Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications
Abstract
:1. Introduction
2. Gut Dysbiosis in IBS
3. The Role of Dysbiosis in IBS Pathogenesis
4. Microbiota Changes in IBS Subtypes
4.1. Microbiota Composition in IBS Subtypes
4.2. Microbiota Metabolites in IBS Subtypes
4.3. Methanogenic Species in IBS Subtypes
Author (Year) | Country | Study Type | Sample Size | IBS Subtype | Type of Analysis | Sample Type | Rome Criteria | Results |
---|---|---|---|---|---|---|---|---|
Carroll et al. (2011) [77] | USA | Prospective monocentric | 37 (16/21) | IBS-D | 16S rRNA T-RFLP | Fecal Mucosal | Rome III | Higher level of microbial biodiversity in fecal- than in mucosal-associated communities within IBS-D (p = 0.008) |
Rajilić-Stojanović et al (2011) [87] | Europe | Prospective monocentric | 108 (62/46) | IBS-D IBS-C IBS-M | 16S rRNA qPCR | Fecal | Rome II | IBS-C had increased Firmicutes (including Clostridium spp.) (p < 0.05) and decreased Actinobacteria and Bacteroidetes (p < 0.01) vs. controls |
Durbàn et al. (2012) [85] | Europe | Prospective monocentric | 16/9 | IBS-D IBS-C | 16S rRNA qPCR | Fecal Mucosal | Rome II | IBS-D had increased fecal Acinetobacter (OR = 16.7, p = 0.02), Butyricimonas (OR = 2.29, p = 0.004), and Odoribacter (OR = 6.11, p = 0.003), but decreased mucosal Oribacterium (OR = 0.17, p = 0.04), Brevundimonas (OR = 0.09, p = 0.0009), and Butyricicoccus (OR = 0.38, p = 0.026) vs. controls. IBS-C had increased fecal Alistipes (OR = 5.82, p = 0.01) and Butyricimonas (OR = 3.27, p = 0.004) and increased mucosal Bacteroides (OR = 3.15, p = 0.003), but decreased Coprococcus (OR = 0.03, p = 0.007), Fusobacterium (OR = 0.02, p = 0.003), Streptococcus (OR = 0.06, p = 0.007), and Veillonella (OR = 0.03, p = 0.04) in feces vs. controls. |
Carroll et al. (2012) [80] | USA | Prospective monocentric | 46 23/23 | IBS-D | 16S rRNA qPCR | Fecal | Rome III | Higher Enterobacteriaceae (p = 0.03) and lower Fecalibacterium genera (p = 0.04) |
Parkes et al. (2012) [88] | Europe | Prospective monocentric | 47/26 | IBS-D IBS-C | FISH | Mucosal (rectum) | Rome III | IBS-D had lower bifidobacteria vs. IBS-C and controls (p = 0.011). In IBS, maximum stools/day negatively correlated with mucosal Bifidobacteria (p < 0.001) and Lactobacilli (p = 0.002). |
Chassard et al. (2012) [89] | Europe | Prospective multicentric | 14/12 | IBS-C | 16S rRNA FISH | Fecal | Rome II | IBS-C had lower lactate-producing/utilizing bacteria and methanogens/acetogens (p < 0.05), but 10–100× higher H2/lactate-utilizing sulfate reducers vs. controls. Roseburia-E. rectale butyrate producers were lower in IBS-C (p < 0.05–0.01). Mucosal vs. fecal microbiota differed significantly (p = 0.002) regardless of IBS characteristics. Mucosal microbiota was dominated by Bacteroidetes, fecal by Firmicutes/Actinobacteria/Proteobacteria. Controls had higher uncultured Clostridiales (p < 0.005) in mucosa than IBS. |
Rangel et al. (2015) [78] | Europe | Retrospective monocentric | 49 33/16 | IBS-D IBS-C IBS-M IBS-U | 16S rRNA Phylogenetic microarray | Fecal Mucosal | Rome III | Mucosal vs. fecal microbiota differed significantly (p = 0.002), independent of IBS characteristics. Mucosa was dominated by Bacteroidetes, feces by Firmicutes/Actinobacteria/Proteobacteria. Controls had higher uncultured Clostridiales (p < 0.005) in mucosa vs. IBS. Fecal bacterial diversity higher than mucosal in IBS (p < 0.005). |
Pozuelo et al. (2015) [86] | Europe | Prospective multicentric | 113/66 | IBS-D IBS-C IBS-M | 16S rRNA qPCR | Fecal | Rome III | IBS had lower microbial diversity associated with lower butyrate-producing bacteria, especially in IBS-D/M (p = 0.002). Untreated IBS had lower Methanobacteria vs. controls (p = 0.005). Bacterial taxa was correlated with flatulence/abdominal pain (p < 0.05). |
Shukla et al. (2015) [83] | Asia | Prospective monocentric | 47/30 | IBS-D IBS-C IBS-U | 16S rRNA qPCR | Fecal | Rome III | Relative difference of Bifidobacterium (p = 0.042) was lower, while Ruminococcus productus-Clostridium coccoides (p = 0.016), Veillonella (p = 0.008), Bacteroides thetaiotamicron (p < 0.001), and Pseudomonas aeruginosa (p < 0.001) were higher among IBS patients than controls. Lactobacillus (p = 0.002) was lower, while Bacteroides thetaiotamicron (p < 0.001) and segmented filamentous bacteria (SFB, p < 0.001) were higher among IBS-D than IBS-C. Numbers of Bacteroides thetaiotamicron (p < 0.001), P. aeruginosa (p < 0.001), and Gram- (p < 0.01) were higher among IBS-C and IBS-D than controls. Quantity of SFB was higher among IBS-D (p = 0.011) and lower among IBS-C (p = 0.002). Veillonella species was higher among IBS-C than controls (p = 0.002). |
Liu et al. (2017) [84] | Europe Asia USA | Systematic review and meta-analysis | 360 (13 studies) | IBS-D IBS-C IBS-M | qPCR | Fecal Mucosal | Rome II Rome III | Subgroup analysis showed IBS-D patients had significantly different expression of Lactobacillus (SMD = −1.81, p < 0.001) and Bifidobacterium (SMD = −1.45, p < 0.001). |
Zhuang et al. (2018) [79] | Asia | Prospective monocentric | 43 30/13 | 16S rRNA pyrosequencing | Fecal | Rome III | IBS-D had decreased fecal microbiota richness (p < 0.05) but not diversity vs. controls: Bacteroidetes (64.6%), Firmicutes (26.1%), Fusobacteria (5.2%), and Proteobacteria (3.7%). | |
Li et al. (2018) [81] | Asia | Prospective Monocentric | 33/15 | IBS-D | 16S rRNA pyrosequencing | Mucosal (duodenum + rectum) | Rome III | Mucosal microbiota in duodenal samples differed from rectal samples in HC (p = 0.003), while less difference was shown in IBS-D (p = 0.052). Identified 24 genera were shared in duodenum and rectum, which both changed in IBS-D. |
Sun et al. (2019) [102] | Europe, USA, Asia, Australia | Systematic review and meta-analysis | 448 (15 studies) | IBS-D IBS-C IBS-M IBS-U | 16S rRNA | Fecal | Rome I Rome II Rome III | IBS had higher fecal SCFAs vs. controls (SMD = 0.44). IBS-C had lower propionate (SMD = −0.91) and butyrate (SMD = −0.53) than controls. IBS-D had higher butyrate than controls. |
Wang et al. (2020) [41] | Europe USA Asia | Systematic review and meta-analysis | 208 | IBS-D | 16S rRNA qPCR | Fecal | Rome IV | Lower Lactobacillus (MD = −0.62 log10CFU/g); Lower Bifidobacterium (MD = −0.86 log10CFU/g); Higher E. coli (MD = −40.77 log10CFU/g); Lower Lactobacillus (MD = −0.43 log10CFU/g); Lower Bifidobacterium (MD = −1.76 log10CFU/g). |
105 | IBS-C | Fecal |
5. Microbiota-Targeted Therapeutic Approaches in IBS
5.1. Antibiotics
5.2. Probiotics, Prebiotics, Synbiotics, and Postbiotics
5.3. Fecal Microbiota Transplantation
5.4. Diet
Author (Year) | Therapy | Study Type | Sample Size | Results | IBS Subtype |
---|---|---|---|---|---|
ANTIBIOTICS | |||||
Pimentel et al. (2011) [123] | Rifaximin | Two identically designed, phase 3, double-blind, placebo-controlled RCTs | 1260 | More patients in rifaximin group had relief from global IBS symptoms during the first 4 weeks after treatment vs. placebo (40.7% vs. 31.7%, p < 0.001). More rifaximin patients had adequate bloating relief versus placebo (40.2% vs. 30.3%, p < 0.001,). Rifaximin patients responded with daily IBS symptom, bloating, abdominal pain, and stool consistency ratings. | IBS-D |
Lembo et al. (2016) [122] | Rifaximin | Phase 3, randomized, double-blind, placebo-controlled trial | 1074 | Rifaximin had a greater percentage of responders than placebo (38.1% vs. 31.5%, p = 0.03), specifically for abdominal pain (50.6% vs. 42.2%, p = 0.018) but not stool consistency (51.8% vs. 50.0%, p = 0.42). Rifaximin also showed significant improvements in recurrence prevention, durable response, and bowel urgency compared to placebo. Adverse events were low and similar between groups. | IBS-D |
Fodor et al. (2019) [124] | Rifaximin | Phase 3, randomized, double-blind, placebo-controlled trial | 103 | Rifaximin treatment resulted in significantly lower relative abundance of seven taxa such as Peptostreptococcaceae, Verrucomicrobiaceae, and Enterobacteriaceae (10% false discovery rate). However, these effects were short-term, with no significantly different changes in taxa abundance at the end of the 46-week study versus baseline. | IBS-D |
PROBIOTICS, PREBIOTICS, SYNBIOTICS, POSTBIOTICS | |||||
Wang et al. (2022) [144] | Probiotics | Systematic review and meta-analysis | 943 (10 RCTs) | Significantly decreased of IBS-D symptom score (SMD = −0.55, 95% CI: −0.83, −0.27, p < 0.05), abdominal pain (SMD = −0.43, 95% CI: −0.57, −0.29, p < 0.05), and abdominal distension (SMD = −0.45, 95% CI: −0.81, −0.09, p < 0.05) compared to placebo. | IBS-D |
Shang et al. (2022) [147] | Probiotics | Systematic review and meta-analysis | 757 (10 RCTs) | Probiotics significantly improved stool consistency (SMD = 0.72, 95% CI (0.18–1.26), p < 0.05, low quality) and increased the number of fecal Bifidobacteria (SMD = 1.75, 95% CI (1.51–2.00), p < 0.05, low quality) and Lactobacillus (SMD = 1.69, 95% CI 1.48–1.89, p < 0.05, low quality), while no significant differences were found in abdominal pain scores, bloating scores, QoL scores, or the incidence of adverse events (p >0.05) | IBS-C |
Wilson et al. (2019) [150] | Prebiotics | Systematic review and meta-analysis | 729 (11 RCTs) | No difference between groups (OR = 0.62; 95% CI: 0.07–5.69; p = 0.67). No differences found for severity of abdominal pain, bloating, and flatulence, and QoL score between prebiotics and placebo. However, flatulence severity was improved by prebiotics at doses ≤6 g/d (SMD: –0.35; 95% CI: –0.71–0.00; p = 0.05) and by non-inulin-type fructan prebiotics (SMD: –0.34; 95% CI: –0.66–0.01; p = 0.04), while inulin-type fructans worsened flatulence (SMD: 0.85; 95% CI: 0.23–1.47; p = 0.007). Prebiotics increased absolute abundance of Bifidobacteria (WMD: 1.16 log10 copies of the 16S ribosomal RNA gene; 95% CI: 0.06–2.26; p = 0.04). | IBS-D IBS-C IBS-M IBS-U |
Yasukawa et al. (2019) [151] | Prebiotics (partially hydrolyzed guar gum) | Double-blind, placebo-controlled, parallel RCT | 44 | BSS was significantly normalized in the PHGG group compared to placebo. Fecal microbiome analysis using 16S rRNA detected significant changes in the ratios of some bacteria populations between the groups, including a higher level of Bifidobacterium detected in the PHGG group (p < 0.05) | IBS-D |
Barboi et al. (2022) [154] | Prebiotics (inulin-based) | Randomized cross-over case-control study | 47 | Abdominal pain severity improved by 68.3% after diet and prebiotics (p = 0.004), and abdominal bloating severity parameter improved by 34.8% (p = 0.04). The stool number per week and the stool consistency according to the Bristol scale were improved, but without statistical significance between groups (p > 0.05). | IBS-C |
Cappello et al. (2013) [155] | Symbiotic mixture | Double-blind, placebo-controlled RCT | 64 | Responders for abdominal bloating were 46.9% in the symbiotic group and 65.6% in the placebo group (p = 0.21), and, for flatulence, 50% in the symbiotic group and 62.5% in placebo group (p = 0.45). Flatulence score was significantly lower with the symbiotic mixture vs. placebo according to the week-by-week comparisons during treatment (ANCOVA, p = 0.038). No significant differences between the groups were found for symptoms of bloating, pain, and urgency. | IBS-D IBS-C IBS-M IBS-U |
Bogovic Matijašić et al. (2016) [157] | Synbiotic fermented milk | Double-blind, placebo-controlled multicentric | 30 | Symbiotic product had a time-limited effect in increasing levels of Lactobacillus La-5-like strains and Bifidobacterium animalis ssp. lactis based on analysis of fecal samples. Both the synbiotic product and placebo were also found to temporarily boost levels of Streptococcus thermophilus in stool. | IBS-C |
Azpiroz et al. (2016) [161] | Dietary supplementation with scFOS | Randomized, double-blind, placebo-controlled trial | 79 | Increase in Bifidobacteria in the scFOS-supplemented group (p < 0.05), while total anaerobes and most other bacterial groups were not modified. The change in Bifidobacteria in the scFOS group was not statistically different than placebo. The change of Bifidobacteria was +0.6log with scFOS and −0.04log with placebo in the IBS-C patients. | IBS-C |
Compare et al. (2017) [160] | Lactobacillus casei DG and its postbiotic | Retrospective monocentric | 20 | Postbiotic effectively reduced IL-1α, IL-6, and IL-8 mRNA levels in both colonic (p < 0.0001, p < 0.0001, and p < 0.0001, respectively) and ileal mucosa (p < 0.0001, p < 0.0006, and p < 0.0001, respectively). In contrast, IL-10 mRNA levels significantly increased in both ileal and colonic mucosa (p < 0.0001 and p < 0.0001, respectively). | IBS-D |
FECAL TRANSPLANTATION | |||||
Johnsen et al. (2018) [167] | FMT via colonoscope | Double-blind, placebo-controlled, parallel-group RCT | 87 | Specifically, 36 out of 55 individuals (65%) receiving the active intervention showed a response, compared to 12 out of 28 (43%) in the placebo group (p = 0.049). Response was defined as symptom relief of more than 75 points assessed by IBS-SSS at 3 months from FMT. | IBS-D IBS-M |
Xu et al. (2019) [172] | FMT | Systematic review and meta-analysis | 254 (4 studies) | Single-dose FMT using colonoscopy and nasojejunal tube in comparison with autologous FMT as placebo (NNT = 5, RR = 1.59; 95% CI 1.06–2.39; I = 0%) was more effective, and a reduction in improvement of multiple-dose capsule FMT RCTs was registered. | IBS-D IBS-C IBS-M |
Ianiro et al. (2019) [173] | FMT | Systematic review and meta-analysis | 267 (5 studies) | The studies found that FMT using donor stool via colonoscopy was more effective than autologous stool based on the results of two pooled RCTs (RR = 0.63; 95% CI 0.43–0.93). One trial also suggested FMT from donor stool administered through a nasojejunal tube may be better than autologous stool (RR = 0.69; 95% CI 0.46–1.02). | IBS-D IBS-C IBS-M |
El-Salhy et al. (2020) [166] | FMT via EGD | Double-blind, placebo-controlled RCT | 165 | It was found that 23.6% of patients who received placebo had response, while 76.9% (p < 0.0001) of patients who received 30 g FMT and 89.1% (p < 00.0001) who received 60 g FMT had a response. Intestinal bacterial profiles also changed significantly in the groups that received FMT | IBS-D IBS-C IBS-M |
Wang et al. (2023) [169] | FMT | Systematic review and meta-analysis | 516 (19 studies) | A single-stool FMT led to significant decreases in IBS-SSS scores at 1 month (SMD = −65.75, 95% CI −129.37, −2.13), 3 months (SMD = −102.11, 95% CI −141.98, −62.24), 6 months (SMD = −84.38, 95% CI −158.79, −9.97), 24 months (SMD = −110.41, 95% CI −145.37, −75.46), and 36 months (SMD = −104.71, 95% CI −137.78, −71.64) | IBS-D IBS-C IBS-M IBS-U |
DIET | |||||
Rao et al. (2015) [192] | Low-FODMAP Fibers | Systematic review | 381 249 | Fibre was beneficial in 3/3 studies. FODMAP-restricted diet improved overall IBS symptoms in 4/4 studies | IBS-C |
So et al. (2022) [187] | Low-FODMAP | Systematic review and meta-analysis | 403 (9 trials) | Low-FODMAP diet decreased levels of Bifidobacteria compared to controls based on statistical analysis (SMD = −0.25; p = 0.2), but found no clear effects on microbiome diversity or other taxa. No differences were found in total or individual fecal SCFAs or pH between the low-FODMAP diet and control diets. | IBS-C IBS-D IBS-M |
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407.e5. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A.; Hasler, W.L. Rome IV—Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 2016, 150, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Dumitrascu, D.; Fukudo, S.; Gerson, C.; Ghoshal, U.C.; Gwee, K.A.; Hungin, A.P.S.; Kang, J.-Y.; Minhu, C.; Schmulson, M.; et al. The Global Prevalence of IBS in Adults Remains Elusive Due to the Heterogeneity of Studies: A Rome Foundation Working Team Literature Review. Gut 2017, 66, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Ford, A.C. Global Burden of Irritable Bowel Syndrome: Trends, Predictions and Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef]
- Lovell, R.M.; Ford, A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721.e4. [Google Scholar] [CrossRef]
- Zia, J.K.; Lenhart, A.; Yang, P.-L.; Heitkemper, M.M.; Baker, J.; Keefer, L.; Saps, M.; Cuff, C.; Hungria, G.; Videlock, E.J.; et al. Risk Factors for Abdominal Pain-Related Disorders of Gut-Brain Interaction in Adults and Children: A Systematic Review. Gastroenterology 2022, 163, 995–1023.e3. [Google Scholar] [CrossRef]
- Agnello, M.; Carroll, L.N.; Imam, N.; Pino, R.; Palmer, C.; Varas, I.; Greene, C.; Hitschfeld, M.; Gupta, S.; Almonacid, D.E.; et al. Gut Microbiome Composition and Risk Factors in a Large Cross-Sectional IBS Cohort. BMJ Open Gastroenterol. 2020, 7, e000345. [Google Scholar] [CrossRef]
- Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable Bowel Syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef]
- Enck, P.; Aziz, Q.; Barbara, G.; Farmer, A.D.; Fukudo, S.; Mayer, E.A.; Niesler, B.; Quigley, E.M.M.; Rajilić-Stojanović, M.; Schemann, M.; et al. Irritable Bowel Syndrome. Nat. Rev. Dis. Primers 2016, 2, 16014. [Google Scholar] [CrossRef]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019, 17, 322–332. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The Role of Inflammation in Irritable Bowel Syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Gholamnezhad, F.; Qeisari, A.; Shahriarirad, R. Gastroesophageal Reflux Disease Incidence among Male Patients with Irritable Bowel Syndrome: A Cross-sectional Study in Southern Iran. JGH Open 2023, 7, 152–156. [Google Scholar] [CrossRef]
- Ford, A.C.; Marwaha, A.; Lim, A.; Moayyedi, P. Systematic Review and Meta-Analysis of the Prevalence of Irritable Bowel Syndrome in Individuals With Dyspepsia. Clin. Gastroenterol. Hepatol. 2010, 8, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Cheung, T.K.; Lam, K.F.; Hu, W.H.C.; Lam, C.L.K.; Wong, W.M.; Hui, W.M.; Lai, K.C.; Lam, S.K.; Wong, B.C.Y. Positive Association between Gastro-Oesophageal Reflux Disease and Irritable Bowel Syndrome in a Chinese Population. Aliment. Pharmacol. Ther. 2007, 25, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Kleykamp, B.A.; Ferguson, M.C.; McNicol, E.; Bixho, I.; Arnold, L.M.; Edwards, R.R.; Fillingim, R.; Grol-Prokopczyk, H.; Turk, D.C.; Dworkin, R.H. The Prevalence of Psychiatric and Chronic Pain Comorbidities in Fibromyalgia: An ACTTION Systematic Review. Semin. Arthritis Rheum. 2021, 51, 166–174. [Google Scholar] [CrossRef]
- Erdrich, S.; Hawrelak, J.A.; Myers, S.P.; Harnett, J.E. A Systematic Review of the Association between Fibromyalgia and Functional Gastrointestinal Disorders. Ther. Adv. Gastroenterol. 2020, 13, 175628482097740. [Google Scholar] [CrossRef] [PubMed]
- Choung, R.S.; Herrick, L.M.; Locke, G.R.; Zinsmeister, A.R.; Talley, N.J. Irritable Bowel Syndrome and Chronic Pelvic Pain: A Population-Based Study. J. Clin. Gastroenterol. 2010, 44, 696–701. [Google Scholar] [CrossRef]
- Guthrie, E. Cluster Analysis of Symptoms and Health Seeking Behaviour Differentiates Subgroups of Patients with Severe Irritable Bowel Syndrome. Gut 2003, 52, 1616–1622. [Google Scholar] [CrossRef]
- Roohafza, H.; Bidaki, E.Z.; Hasanzadeh-Keshteli, A.; Daghaghzade, H.; Afshar, H.; Adibi, P. Anxiety, Depression and Distress among Irritable Bowel Syndrome and Their Subtypes: An Epidemiological Population Based Study. Adv. Biomed. Res. 2016, 5, 183. [Google Scholar] [CrossRef]
- Zamani, M.; Alizadeh-Tabari, S.; Zamani, V. Systematic Review with Meta-Analysis: The Prevalence of Anxiety and Depression in Patients with Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2019, 50, 132–143. [Google Scholar] [CrossRef]
- Bäumler, A.J.; Sperandio, V. Interactions between the Microbiota and Pathogenic Bacteria in the Gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef]
- Fan, W.-T.; Ding, C.; Xu, N.-N.; Zong, S.; Ma, P.; Gu, B. Close Association between Intestinal Microbiota and Irritable Bowel Syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2303–2317. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Yau, C.E.; Yaow, C.Y.L.; Chong, R.I.H.; Chong, N.Z.-Y.; Teoh, S.E.; Lim, Y.L.; Soh, A.Y.S.; Ng, W.K.; Thumboo, J. What Has Longitudinal “Omics” Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Mandarino, F.V.; Sinagra, E.; Raimondo, D.; Danese, S. The Role of Microbiota in Upper and Lower Gastrointestinal Functional Disorders. Microorganisms 2023, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Massimino, L.; Barchi, A.; Mandarino, F.V.; Spanò, S.; Lamparelli, L.A.; Vespa, E.; Passaretti, S.; Peyrin-Biroulet, L.; Savarino, E.V.; Jairath, V.; et al. A Multi-Omic Analysis Reveals the Esophageal Dysbiosis as the Predominant Trait of Eosinophilic Esophagitis. J. Transl. Med. 2023, 21, 46. [Google Scholar] [CrossRef]
- Mandarino, F.V.; Sinagra, E.; Barchi, A.; Verga, M.C.; Brinch, D.; Raimondo, D.; Danese, S. Gastroparesis: The Complex Interplay with Microbiota and the Role of Exogenous Infections in the Pathogenesis of the Disease. Microorganisms 2023, 11, 1122. [Google Scholar] [CrossRef]
- Mandarino, F.V.; Testoni, S.G.G.; Barchi, A.; Pepe, G.; Esposito, D.; Fanti, L.; Viale, E.; Biamonte, P.; Azzolini, F.; Danese, S. Gastric Emptying Study before Gastric Peroral Endoscopic Myotomy (G-POEM): Can Intragastric Meal Distribution Be a Predictor of Success? Gut 2023, 72, 1019–1020. [Google Scholar] [CrossRef]
- Vich Vila, A.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut Microbiota Composition and Functional Changes in Inflammatory Bowel Disease and Irritable Bowel Syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef]
- Sabo, C.M.; Dumitrascu, D.L. Microbiota and the Irritable Bowel Syndrome. Minerva Gastroenterol. 2021, 67, 377–384. [Google Scholar] [CrossRef]
- Jandhyala, S.M. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787. [Google Scholar] [CrossRef]
- Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The Microbiome and Irritable Bowel Syndrome–A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Money, N.P. Microbial Diversity. In Microbiology: A Very Short Introduction; Oxford University Press: Oxford, UK, 2014; pp. 1–19. ISBN 978-0-19-968168-6. [Google Scholar]
- Young, V.B.; Schmidt, T.M. Overview of the Gastrointestinal Microbiota. Adv. Exp. Med. Biol. 2008, 635, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kriss, M.; Hazleton, K.Z.; Nusbacher, N.M.; Martin, C.G.; Lozupone, C.A. Low Diversity Gut Microbiota Dysbiosis: Drivers, Functional Implications and Recovery. Curr. Opin. Microbiol. 2018, 44, 34–40. [Google Scholar] [CrossRef]
- Toor, D.; Wsson, M.K.; Kumar, P.; Karthikeyan, G.; Kaushik, N.K.; Goel, C.; Singh, S.; Kumar, A.; Prakash, H. Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. Int. J. Mol. Sci. 2019, 20, 2432. [Google Scholar] [CrossRef] [PubMed]
- Tap, J.; Derrien, M.; Törnblom, H.; Brazeilles, R.; Cools-Portier, S.; Doré, J.; Störsrud, S.; Le Nevé, B.; Öhman, L.; Simrén, M. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology 2017, 152, 111–123.e8. [Google Scholar] [CrossRef]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M.; Moayyedi, P. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef]
- Jeffery, I.B.; Das, A.; O’Herlihy, E.; Coughlan, S.; Cisek, K.; Moore, M.; Bradley, F.; Carty, T.; Pradhan, M.; Dwibedi, C.; et al. Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology 2020, 158, 1016–1028.e8. [Google Scholar] [CrossRef]
- Duan, R.; Zhu, S.; Wang, B.; Duan, L. Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review. Clin. Transl. Gastroenterol. 2019, 10, e00012. [Google Scholar] [CrossRef]
- Wang, L.; Alammar, N.; Singh, R.; Nanavati, J.; Song, Y.; Chaudhary, R.; Mullin, G.E. Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. J. Acad. Nutr. Diet. 2020, 120, 565–586. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, D.W. Gut Microbiota and Irritable Bowel Syndrome. J. Dig. Dis. 2023, 24, 312–320. [Google Scholar] [CrossRef]
- Pimentel, M.; Lembo, A. Microbiome and Its Role in Irritable Bowel Syndrome. Dig. Dis. Sci. 2020, 65, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Salmeri, N.; Sinagra, E.; Dolci, C.; Buzzaccarini, G.; Sozzi, G.; Sutera, M.; Candiani, M.; Ungaro, F.; Massimino, L.; Danese, S.; et al. Microbiota in Irritable Bowel Syndrome and Endometriosis: Birds of a Feather Flock Together-A Review. Microorganisms 2023, 11, 2089. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Patel, D.; Shah, H.; Hanna, K.S.; Kaur, H.; Alazzeh, M.S.; Thandavaram, A.; Channar, A.; Purohit, A.; Venugopal, S. The Role of Gut-Microbiota in the Pathophysiology and Therapy of Irritable Bowel Syndrome: A Systematic Review. Cureus 2022, 14, e28064. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Lembo, A. Emerging Role of the Gut Microbiome in Irritable Bowel Syndrome. Gastroenterol. Clin. N. Am. 2021, 50, 523–545. [Google Scholar] [CrossRef] [PubMed]
- Thabane, M.; Marshall, J.K. Post-Infectious Irritable Bowel Syndrome. World J. Gastroenterol. 2009, 15, 3591. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, A.T.; Bytzer, P.; Engsbro, A.L. Systematic Review with Meta-Analyses: Does the Pathogen Matter in Post-Infectious Irritable Bowel Syndrome? Scand. J. Gastroenterol. 2019, 54, 546–562. [Google Scholar] [CrossRef]
- Spiller, R.C. Increased Rectal Mucosal Enteroendocrine Cells, T Lymphocytes, and Increased Gut Permeability Following Acute Campylobacter Enteritis and in Post-Dysenteric Irritable Bowel Syndrome. Gut 2000, 47, 804–811. [Google Scholar] [CrossRef]
- Gwee, K.-A. Increased Rectal Mucosal Expression of Interleukin 1beta in Recently Acquired Post-Infectious Irritable Bowel Syndrome. Gut 2003, 52, 523–526. [Google Scholar] [CrossRef]
- Brierley, S.M.; Linden, D.R. Neuroplasticity and Dysfunction after Gastrointestinal Inflammation. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 611–627. [Google Scholar] [CrossRef]
- Downs, I.A.; Aroniadis, O.C.; Kelly, L.; Brandt, L.J. Postinfection Irritable Bowel Syndrome: The Links Between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease. J. Clin. Gastroenterol. 2017, 51, 869–877. [Google Scholar] [CrossRef]
- Shukla, R.; Ghoshal, U.; Ranjan, P.; Ghoshal, U.C. Expression of Toll-like Receptors, Pro-, and Anti-Inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-Organic Basis. J. Neurogastroenterol. Motil. 2018, 24, 628–642. [Google Scholar] [CrossRef]
- Sundin, J.; Rangel, I.; Fuentes, S.; Heikamp-de Jong, I.; Hultgren-Hörnquist, E.; De Vos, W.M.; Brummer, R.J. Altered Faecal and Mucosal Microbial Composition in Post-Infectious Irritable Bowel Syndrome Patients Correlates with Mucosal Lymphocyte Phenotypes and Psychological Distress. Aliment. Pharmacol. Ther. 2015, 41, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Jalanka-Tuovinen, J.; Salojärvi, J.; Salonen, A.; Immonen, O.; Garsed, K.; Kelly, F.M.; Zaitoun, A.; Palva, A.; Spiller, R.C.; De Vos, W.M. Faecal Microbiota Composition and Host–Microbe Cross-Talk Following Gastroenteritis and in Postinfectious Irritable Bowel Syndrome. Gut 2014, 63, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, Y.; Li, Y.; Wu, Q.; Wu, J.; Park, S.-K.; Guo, C.; Lu, J. Meta-Analysis of 16S rRNA Microbial Data Identified Alterations of the Gut Microbiota in COVID-19 Patients during the Acute and Recovery Phases. BMC Microbiol. 2022, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Haran, J.P.; Bradley, E.; Zeamer, A.L.; Cincotta, L.; Salive, M.-C.; Dutta, P.; Mutaawe, S.; Anya, O.; Meza-Segura, M.; Moormann, A.M.; et al. Inflammation-Type Dysbiosis of the Oral Microbiome Associates with the Duration of COVID-19 Symptoms and Long COVID. JCI Insight 2021, 6, e152346. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Lizarraga, J.; Hussein, H.; Boeckxstaens, G.E. Immune Activation in Irritable Bowel Syndrome: What Is the Evidence? Nat. Rev. Immunol. 2022, 22, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Wang, E.J.; Doshi, T.L.; Vase, L.; Cawcutt, K.A.; Tontisirin, N. Chronic Pain and Infection: Mechanisms, Causes, Conditions, Treatments, and Controversies. BMJ Med. 2022, 1, e000108. [Google Scholar] [CrossRef]
- Pons, B.; Vignard, J.; Mirey, G. Cytolethal Distending Toxin Subunit B: A Review of Structure–Function Relationship. Toxins 2019, 11, 595. [Google Scholar] [CrossRef]
- Omarova, S.; Awad, K.; Moos, V.; Püning, C.; Gölz, G.; Schulzke, J.-D.; Bücker, R. Intestinal Barrier in Post-Campylobacter Jejuni Irritable Bowel Syndrome. Biomolecules 2023, 13, 449. [Google Scholar] [CrossRef]
- Pimentel, M.; Morales, W.; Pokkunuri, V.; Brikos, C.; Kim, S.M.; Kim, S.E.; Triantafyllou, K.; Weitsman, S.; Marsh, Z.; Marsh, E.; et al. Autoimmunity Links Vinculin to the Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter Jejuni Infection in a Rat Model. Dig. Dis. Sci. 2015, 60, 1195–1205. [Google Scholar] [CrossRef]
- Kim, J.H.; Lin, E.; Pimentel, M. Biomarkers of Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2017, 23, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.A.; Broughton, S.J.; Wessels, Q. Microbes, Molecular Mimicry and Molecules of Mood and Motivation. Med. Hypotheses 2016, 87, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Fournier, C.; Peter, J. Intestinal Microbiome-Gut-Brain Axis and Irritable Bowel Syndrome. Wien. Med. Wochenschr. 2018, 168, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. [Google Scholar] [CrossRef]
- Labus, J.S.; Hollister, E.B.; Jacobs, J.; Kirbach, K.; Oezguen, N.; Gupta, A.; Acosta, J.; Luna, R.A.; Aagaard, K.; Versalovic, J.; et al. Differences in Gut Microbial Composition Correlate with Regional Brain Volumes in Irritable Bowel Syndrome. Microbiome 2017, 5, 49. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.-P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium Longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459.e8. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; et al. Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, G.; Song, X.; Qian, Y.; Liao, Z.; Sui, L.; Ai, L.; Xia, Y. Understanding the Connection between Gut Homeostasis and Psychological Stress. J. Nutr. 2023, 153, 924–939. [Google Scholar] [CrossRef]
- Levy, R.L.; Jones, K.R.; Whitehead, W.E.; Feld, S.I.; Talley, N.J.; Corey, L.A. Irritable Bowel Syndrome in Twins: Heredity and Social Learning Both Contribute to Etiology. Gastroenterology 2001, 121, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Dothel, G.; Barbaro, M.R.; Di Vito, A.; Ravegnini, G.; Gorini, F.; Monesmith, S.; Coschina, E.; Benuzzi, E.; Fuschi, D.; Palombo, M.; et al. New Insights into Irritable Bowel Syndrome Pathophysiological Mechanisms: Contribution of Epigenetics. J. Gastroenterol. 2023, 58, 605–621. [Google Scholar] [CrossRef]
- Mars, R.A.T.; Yang, Y.; Ward, T.; Houtti, M.; Priya, S.; Lekatz, H.R.; Tang, X.; Sun, Z.; Kalari, K.R.; Korem, T.; et al. Longitudinal Multi-Omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell 2020, 182, 1460–1473.e17. [Google Scholar] [CrossRef]
- Ng, S.C.; Arslan Lied, G.; Arebi, N.; Phillips, R.K.; Kamm, M.A. Clinical and Surgical Recurrence of Crohn’s Disease after Ileocolonic Resection in a Specialist Unit. Eur. J. Gastroenterol. Hepatol. 2009, 21, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.M.; Ringel-Kulka, T.; Keku, T.O.; Chang, Y.-H.; Packey, C.D.; Sartor, R.B.; Ringel, Y. Molecular Analysis of the Luminal- and Mucosal-Associated Intestinal Microbiota in Diarrhea-Predominant Irritable Bowel Syndrome. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 301, G799–G807. [Google Scholar] [CrossRef] [PubMed]
- Rangel, I.; Sundin, J.; Fuentes, S.; Repsilber, D.; De Vos, W.M.; Brummer, R.J. The Relationship between Faecal-Associated and Mucosal-Associated Microbiota in Irritable Bowel Syndrome Patients and Healthy Subjects. Aliment. Pharmacol. Ther. 2015, 42, 1211–1221. [Google Scholar] [CrossRef]
- Zhuang, X.; Tian, Z.; Li, L.; Zeng, Z.; Chen, M.; Xiong, L. Fecal Microbiota Alterations Associated With Diarrhea-Predominant Irritable Bowel Syndrome. Front. Microbiol. 2018, 9, 1600. [Google Scholar] [CrossRef]
- Carroll, I.M.; Ringel-Kulka, T.; Siddle, J.P.; Ringel, Y. Alterations in Composition and Diversity of the Intestinal Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome: Alterations in Composition and Diversity of the Intestinal Microbiota in D-IBS. Neurogastroenterol. Motil. 2012, 24, 521-e248. [Google Scholar] [CrossRef]
- Li, G.; Yang, M.; Jin, Y.; Li, Y.; Qian, W.; Xiong, H.; Song, J.; Hou, X. Involvement of Shared Mucosal-Associated Microbiota in the Duodenum and Rectum in Diarrhea-Predominant Irritable Bowel Syndrome: Shared Microbiota in IBS with Diarrhea. J. Gastroenterol. Hepatol. 2018, 33, 1220–1226. [Google Scholar] [CrossRef]
- Vaga, S.; Lee, S.; Ji, B.; Andreasson, A.; Talley, N.J.; Agréus, L.; Bidkhori, G.; Kovatcheva-Datchary, P.; Park, J.; Lee, D.; et al. Compositional and Functional Differences of the Mucosal Microbiota along the Intestine of Healthy Individuals. Sci. Rep. 2020, 10, 14977. [Google Scholar] [CrossRef]
- Shukla, R.; Ghoshal, U.; Dhole, T.N.; Ghoshal, U.C. Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis. Dig. Dis. Sci. 2015, 60, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-N.; Wu, H.; Chen, Y.-Z.; Chen, Y.-J.; Shen, X.-Z.; Liu, T.-T. Altered Molecular Signature of Intestinal Microbiota in Irritable Bowel Syndrome Patients Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Dig. Liver Dis. 2017, 49, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Durbán, A.; Abellán, J.J.; Jiménez-Hernández, N.; Salgado, P.; Ponce, M.; Ponce, J.; Garrigues, V.; Latorre, A.; Moya, A. Structural Alterations of Faecal and Mucosa-Associated Bacterial Communities in Irritable Bowel Syndrome: Microbial Diversity in Irritable Bowel Syndrome. Environ. Microbiol. Rep. 2012, 4, 242–247. [Google Scholar] [CrossRef]
- Pozuelo, M.; Panda, S.; Santiago, A.; Mendez, S.; Accarino, A.; Santos, J.; Guarner, F.; Azpiroz, F.; Manichanh, C. Reduction of Butyrate- and Methane-Producing Microorganisms in Patients with Irritable Bowel Syndrome. Sci. Rep. 2015, 5, 12693. [Google Scholar] [CrossRef]
- Rajilić–Stojanović, M.; Biagi, E.; Heilig, H.G.H.J.; Kajander, K.; Kekkonen, R.A.; Tims, S.; De Vos, W.M. Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples From Patients With Irritable Bowel Syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Parkes, G.C.; Rayment, N.B.; Hudspith, B.N.; Petrovska, L.; Lomer, M.C.; Brostoff, J.; Whelan, K.; Sanderson, J.D. Distinct Microbial Populations Exist in the Mucosa-Associated Microbiota of Sub-Groups of Irritable Bowel Syndrome: Distinct Mucosal Microbiota in IBS. Neurogastroenterol. Motil. 2012, 24, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Chassard, C.; Dapoigny, M.; Scott, K.P.; Crouzet, L.; Del’homme, C.; Marquet, P.; Martin, J.C.; Pickering, G.; Ardid, D.; Eschalier, A.; et al. Functional Dysbiosis within the Gut Microbiota of Patients with Constipated-Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2012, 35, 828–838. [Google Scholar] [CrossRef]
- Zhong, W.; Lu, X.; Shi, H.; Zhao, G.; Song, Y.; Wang, Y.; Zhang, J.; Jin, Y.; Wang, S. Distinct Microbial Populations Exist in the Mucosa-Associated Microbiota of Diarrhea Predominant Irritable Bowel Syndrome and Ulcerative Colitis. J. Clin. Gastroenterol. 2019, 53, 660–672. [Google Scholar] [CrossRef]
- Aziz, I.; Simrén, M. The Overlap between Irritable Bowel Syndrome and Organic Gastrointestinal Diseases. Lancet Gastroenterol. Hepatol. 2021, 6, 139–148. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Noor, S.O.; Ridgway, K.; Scovell, L.; Kemsley, E.K.; Lund, E.K.; Jamieson, C.; Johnson, I.T.; Narbad, A. Ulcerative Colitis and Irritable Bowel Patients Exhibit Distinct Abnormalities of the Gut Microbiota. BMC Gastroenterol. 2010, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.P.; Sagrestani, G.; Delmas, E.; Wilson, K.T.; Verriere, T.G.; Dapoigny, M.; Del’homme, C.; Bernalier-Donadille, A. The Human Intestinal Microbiota of Constipated-Predominant Irritable Bowel Syndrome Patients Exhibits Anti-Inflammatory Properties. Sci. Rep. 2016, 6, 39399. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S. Microbial Biofilm Communities in the Gastrointestinal Tract. J. