol. 2021, 15, 410–420. [Google Scholar] [CrossRef]
- Yeom, S.-J.; Le, T.-K.; Yun, C.-H. P450-driven plastic-degrading synthetic bacteria. Trends Biotechnol. 2022, 40, 166–179. [Google Scholar] [CrossRef]
- Chen, C.-C.; Dai, L.H.; Ma, L.X.; Guo, R.-T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef]
- Ihssen, J.; Reiss, R.; Luchsinger, R.; Thöny-Meyer, L.; Richter, M. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci. Rep. 2015, 5, 10465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, Y.; Lao, H.I.; Au, S.W.; Li, I.C.; Hu, J.; Yuen, H.M.; Cheong, W.M.; Lo, O.L.I.; Seak, L.C.U. Expression, secretion and functional characterization of three laccases in E. coli. Synth. Syst. Biotechnol. 2022, 7, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.J.; Kim, M.N. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 2015, 103, 141–146. [Google Scholar] [CrossRef]
- Gao, R.; Liu, R.; Sun, C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 2022, 431, 128671. [Google Scholar] [CrossRef]
- Wang, T.-N.; Zhao, M. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl. Microbiol. Biotechnol. 2016, 101, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Grandes-Blanco, A.I.; Tlecuitl-Beristain, S.; Díaz, R.; Sánchez, C.; Téllez-Téllez, M.; Márquez-Domínguez, L.; Santos-López, G.; Díaz-Godínez, G. Heterologous Expression of Laccase (LACP83) of Pleurotus ostreatus. BioResources 2017, 12, 3211–3221. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zheng, B.; Jiang, D.; Qin, W.S. Overexpression of a Laccase with Dye Decolorization Activity from Bacillus sp. Induced in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2017, 27, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environ. Monit. Assess. 2014, 186, 6577–6586. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ. Dev. Sustain. 2015, 17, 731–745. [Google Scholar] [CrossRef]
- De Pourcq, K.; Vervecken, W.; Dewerte, I.; Valevska, A.; Van Hecke, A.; Callewaert, N. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb. Cell Factories 2012, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogrydziak, D.M.; Nicaud, J.-M. Characterization of Yarrowia lipolyticaXPR2 multi-copy strains over-producing alkaline extracellular protease—A system for rapidly increasing secretory pathway cargo loads. FEMS Yeast Res. 2012, 12, 938–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madzak, C.; Tréton, B.; Blanchin-Roland, S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J. Mol. Microbiol. Biotechnol. 2000, 2, 207–216. [Google Scholar] [PubMed]
- Madzak, C.; Beckerich, J.-M. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. In Yarrowia lipolytica: Biotechnological Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 25, pp. 1–76. [Google Scholar] [CrossRef]
- Jenkins, S.; Quer, A.M.; Fonseca, C.; Varrone, C. Microbial Degradation of Plastic: New Plastic Degraders, Mixed Cultures and Engineering Strategies. Soil Microenvironment for Bioremediation and Polymer Production; Wiley: Hoboken, NJ, USA, 2019; pp. 215–238. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, X.N.; Zhang, H.R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab. Eng. 2019, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shahab, R.L.; Brethauer, S.; Davey, M.P.; Smith, A.G.; Vignolini, S.; Luterbacher, J.S.; Studer, M.H. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 2020, 369, 1073. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Wu, Q.; Xu, Y. Production of surfactin from waste distillers’ grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresour. Technol. 2017, 235, 96–103. [Google Scholar] [CrossRef]
- Chen, W.; Kong, Y.C.; Li, J.D.; Sun, Y.Y.; Min, J.; Hu, X.K. Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int. Biodeterior. Biodegrad. 2020, 154, 105047. [Google Scholar] [CrossRef]
- Qi, X.; Ma, Y.; Chang, H.; Li, B.; Ding, M.; Yuan, Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front. Microbiol. 2021, 12, 778828. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, M.D.; Li, B.Z.; Ding, M.Z.; He, B.; Chen, S.; Zhou, X.; Yuan, Y.J. Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering 2018, 4, 888–893. [Google Scholar] [CrossRef]
- Huang, Q.-S.; Yan, Z.-F.; Chen, X.-Q.; Du, Y.-Y.; Li, J.; Liu, Z.-Z.; Xia, W.; Chen, S.; Wu, J. Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii. Sci. Total Environ. 2022, 808, 152107. [Google Scholar] [CrossRef] [PubMed]
- Skariyachan, S.; Taskeen, N.; Kishore, A.P.; Krishna, B.V.; Naidu, G. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. J. Environ. Manag. 2021, 284, 112030. [Google Scholar] [CrossRef] [PubMed]
- Wondraczek, L.; Pohnert, G.; Schacher, F.H.; Köhler, A.; Gottschaldt, M.; Schubert, U.S.; Küsel, K.; Brakhage, A.A. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. Adv. Mater. 2019, 31, e1900284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bogaert, I.N.A.; Demey, M.; Develter, D.; Soetaert, W.; Vandamme, E.J. Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res. 2009, 9, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinjarde, S.; Apte, M.; Mohite, P.; Kumar, A.R. Yarrowia lipolytica and pollutants: Interactions and applications. Biotechnol. Adv. 2014, 32, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ma, C.; Wang, D.; Liu, H.; Zhu, C.C.; Xu, H.N. Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shift in a historically petroleum-contaminated soil. Sci. Total Environ. 2020, 713, 136331. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, J.; Gao, C.M.; Zhang, Y.M.; Du, W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci. Rep. 2020, 10, 8519. [Google Scholar] [CrossRef] [PubMed]
