Detoxification Response of Pseudomonas fluorescens MFAF76a to Gaseous Pollutants NO2 and NO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain, Plasmids and Culture Conditions
2.2. Disruption of the hmp gene in P. fluorescens MFAF76a
2.3. hmp-Complementation of MFAF76a-Δhmp
2.4. Exposition to NO2 and NO
2.5. Cultivability Assays
2.6. Flow Cytometry Assay
2.7. RNS Labelling
2.8. Quantitative Reverse-Transcription Real Time Polymerase Chain Reaction (RT-qPCR)
2.9. Whole Proteome Identification and Quantification
2.10. Statistical Analyses
3. Results
3.1. NO2 Exposure Leads to a Global Response to ROS and RNS While NO Exposure Leads to an Hmp-Focused Response
3.2. Hmp Is Involved in the Preservation of Membrane Integrity after Exposure to NO2
3.3. NO2 Exposure Induces the Formation of Derived Nitrogen Species Unlike NO
3.4. The Bacterial Response to NO2 Is Dependent of Its Concentration
3.5. Exposure to NO2 Leads to Production Alterations of Proteins Involved in RNS- and ROS-Mediated Damages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NOx Abatement: A Review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 Greenhouse Gases and Climate Change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Burney, S.; Caulfield, J.L.; Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. The Chemistry of DNA Damage from Nitric Oxide and Peroxynitrite. Mutat. Res. 1999, 424, 37–49. [Google Scholar] [CrossRef]
- Pryor, W.A.; Lightsey, J.W. Mechanisms of Nitrogen Dioxide Reactions: Initiation of Lipid Peroxidation and the Production of Nitrous Acid. Science 1981, 214, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Radi, R. Fundamentals on the Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Redox Biol. 2018, 14, 618–625. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines—Global Update 2005. Available online: http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/ (accessed on 8 June 2021).
- INERIS. Dioxyde D’azote. Available online: https://substances.ineris.fr/fr/substance/cas/10102-44-0/2 (accessed on 8 June 2021).
- Bogdan, C. Nitric Oxide Synthase in Innate and Adaptive Immunity: An Update. Trends Immunol. 2015, 36, 161–178. [Google Scholar] [CrossRef]
- Fang, F.C. Antimicrobial Reactive Oxygen and Nitrogen Species: Concepts and Controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. [Google Scholar] [CrossRef]
- Grosser, M.R.; Paluscio, E.; Thurlow, L.R.; Dillon, M.M.; Cooper, V.S.; Kawula, T.H.; Richardson, A.R. Genetic Requirements for Staphylococcus aureus Nitric Oxide Resistance and Virulence. PLoS Pathog. 2018, 14, e1006907. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.H. Impact of Small RNA RaoN on Nitrosative-Oxidative Stress Resistance and Virulence of Salmonella enterica Serovar Typhimurium. J. Microbiol. 2020, 58, 499–506. [Google Scholar] [CrossRef]
- Zhu, X.; Oh, H.-S.; Ng, Y.C.B.; Tang, P.Y.P.; Barraud, N.; Rice, S.A. Nitric Oxide-Mediated Induction of Dispersal in Pseudomonas aeruginosa Biofilms Is Inhibited by Flavohemoglobin Production and Is Enhanced by Imidazole. Antimicrob. Agents Chemother. 2018, 62, e01832-17. [Google Scholar] [CrossRef] [Green Version]
- Howlin, R.P.; Cathie, K.; Hall-Stoodley, L.; Cornelius, V.; Duignan, C.; Allan, R.N.; Fernandez, B.O.; Barraud, N.; Bruce, K.D.; Jefferies, J.; et al. Low-Dose Nitric Oxide as Targeted Anti-Biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. Mol. Ther. 2017, 25, 2104–2116. [Google Scholar] [CrossRef] [Green Version]
