Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macrofungi
2.2. Solid-State Fermentation (SSF) in JSC and CSC
2.3. Quantification of Phorbol Esters and Gossypol
2.4. Determination of the Antioxidant Activity
2.5. Determination of Enzymatic Activities
2.6. Determination of Total Soluble Proteins in the Extracts
2.7. Biomass Bromatological Analysis
2.8. Determination of the Structural Carbohydrate Profile (Cellulose, Hemicellulose, and Lignin) in Biomass
2.9. Determination of Ergosterol
2.10. Determination of the Amino Acids Profile
2.11. Statistical Analysis
3. Results
3.1. Selection of Macrofungi
3.2. Cake Biodetoxification by Macrofungi
3.3. Degradation Kinetics of Toxic Compounds
3.4. Determination of Antioxidant Activity
3.5. Determination of Total Soluble Proteins and Enzymatic Activity
3.6. Bromatological Analysis of the Fermented SSF-JSC and SSF-CSC
3.7. Structural Carbohydrates (Cellulose, Hemicellulose, and Lignin) by NREL Analysis Methods
3.8. Determination of Ergosterol
3.9. Composition of Amino Acids
4. Discussion
4.1. Selection of Macrofungi
4.2. Cake Biodetoxification by Macrofungi
4.3. Degradation Kinetics of Toxic Compounds
4.4. Determination of Antioxidant Activity
4.5. Determination of Total Soluble Proteins and Enzymatic Activity
4.6. Bromatological Analysis of the Fermented SSF-JSC and SSF-CSC
4.7. Structural Carbohydrates (Cellulose, Hemicellulose, and Lignin) by NREL Analysis Methods
4.8. Determination of Ergosterol
4.9. Composition of Amino Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—A review. Biom. Bioen. 2020, 134, 105481. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, P.; Zhu, Z.; Chen, C.; Xu, X. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw by Inonotus obliquus under submerged fermentation with the aid of a surfactant. J. Sci. Food Agric. 2021, 101, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a potential source of prebiotics: A review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Kersten, P.; Cullen, D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 2007, 44, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Harvatine, D.I.; Firkins, J.L.; Eastridge, M.L. Whole linted cottonseed as a forage substitute fed with ground or steam-flaked corn: Digestibility and performance 1,2. J. Dairy Sci. 2002, 85, 1976–1987. [Google Scholar] [CrossRef]
- King, A.J.; He, W.; Cuevas, J.A.; Freudenberger, M.; Ramiaramanana, D.; Graham, I.A. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 2009, 60, 2897–2905. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added co-products. Eur. J. Lipid Sci. Technol. 2009, 111, 773–787. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia. 2014, 38, 109–112. [Google Scholar] [CrossRef]
- Ribeiro, J.A.d.A.; Ferreira, O.R.; Mendonca, S.; Abdelnur, P.V.; Rodrigues, C.M. Desenvolvimento de método RP-UPLC-PDA para determinação de ésteres de forbol em Jatropha curcas. In Simpósio Brasileiro de Cromatografia e Técnicas Afins; SIMCRO: Campos o Jordão, Brazil, 2014. [Google Scholar]
- Conceição, A.A.; Neto, C.B.S.; de Aquino Ribeiro, J.A.; de Siqueira, F.G.; Miller, R.N.G.; Mendonça, S. Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLoS ONE 2018, 13, e0196164. [Google Scholar] [CrossRef]
- Asolini, F.C.; Tedesco, A.M.; Carpes, S.T.; Ferraz, C.; de Alencar, S.M. Atividade antioxidante e antibacteriana dos compostos fenólicos dos extratos de plantas usadas como chás. Braz. J. Food Technol. 2006, 9, 209–215. [Google Scholar]
- Rufino, M.d.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.d.G.; Pérez-Jiménez, J.; Calixto, F.D.S. Determination of total antioxidant activity in fruits by capturing the free radical ABTS+. Embrapa Agroindústria Trop. Técnico. 2007, 128, 1–4. [Google Scholar]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Charney, J.; Tomarelli, R.M. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J. Biol. Chem. 1947, 171, 501–505. [Google Scholar] [CrossRef]
- Wolfenden, B.S.; Willson, R.L. Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: Pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J. Chem. Soc. Perkin Trans. 2004, 2, 805–812. [Google Scholar] [CrossRef]
- Heinzkill, M.; Bech, L.; Halkier, T.; Schneider, P.; Anke, T. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl. Environ. Microbiol. 1998, 64, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Storms, R.; Tsang, A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol. Bioeng. 2004, 88, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Edivaldo Filho, X.F.; Puls, J.; Coughlan, M.P. Physicochemical and catalytic properties of a low-molecular-weight endo-1, 4-β-d-xylanase from Myrothecium verrucaria. Enzym. Microb. Technol. 1993, 15, 535–540. [Google Scholar] [CrossRef]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- AOCS: Official procedure, approved procedure Am 5-04, Rapid determination of oil/fat utilizing high temperature solvent extraction. Am. Oil Chem. Soc. 2005.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass, Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2005; Volume 19.