- Iwama, R.; Hara, M.; Mizuike, A.; Horiuchi, H.; Fukuda, R. Osh6p, a homologue of the oxysterol-binding protein, is involved in production of functional cytochrome P450 belonging to CYP52 family in n-alkane-assimilating yeast Yarrowia lipolytica. Biochem. Biophys. Res. Commun. 2018, 499, 836–842. [Google Scholar] [CrossRef]
- Ensign, S.A.; Allen, J.R. Aliphatic Epoxide Carboxylation. Annu. Rev. Biochem. 2003, 72, 55–76. [Google Scholar] [CrossRef]
- Choi, K.R.; Jang, W.D.; Yang, D.; Cho, J.; Park, D.; Lee, S.Y. Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 2019, 37, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Jiang, H.; Mao, X.Z. Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci. Technol. 2021, 111, 322–332. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.-C.; Ma, Y.-M.; Chen, G.-Q. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 2020, 58, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Rhie, M.N.; Kim, H.T.; Joo, J.C.; Cho, I.J.; Son, J.; Jo, S.Y.; Sohn, Y.J.; Baritugo, K.-A.; Pyo, J.; et al. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab. Eng. 2020, 58, 47–81. [Google Scholar] [CrossRef]
- Zhao, J.T.; Li, F.; Cao, Y.X.; Zhang, X.B.; Chen, T.; Song, H.; Wang, Z.W. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol. Adv. 2021, 53, 107682. [Google Scholar] [CrossRef] [PubMed]
Polyolefin | Microorganisms | Microorganism Source | Pretreatment | Experimental Condition | Biodegradation Result | Reference |
---|---|---|---|---|---|---|
PE | Mixed microorganisms | Microbial activated soil | Thermally pretreated | Incubation for 180 days at 60 °C | Mineralization percentage: 60.0% | [26] |
Lysinibacillus xylanilyticus and Aspergillus niger | Landfill soils | UV-irradiated and non-UV-irradiated LDPE films | Incubation for 126 days in soil | Mineralization percentage: 29.5% (UV-irradiated) | [29] | |
Soil microorgannisms | Soil | UV-irradiated and non-UV-irradiated | Incubation for 28 days | Weight loss: 6.0% and 3.5% | [63] | |
Comamonas, Delftia, and Stenotrophomonas | Degraded plastic debris | Unpretreated LDPE films | Shaken flasks incubated for 90 days at 28 °C | Changes in chemical properties | [64] | |
Brevibacillus sp. and Aneurinibacillus sp. | Waste management landfills and sewage treatment plants | Unpretreated HDPE, LDPE films and pellets | Incubation for 140 days at 50 °C | Weight loss for LDPE and HDPE strips was 58.2% and 46.6% respectively; weight loss for LDPE and HDPE pellets was 45.7 % and 37.2%, respectively | [47] | |
Bacillus sp. and Paenibacillus sp. | Landfill site | Unpretreated PE microplastic granules | Incubation for 60 days at 30 °C | Weight loss: 16.7%; mean diameter reduction: 22.8% | [46] | |
Artificial thermophilic bacterial consortium composed of bacterial isolates (Bacillus vallismortis, Pseudomonas protegens, Stenotrophomonas sp. and Paenibacillus sp.) | Dung of cows fed off plastic-contaminated pastures | LDPE and HDPE films and pellets | Incubation for 120 days at 55 °C | Gravimetric weight loss percentages of 75.0%, 55.0%, 60.0% and 43.0% for LDPE film, pellets, HDPE film and pellets, respectively | [65] | |
Two Enterobacter sp. and one Pantoea sp. | Plastic garbage processing areas | LDPE films and pellets | Incubation for 120 days at 37 °C | Maximum weight loss: 81.0% | [66] | |
Lysinibacillus. sp. and Salinibacterium sp. | Plastic samples and surface water | LDPE and HDPE pieces | Incubation at 25 °C for 6 months | Weight loss: 15.0% for LDPE after 4 months and 5.5% for HDPE after 6 months | [67] | |
pp | Bacillus and Pseudomonas | UV- or thermally pretreated PP films | Flasks incubated at 28 ± 2 °C and 180 rpm for 12 months | Weight loss: 1.9% | [68] | |
Microbial consortium | Plastic dumping site | Thermally pretreated PP films | Incubation for 1 year | Weight loss: 10.7% | [69] | |
Mixed soil community | Soil samples rich in plastic waste | Isotactic PP films | Incubation for 5 months | The film had 40% methylene chloride extractable compounds, and a mixture of hydrocarbons (between C10H22 and C31H64) was detected and identified in the extract | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Ding, M.; Yuan, Y. Current Advances in Biodegradation of Polyolefins. Microorganisms 2022, 10, 1537. https://doi.org/10.3390/microorganisms10081537
Zhang N, Ding M, Yuan Y. Current Advances in Biodegradation of Polyolefins. Microorganisms. 2022; 10(8):1537. https://doi.org/10.3390/microorganisms10081537
Chicago/Turabian StyleZhang, Ni, Mingzhu Ding, and Yingjin Yuan. 2022. "Current Advances in Biodegradation of Polyolefins" Microorganisms 10, no. 8: 1537. https://doi.org/10.3390/microorganisms10081537
APA StyleZhang, N., Ding, M., & Yuan, Y. (2022). Current Advances in Biodegradation of Polyolefins. Microorganisms, 10(8), 1537. https://doi.org/10.3390/microorganisms10081537