- Tsui, T.-H.; Ekama, G.A.; Chen, G.-H. Quantitative Characterization and Analysis of Granule Transformations: Role of Intermittent Gas Sparging in a Super High-Rate Anaerobic System. Water Res. 2018, 139, 177–186. [Google Scholar] [CrossRef]
- Zhu, X.; Suidan, M.T.; Alonso, C.; Yu, T.; Kim, B.J.; Kim, B.R. Biofilm Structure and Mass Transfer in a Gas Phase Trickle-Bed Biofilter. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2001, 43, 285–293. [Google Scholar] [CrossRef]
- Frey, A.D.; Farrés, J.; Bollinger, C.J.T.; Kallio, P.T. Bacterial Hemoglobins and Flavohemoglobins for Alleviation of Nitrosative Stress in Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 4835–4840. [Google Scholar] [CrossRef] [Green Version]
- Bonamore, A.; Boffi, A. Flavohemoglobin: Structure and Reactivity. IUBMB Life 2007, 60, 19–28. [Google Scholar] [CrossRef]
- Arai, H.; Hayashi, M.; Kuroi, A.; Ishii, M.; Igarashi, Y. Transcriptional Regulation of the Flavohemoglobin Gene for Aerobic Nitric Oxide Detoxification by the Second Nitric Oxide-Responsive Regulator of Pseudomonas aeruginosa. J. Bacteriol. 2005, 187, 3960–3968. [Google Scholar] [CrossRef] [Green Version]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [Green Version]
- Duclairoir-Poc, C.; Verdon, J.; Groboillot, A.; Barreau, M.; Toucourou, H.; Mijouin, L.; Leclerc, C.; Maillot, O.; Kondakova, T.; Hulen, C.; et al. Airborne Fluorescent Pseudomonads: What Potential for Virulence? Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 708. [Google Scholar]
- Chautrand, T.; Depayras, S.; Souak, D.; Kondakova, T.; Barreau, M.; Kentache, T.; Hardouin, J.; Tahrioui, A.; Thoumire, O.; Konto-Ghiorghi, Y.; et al. Gaseous NO2 Induces Various Envelope Alterations in Pseudomonas fluorescens MFAF76a. Sci. Rep. 2022, 12, 8528. [Google Scholar] [CrossRef]
- Morin, J.-P.; Preterre, D.; Gouriou, F.; Delmas, V.; François, A.; Orange, N.; Grosboillot, A.; Duclairoir-Poc, C.; Moretti, M.; Maillot, O.; et al. Particules Urbaines et Céréalières, Micro-organismes, Mycotoxines et Pesticides. Available online: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=759 (accessed on 16 December 2020).
- Simon, R.; Priefer, U.; Pühler, A. A Broad Host Range Mobilization System for in Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Biotechnology 1983, 1, 784–791. [Google Scholar] [CrossRef]
- El-Sayed, A.K.; Hothersall, J.; Thomas, C.M. Quorum-Sensing-Dependent Regulation of Biosynthesis of the Polyketide Antibiotic Mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiol. Read. Engl. 2001, 147, 2127–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietsch, A.; Vallet-Gely, I.; Dove, S.L.; Mekalanos, J.J. ExsE, a Secreted Regulator of Type III Secretion Genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 2005, 102, 8006–8011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duclairoir-Poc, C. Influence of Growth Temperature on Cyclolipopeptides Production and on Adhesion Behaviour in Environmental Strains of Pseudomonas fluorescens. J. Bacteriol. Parasitol. 2013, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Depayras, S.; Kondakova, T.; Heipieper, H.J.; Feuilloley, M.G.; Orange, N.; Duclairoir-Poc, C. The Hidden Face of Nitrogen Oxides Species: From Toxic Effects to Potential Cure? In Emerging Pollutants—Some Strategies for the Quality Preservation of Our Environment; Soloneski, S., Larramendy, M.L., Eds.; IntechOpen: London, UK, 2018; ISBN 978-1-78923-384-1. [Google Scholar]
- NEB. Tm Calculator. Available online: https://tmcalculator.neb.com/#!/main (accessed on 1 August 2022).
- Kondakova, T.; Catovic, C.; Barreau, M.; Nusser, M.; Brenner-Weiss, G.; Chevalier, S.; Dionnet, F.; Orange, N.; Duclairoir Poc, C. Response to Gaseous NO2 Air Pollutant of P. fluorescens Airborne Strain MFAF76a and Clinical Strain MFN1032. Front. Microbiol. 2016, 7, 379. [Google Scholar] [CrossRef] [Green Version]
- Gicquel, G.; Bouffartigues, E.; Bains, M.; Oxaran, V.; Rosay, T.; Lesouhaitier, O.; Connil, N.; Bazire, A.; Maillot, O.; Bénard, M.; et al. The Extra-Cytoplasmic Function Sigma Factor SigX Modulates Biofilm and Virulence-Related Properties in Pseudomonas aeruginosa. PLoS ONE 2013, 8, e80407. [Google Scholar] [CrossRef] [Green Version]
- Guyard-Nicodème, M.; Bazire, A.; Hémery, G.; Meylheuc, T.; Mollé, D.; Orange, N.; Fito-Boncompte, L.; Feuilloley, M.; Haras, D.; Dufour, A.; et al. Outer Membrane Modifications of Pseudomonas fluorescens MF37 in Response to Hyperosmolarity. J. Proteome Res. 2008, 7, 1218–1225. [Google Scholar] [CrossRef]
- Bouteiller, M.; Gallique, M.; Bourigault, Y.; Kosta, A.; Hardouin, J.; Massier, S.; Konto-Ghiorghi, Y.; Barbey, C.; Latour, X.; Chane, A.; et al. Crosstalk between the Type VI Secretion System and the Expression of Class IV Flagellar Genes in the Pseudomonas fluorescens MFE01 Strain. Microorganisms 2020, 8, 622. [Google Scholar] [CrossRef]
- Clamens, T.; Rosay, T.; Crépin, A.; Grandjean, T.; Kentache, T.; Hardouin, J.; Bortolotti, P.; Neidig, A.; Mooij, M.; Hillion, M.; et al. The Aliphatic Amidase AmiE Is Involved in Regulation of Pseudomonas aeruginosa Virulence. Sci. Rep. 2017, 7, 41178. [Google Scholar] [CrossRef] [Green Version]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced Annotations and Features for Comparing Thousands of Pseudomonas Genomes in the Pseudomonas Genome Database. Nucleic Acids Res. 2016, 44, D646–D653. [Google Scholar] [CrossRef] [Green Version]
- Depayras, S.; Kondakova, T.; Merlet-Machour, N.; Heipieper, H.J.; Barreau, M.; Catovic, C.; Feuilloley, M.; Orange, N.; Poc, C.D. Impact of Gaseous NO2 on P. Fluorescens Strain in the Membrane Adaptation and Virulence. Int. J. Environ. Impacts 2017, 1, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Baynham, P.J.; Ramsey, D.M.; Gvozdyev, B.V.; Cordonnier, E.M.; Wozniak, D.J. The Pseudomonas aeruginosa Ribbon-Helix-Helix DNA-Binding Protein AlgZ (AmrZ) Controls Twitching Motility and Biogenesis of Type IV Pili. J. Bacteriol. 2006, 188, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Pryor, E.E.; Waligora, E.A.; Xu, B.; Dellos-Nolan, S.; Wozniak, D.J.; Hollis, T. The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes. PLoS Pathog. 2012, 8, e1002648. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.J.; Ryder, C.R.; Mann, E.E.; Wozniak, D.J. AmrZ Modulates Pseudomonas aeruginosa Biofilm Architecture by Directly Repressing Transcription of the Psl Operon. J. Bacteriol. 2013, 195, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.J.; Newsom, D.; Kelly, B.; Irie, Y.; Jennings, L.K.; Xu, B.; Limoli, D.H.; Harrison, J.J.; Parsek, M.R.; White, P.; et al. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic Di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 2014, 10, e1003984. [Google Scholar] [CrossRef]
- Tart, A.H.; Blanks, M.J.; Wozniak, D.J. The AlgT-Dependent Transcriptional Regulator AmrZ (AlgZ) Inhibits Flagellum Biosynthesis in Mucoid, Nonmotile Pseudomonas aeruginosa Cystic Fibrosis Isolates. J. Bacteriol. 2006, 188, 6483–6489. [Google Scholar] [CrossRef] [Green Version]
- Hausladen, A.; Privalle, C.T.; Keng, T.; DeAngelo, J.; Stamler, J.S. Nitrosative Stress: Activation of the Transcription Factor OxyR. Cell 1996, 86, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M.N.; Scott, C.; Thomson, A.J.; Green, J.; Poole, R.K. NO Sensing by FNR: Regulation of the Escherichia coli NO-Detoxifying Flavohaemoglobin. Hmp. EMBO J. 2002, 21, 3235–3244. [Google Scholar] [CrossRef] [Green Version]
- Crawford, M.J.; Goldberg, D.E. Regulation of the Salmonella typhimurium Flavohemoglobin Gene. A New Pathway for Bacterial Gene Expression in Response to Nitric Oxide. J. Biol. Chem. 1998, 273, 34028–34032. [Google Scholar] [CrossRef] [Green Version]
- Membrillo-Hernández, J.; Coopamah, M.D.; Channa, A.; Hughes, M.N.; Poole, R.K. A Novel Mechanism for Upregulation of the Escherichia coli K-12 Hmp (Flavohaemoglobin) Gene by the “NO Releaser”, S-Nitrosoglutathione: Nitrosation of Homocysteine and Modulation of MetR Binding to the GlyA-Hmp Intergenic Region. Mol. Microbiol. 1998, 29, 1101–1112. [Google Scholar] [CrossRef]
- Trunk, K.; Benkert, B.; Quäck, N.; Münch, R.; Scheer, M.; Garbe, J.; Jänsch, L.; Trost, M.; Wehland, J.; Buer, J.; et al. Anaerobic Adaptation in Pseudomonas aeruginosa: Definition of the Anr and Dnr Regulons. Environ. Microbiol. 2010, 12, 1719–1733. [Google Scholar] [CrossRef]
- Gai, Y.; Liu, B.; Ma, H.; Li, L.; Chen, X.; Moenga, S.; Riely, B.; Fayyaz, A.; Wang, M.; Li, H. The Methionine Biosynthesis Regulator AaMetR Contributes to Oxidative Stress Tolerance and Virulence in Alternaria alternata. Microbiol. Res. 2019, 219, 94–109. [Google Scholar] [CrossRef]
- Smith, A.D.; Frazzon, J.; Dean, D.R.; Johnson, M.K. Role of Conserved Cysteines in Mediating Sulfur Transfer from IscS to IscU. FEBS Lett. 2005, 579, 5236–5240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhart, A.; Oglesby-Sherrouse, A. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources. Genes 2016, 7, 126. [Google Scholar] [CrossRef] [PubMed]
- Somprasong, N.; Jittawuttipoka, T.; Duang-nkern, J.; Romsang, A.; Chaiyen, P.; Schweizer, H.P.; Vattanaviboon, P.; Mongkolsuk, S. Pseudomonas aeruginosa Thiol Peroxidase Protects against Hydrogen Peroxide Toxicity and Displays Atypical Patterns of Gene Regulation. J. Bacteriol. 2012, 194, 3904–3912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Le Minh, P.N.; Dötsch, A.; Hildebrand, F.; Panmanee, W.; Elfarash, A.; Schulz, S.; Plaisance, S.; Charlier, D.; Hassett, D.; et al. Global Regulation of Gene Expression by OxyR in an Important Human Opportunistic Pathogen. Nucleic Acids Res. 2012, 40, 4320–4333. [Google Scholar] [CrossRef]
- Aslund, F.; Ehn, B.; Miranda-Vizuete, A.; Pueyo, C.; Holmgren, A. Two Additional Glutaredoxins Exist in Escherichia coli: Glutaredoxin 3 Is a Hydrogen Donor for Ribonucleotide Reductase in a Thioredoxin/Glutaredoxin 1 Double Mutant. Proc. Natl. Acad. Sci. USA 1994, 91, 9813–9817. [Google Scholar] [CrossRef] [Green Version]
Strains/Plasmids | Relevant Phenotype/Genotype | Reference |
---|---|---|
P. fluorescens | ||
MFAF76a (WT) | Airborne isolate, able to grow at 37 °C | [23] |
MFAF76aΔhmp (Δhmp) | MFAF76a with a central deletion of in hmp gene (711 bp) | This study |
MFAF76aΔhmp + pPSV35 (EV) | MFAF76aΔhmp with pPSV35 empty vector, GmR | This study |
MFAF76aΔhmp + hmp (hmp+) | MFAF76aΔhmp with pPSV35 carrying wild-type hmp gene, GmR | This study |
E. coli | ||
S17.1 | RP4-2-Tc::Mu, aph::Tn7, recA, SmR, donor strain for conjugation | [24] |
Top10® | F-mcrA, Δ(mrr-hsdRMS-mcrBC), Φ80lacZΔM15, ΔlacX74, recA1, araD139, Δ(araleu)7697, galU, galK, rpsL, (StrR), endA1, nupG | ThermoFischer Scientific |
Vectors | ||
pAKE604 | Conjugative suicide vector; KmR, ApR, oriT, lacZ, sacB | [25] |
pPSV35 | Pseudomonas aeruginosa oriV, lacIq mob+, PlacUV5, pUC18MCS, expression vector, GmR | [26] |
Primer Name | Primer Sequence (5′→3′) | Tm (°C) |
---|---|---|
Mutagenesis primers | ||
Muta1-hmp | CATCGACGAATAAAGGACAG | 59 |
Muta2-NdeI-hmp | TAATAACATATGATGATTTTGGCCACCA | 57 |
Muta3-NdeI-hmp | TAATAACATATGCTATTGCTATGCCGAAGAAG | 58 |
Muta4-XbaI-hmp | TAATAATCTAGACGGCAGATCATCGACAAT | 61 |
Surexpression primers | ||
hmp-EcoRI-F | TAATAAGAATTCAGTCACCTTATGCTTAGCG | 56 |
hmp-XbaI-R | TAATAATCTAGATTGCCTTTCCTTTGTAAGTC | 57 |
Accession | Protein | Fold Change | Anova (p) | ||
---|---|---|---|---|---|
Transcriptional regulators | PflA506_3874 | transcriptional regulator Anr | 3.4 | 5.4 × 10−3 | ** |
PflA506_4567 | ferric uptake regulation protein Fur | −4.6 | 5.8 × 10−3 | ** | |
PflA506_1087 | transcriptional regulator MetR | 1.8 | 4.6 × 10−3 | ** | |
ROS/RNS degradation | PflA506_0070 | catalase HPII KatE | −7.8 | 1.0 × 10−2 | * |
PflA506_1119 | AhpC/TSA family antioxidant protein | 2.1 | 1.2 × 10−3 | ** | |
PflA506_3912 | nitrite reductase NirB large subunit | −3.3 | 9.9 × 10−5 | *** | |
PflA506_2948 | thiol peroxidase Tpx | 3.7 | 8.9 × 10−6 | **** | |
Iron Sulfur cluster | PflA506_4376 | iron-sulfur cluster assembly transcription factor IscR | 2.4 | 7.6 × 10−4 | *** |
PflA506_4375 | cysteine desulfurase IscS | −2.6 | 2.1 × 10−3 | ** | |
PflA506_4374 | FeS cluster assembly scaffold IscU | 2.4 | 4.0 × 10−3 | ** | |
PflA506_4371 | Fe-S protein assembly chaperone HscA | 2.6 | 2.1 × 10−3 | ** | |
Haem Biosynthesis | PflA506_5216 | HemY protein | −2.1 | 5.1 × 10−3 | ** |
Thiol repair | PflA506_1116 | monothiol glutaredoxin Grx | 7.2 | 1.4 × 10−2 | * |
PflA506_5190 | thioredoxin TrxA | 8.0 | 5.5 × 10−3 | ** | |
DNA synthesis and repair | PflA506_5246 | xanthine phosphoribosyltransferase | 2.3 | 2.9 × 10−4 | *** |
PflA506_0886 | uracil phosphoribosyltransferase | 2.2 | 7.6 × 10−5 | *** | |
PflA506_1266 | deoxycytidine triphosphate deaminase | −2.2 | 4.1 × 10−3 | ** | |
PflA506_3496 | amidophosphoribosyltransferase | −2.2 | 9.8 × 10−3 | ** | |
PflA506_0592 | bifunctional purine biosynthesis protein PurH | −2.8 | 5.3 × 10−3 | ** | |
PflA506_5335 | phosphoribosylaminoimidazole carboxylase ATPase subunit | 2.0 | 1.1 × 10−3 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chautrand, T.; Depayras, S.; Souak, D.; Bouteiller, M.; Kondakova, T.; Barreau, M.; Ben Mlouka, M.A.; Hardouin, J.; Konto-Ghiorghi, Y.; Chevalier, S.; et al. Detoxification Response of Pseudomonas fluorescens MFAF76a to Gaseous Pollutants NO2 and NO. Microorganisms 2022, 10, 1576. https://doi.org/10.3390/microorganisms10081576
Chautrand T, Depayras S, Souak D, Bouteiller M, Kondakova T, Barreau M, Ben Mlouka MA, Hardouin J, Konto-Ghiorghi Y, Chevalier S, et al. Detoxification Response of Pseudomonas fluorescens MFAF76a to Gaseous Pollutants NO2 and NO. Microorganisms. 2022; 10(8):1576. https://doi.org/10.3390/microorganisms10081576
Chicago/Turabian StyleChautrand, Thibault, Ségolène Depayras, Djouhar Souak, Mathilde Bouteiller, Tatiana Kondakova, Magalie Barreau, Mohamed Amine Ben Mlouka, Julie Hardouin, Yoan Konto-Ghiorghi, Sylvie Chevalier, and et al. 2022. "Detoxification Response of Pseudomonas fluorescens MFAF76a to Gaseous Pollutants NO2 and NO" Microorganisms 10, no. 8: 1576. https://doi.org/10.3390/microorganisms10081576
APA StyleChautrand, T., Depayras, S., Souak, D., Bouteiller, M., Kondakova, T., Barreau, M., Ben Mlouka, M. A., Hardouin, J., Konto-Ghiorghi, Y., Chevalier, S., Merieau, A., Orange, N., & Duclairoir-Poc, C. (2022). Detoxification Response of Pseudomonas fluorescens MFAF76a to Gaseous Pollutants NO2 and NO. Microorganisms, 10(8), 1576. https://doi.org/10.3390/microorganisms10081576