- Sluiter, A.; Hyman, D.; Payne, C.; Wolfe, J.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; et al. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2011; pp. 1–9.
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2008; pp. 1–9.
- Steudler, S.; Bley, T. Biomass estimation during macro-scale solid-state fermentation of basidiomycetes using established and novel approaches. Bioprocess Biosyst. Eng. 2015, 38, 1313–1323. [Google Scholar] [CrossRef]
- Hagen, S.R.; Frost, B.; Augustin, J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J. Assoc. Off. Anal. Chem. 1989, 72, 912–916. [Google Scholar] [CrossRef] [PubMed]
- White, J.A.; Hart, R.J.; Fry, J.C. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Automat. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Bidlan, R.; Shrivastav, A.K.; Goswami, R.K. Optimization of protein extraction from detoxifed Jatropha seed cake using response surface methodology and amino acid analysis. Int. J. Environ. Sci. Technol. 2020, 17, 1087–1100. [Google Scholar] [CrossRef]
- Bose, A.; Keharia, H. Phorbol ester degradation in Jatropha seedcake using white-rot fungi. 3 Biotech 2014, 4, 447–450. [Google Scholar] [CrossRef]
- Insanu, M.; Dimaki, C.; Wilkins, R.; Brooker, J.; Van Der Linde, P.; Kayser, O. Rational use of Jatropha curcas L. in food and medicine: From toxicity problems to safe applications. Phytochem. Rev. 2013, 12, 107–119. [Google Scholar] [CrossRef]
- Kasuya, M.C.M.; da Luz, J.M.R.; da Silva Pereira, L.P.; da Silva, J.S.; Montavani, H.C.; Rodrigues, M.T. Bio-detoxification of jatropha seed cake and its use in animal feed. Biodiesel-Feedstocks Prod. Appl. 2012, 1, 39-30. [Google Scholar]
- Barros, C.; Ferreira, L.; Nunes, F.M.; Bezerra, R.; Dias, A.; Guedes, C.; Cone, J.; Marques, G.; Rodrigues, M. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. Eng. Life Sci. 2011, 11, 107–110. [Google Scholar] [CrossRef]
- Mageshwaran, V.; Majee, S.; Pandiyan, K. Isolation and Identification of Potential Gossypol Degrading Fungal Strains from Cotton Growing Soil. Microbiol. Res. J. Int. 2017, 21, 1–6. [Google Scholar] [CrossRef]
- Rajarathnam, S.; Shashirekha, M.N.; Bano, Z. Biodegradation of gossypol by the white oyster mushroom, Pleurotus florida, during culturing on rice straw growth substrate, supplemented with cottonseed powder. World J. Microbiol. Biotechnol. 2001, 17, 221–227. [Google Scholar] [CrossRef]
- Zhang, W.J.; Xu, Z.R.; Sun, J.Y.; Yang, X. Effect of selected fungi on the reduction of gossypol levels and nutritional value during solid substrate fermentation of cottonseed meal. J. Zhejiang Univ. Sci. B. 2006, 7, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Soares Neto, C.B.; Conceição, A.A.; Gomes, T.G.; de Aquino Ribeiro, J.A.; Campanha, R.B.; Barroso, P.A.V.; Machado, A.E.V.; Mendonça, S.; De Siqueira, F.G.; Miller, R.N.G. A Comparison of Physical, Chemical, Biological and Combined Treatments for Detoxification of Free Gossypol in Crushed Whole Cottonseed. Waste Biomass Valoriz. 2021, 12, 3965–3975. [Google Scholar] [CrossRef]
- Sharath, B.S.; Mohankumar, B.V.; Somashekar, D. Bio-detoxification of Phorbol Esters and Other Anti-nutrients of Jatropha curcas Seed Cake by Fungal Cultures Using Solid-State Fermentation. Appl. Biochem. Biotechnol. 2014, 172, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Devappa, R.K.; Swamylingappa, B. Biochemical and nutritional evaluationof Jatropha protein isolate prepared bysteam injection heating for reduction of toxicand antinutritional factors. J. Sci. Food Agric. 2008, 88, 911–919. [Google Scholar] [CrossRef]
- Kersten, P.; Cullen, D. Copper radical oxidases and related extracellular oxidoreductases of wood-decay agaricomycetes. Fungal Genet Biol. 2014, 72, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.B.; de Siqueira, F.G.; Campanha, R.B.; de Aquino Ribeiro, J.A.; Magalhães, P.O.; Mendonça, S. Evaluation of Bio-detoxification of Jatropha curcas Seed Cake and Cottonseed Cake by Basidiomycetes: Nutritional and Antioxidant Effects. Waste Biomass Valoriz. 2022, 13, 1475–1490. [Google Scholar] [CrossRef]
- Khasanov, A.; Davranov, K.; Hasanov, H. Antioxidant Activity of Peptides Obtained from Cotton Ground Oil-Cake Proteins. J. Food Sci. Eng. 2017, 7, 147–150. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Patil, S.; Saxena, S.; Patil, P.G.; Mageshwaran, V.; Punia, S.; Varghese, E.; Mahapatra, A.; Ashtaputre, N.; et al. Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. LWT-Food Sci. Technol. 2021, 140, 110692. [Google Scholar] [CrossRef]
- Lim, S.J. A Microbial Fermentation of Soybean and Cottonseed MealIncreases Antioxidant Activity and Gossypol Detoxificationin Diets for Nile tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2011, 42, 494–503. [Google Scholar] [CrossRef]
- Maria Fedatto, L.; Silva-Stenico, M.E.; Etchegaray, A.; Pacheco, F.T.H.; Rodrigues, J.L.M.; Tsai, S.M. Detection and characterization of protease secreted by the plant pathogen Xylella fastidiosa. Microbiol. Res. 2006, 161, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, J.Y.; Guo, J.L.; Weng, X.Y. Identification and proteomic analysis of a novel gossypol-degrading fungal strain. J. Sci. Food Agric. 2012, 92, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Nandal, P.; Ravella, S.R.; Kuhad, R.C. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid-state fermentation by Taguchi DOE methodology. Sci. Rep. 2013, 3, 1386. [Google Scholar] [CrossRef] [PubMed]
- Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int. Biodeterior. Biodegrad. 2014, 90, 71–78. [Google Scholar] [CrossRef]
- Saparrat, M.; Balatti, P.A.; Martínez, M.J.; Jurado, M. Differential regulation of laccase gene expression in Coriolopsis rigida LPSC No. 232. Fungal Biol. 2010, 114, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Cabana, H.; Alexandre, C.; Agathos, S.N.; Jones, J.P. Immobilization of laccase from the white-rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine-disrupting chemicals. Bioresour. Technol. 2009, 100, 3447–3458. [Google Scholar] [CrossRef]
- Islam, M.; Wai, A.; Hausner, G.; Yuan, Q. Effect of lignocellulosic enzymes on the treatment of mature landfill leachate. J. Environ. Manag. 2019, 233, 400–409. [Google Scholar] [CrossRef]
- Jaszek, M.; Grzywnowicz, K.; Malarczyk, E.; Leonowicz, A. Enhanced extracellular laccase activity as a part of the response system of white-rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pestic. Biochem. Physiol. 2006, 85, 147–154. [Google Scholar] [CrossRef]
- Ncube, T.; Howard, R.L.; Abotsi, E.K.; van Rensburg, E.L.J.; Ncube, I. Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind. Crops Prod. 2012, 37, 118–123. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 2019. [Google Scholar]
- Wang, Y.; Luo, Y.; Luo, L.; Zhang, H.; Liao, Y.; Gou, C. Enhancement of the nutritional value of fermented corn stover as ruminant feed using the fungi Pleurotus spp. Sci. Rep. 2021, 11, 11961. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, F.; Fang, Y.; Zhou, D.; Wang, S.; Wu, D.; Wang, L.; Zhong, R. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed. Bioresour. Technol. 2020, 312, 123512. [Google Scholar] [CrossRef] [PubMed]
- Omojasola, P.F.; Benu, O.E. Fermentative production of gibberellic acid from Jatropha curcas seed cake using Aspergillus niger and Aspergillus terreus. FUTA J. Res. Sci. 2016, 12, 242–251. [Google Scholar]
- Sanusi, G.O.; Belewu, M.A.; Oduguwa, B.O.; Enujiugha, T.F.; Oluwole, J.Y.T.; Okunlola, A.I. Changes in chemical composition of Jatropha curcas kernel cake after solid-state fermentation using some selected fungi. Glob. J. Biol. Agric. Health Sci. 2013, 2, 62–66. [Google Scholar]
- Nayan, N.; Sonnenberg, A.S.M.; Hendriks, W.H.; Cone, J.W. Variation in the solubilization of crude protein in wheat straw by different white-rot fungi. Anim. Feed Sci. Technol. 2018, 242, 135–143. [Google Scholar] [CrossRef]
- Ojediran, T.K.; Ogunmola, B.T.; Ajayi, A.O.; Adepoju, M.A.; Odelade, K.; Emiola, I.A. Nutritive value of processed dietary fungi treated Jatropha curcas L. kernel meals: Voluntary intake, growth, organ weight and hepatic histology of broiler chicks. Trop. Agric. 2016, 93, 101–110. [Google Scholar]
- Peter, C.M.; Han, Y.; Boling-Frankenbach, S.D.; Parsons, C.M.; Baker, D.H. Limiting order of amino acids and the effects of phytase on protein quality in maize gluten meal fed to young chicks. J. Anim. Sci. 2000, 78, 2150–2156. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. Amino Acids as Multifunctional Molecules. In Amino Acids in Animal Nutrition, 2nd ed.; International, Cap. 1.; CABI Publishing: Cambridge, MA, USA; Wallingford, UK, 2003. [Google Scholar]
- Silva, F.F.; Filho, S.C.V.; Ítavo, L.C.V.; Veloso, C.M.; Valadares, R.F.D.; Cecon, P.R.; Moraes, E.H.B.K.; Paulino, P.V.R. Exigências Líquidas de Aminoácidos para Ganho de Peso de Nelores Não-Castrados. Rev. Bras. Zootec. 2002, 31, 765–775. [Google Scholar] [CrossRef]
Samples | JSC Raw | JSC (Autoclaved) | SSF-JSC Coriolopsis sp. INPA1646 | CSC Raw | CSC (Autoclaved) | SSF-CSC Tyromices sp. INPA1696 |
---|---|---|---|---|---|---|
DM | 97.12 ± 0.16 a | 97.20 ± 0.05 a | 87.18 ± 0.12 d | 93.73 ± 0.47 c | 95.41 ± 0.47 b | 82.99 ± 0.09 e |
Ashes | 4.66 ± 0.05 d | 4.52 ± 0.10 d | 5.33 ± 0.19 b | 5.47 ± 0.05 b | 5.00 ± 0.08 c | 6.80 ± 0.15 a |
CP | 27.35 ± 1.12 a | 28.59 ± 1.20 a | 28.27 ± 1.04 a | 21.19 ± 1.58 b | 20.73 ± 0.8 b | 23.58 ± 2.24 b |
EP | 19.17 ± 0.69 b | 18.82 ± 0.11 b | 16.42 ± 0.66 d | 20.96 ± 2.36 a | 20.94 ± 1.06 a | 18.03 ± 0.87 c |
SP | 8.18 ± 0.48 c | 9.77 ± 0.85 b | 11.85 ± 0.97 a | 0.23 ± 0.05 d | 0.21 ± 0.06 d | 11.50 ± 1.14 a |
NDF | 52.74 ± 1.24 d | 53.64 ± 0.55 c | 56.89 ± 0.83 a | 51.10 ± 1.99 d | 54.55 ± 1.65 b | 54.03 ± 1.96 b |
ADF | 40.54 ± 0.76 b | 35.25 ± 0.44 d | 45.22 ± 0.62 a | 34.89 ± 0.56 d | 36.96 ± 0.32 c | 40.29 ± 1.47 b |
CF | 37.54 ± 1.34 a | 34.00 ± 0.32 b | 38.50 ± 0.78 a | 28.80 ± 2.19 cd | 28.82 ± 0.47 d | 30.90 ± 0.66 c |
Lig | 23.36 ± 0.41 b | 19.21 ± 0.45 c | 28.72 ± 0.55 a | 9.19 ± 0.51 b | 10.09 ± 0.35 b | 14.27 ± 0.35 a |
EE | 12.62 ± 0.07 a | 13.16 ± 0.46 a | 5.07 ± 0.42 b | 3.53 ± 0.19 c | 0.48 ± 0.12 e | 0.84 ± 0.02 d |
Component | JSC Raw | JSC Autoclaved | SSF-JSC Coriolopsis sp. INPA1646 | CSC Raw | CSC Autoclaved | SSF-CSC Tyromyces sp. INPA1696 |
---|---|---|---|---|---|---|
Glucan | 17.67 ± 0.12 e | 19.99 ± 0.54 d | 19.87 ± 0.48 d | 24.65 ± 0.61 c | 26.37 ± 1.18 b | 38.31 ± 1.67 a |
Xylan | 11.62 ± 0.37 a | 11.84 ± 0.35 a | 11.64 ± 0.27 a | 10.32 ± 0.79 b | 10.18 ± 3.54 b | 9.95 ± 0.94 b |
Mannan | 1.61 ± 0.09 a | 1.53 ± 0.01 b | 1.52 ± 0.05 b | 0.0 | 0.0 | 0.0 |
Arabinan | 1.64 ± 0.16 b | 1.24 ± 0.04 c | 0.31 ± 0.01 e | 3.11 ± 0.05 a | 1.09 ± 0.32 c | 0.44 ± 0.06 d |
Galactan | 1.00 ± 0.06 a | 0.86 ± 0.04 b | 0.36 ± 0.02 e | 1.01 ± 0.03 a | 0.77 ± 0.03 c | 0.40 ± 0.02 d |
Ramnan | 0.83 ± 0.08 b | 0.58 ± 0.07 c | 1.38 ± 0.11 a | 0.0 | 0.0 | 0.0 |
Cellulose | 17.67 ± 0.12 d | 19.99 ± 0.54 c | 19.87 ± 0.47 c | 24.65 ± 0.61 b | 26.37 ± 1.18 b | 38.31 ± 1.67 a |
Hemicellulose | 16.70 ± 0.75 a | 16.06 ± 0.52 a | 15.19 ± 0.46 b | 14.96 ± 0.87 b | 14.59 ± 3.89 bc | 11.83 ± 1.02 c |
Lignin | 22.02 ± 0.60 d | 21.61 ± 0.32 e | 25.68 ± 0.50 c | 34.93 ± 1.03 a | 43.93 ± 3.58 a | 39.12 ± 1.96 b |
Amino Acids | JSC Raw | JSC Autoclaved | SSF-JSC Coriolopsis sp. INPA1646 | CSC Raw | CSC Autoclaved | SSF-CSC Tyromyces sp. INPA1696 |
---|---|---|---|---|---|---|
Essential | ||||||
Histidine | 0.58% | 0.48% | 0.46% | 0.70% | 0.67% | 0.55% |
Isoleucine | 0.97% | 0.86% | 0.73% | 0.84% | 0.83% | 0.79% |
Leucine | 1.63% | 1.47% | 1.23% | 1.52% | 1.52% | 1.25% |
Lysine | 0.77% | 0.55% | 0.63% | 0.99% | 0.96% | 0.91% |
Methionine | 0.28% | 0.27% | 0.22% | 0.36% | 0.36% | 0.31% |
Phenylalanine | 1.01% | 0.90% | 0.76% | 1.35% | 1.35% | 0.98% |
Threonin | 0.83% | 0.75% | 0.69% | 0.82% | 0.83% | 0.85% |
Tryptophan | 0.11% | 0.12% | 0.11% | 0.13% | 0.11% | 0.11% |
Valine | 1.14% | 1.03% | 0.88% | 1.07% | 1.11% | 1.03% |
Arginine | 2.51% | 2.09% | 1.38% | 2.78% | 2.70% | 2.01% |
Nonessential | ||||||
Alanine | 1.05% | 0.95% | 0.86% | 0.97% | 0.98% | 0.96% |
Aspartic acid | 2.06% | 1.80% | 1.82% | 2.26% | 2.19% | 2.14% |
Cystine | 0.37% | 0.34% | 0.32% | 0.40% | 0.40% | 0.33% |
Glutamic acid | 3.40% | 3.08% | 2.29% | 5.02% | 4.89% | 3.73% |
Glycine | 1.01% | 0.90% | 0.89% | 1.08% | 1.09% | 0.98% |
Proline | 0.94% | 0.84% | 0.73% | 0.94% | 0.93% | 0.88% |
Tyrosine | 0.65% | 0.58% | 0.44% | 0.76% | 0.74% | 0.62% |
Serine | 1.12% | 1.01% | 0.94% | 1.17% | 1.13% | 1.03% |
Taurine | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Total amino acids | 20.44% | 18.02% | 15.37% | 23.16% | 22.78% | 19.45% |
Crude protein | 22.98% | 22.56% | 26.63% | 28.43% | 29.13% | 30.89% |
Common Core | Additional Species-Related Requirements | Conditionally Non-Essential | Non-Essential |
---|---|---|---|
Lysine | Arginine (cats, poultry, fish) | Cyst(e)ine | Glutamate |
Histidine | Taurine (cats) | Tyrosine | Glutamine |
Leucine | Arginine | Glycine | |
Isoleucine | Proline | Serine | |
Valine | Alanine | ||
Methionine | Aspartate | ||
Threonine | Asparagine | ||
Tryptophan | |||
Phenylalanine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, J.R.B.; Wischral, D.; Pelaez, R.D.R.; de Jesus, M.A.; Sales-Campos, C.; Campanha, R.B.; Mendes, T.D.; Mendonça, S.; Dias, E.S.; de Siqueira, F.G. Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes. Microorganisms 2022, 10, 1670. https://doi.org/10.3390/microorganisms10081670
Cunha JRB, Wischral D, Pelaez RDR, de Jesus MA, Sales-Campos C, Campanha RB, Mendes TD, Mendonça S, Dias ES, de Siqueira FG. Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes. Microorganisms. 2022; 10(8):1670. https://doi.org/10.3390/microorganisms10081670
Chicago/Turabian StyleCunha, Joice Raísa Barbosa, Daiana Wischral, Ruben Darío Romero Pelaez, Maria Aparecida de Jesus, Ceci Sales-Campos, Raquel Bombarda Campanha, Thais Demarchi Mendes, Simone Mendonça, Eustáquio Souza Dias, and Félix Gonçalves de Siqueira. 2022. "Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes" Microorganisms 10, no. 8: 1670. https://doi.org/10.3390/microorganisms10081670
APA StyleCunha, J. R. B., Wischral, D., Pelaez, R. D. R., de Jesus, M. A., Sales-Campos, C., Campanha, R. B., Mendes, T. D., Mendonça, S., Dias, E. S., & de Siqueira, F. G. (2022). Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes. Microorganisms, 10(8), 1670. https://doi.org/10.3390/microorganisms10081670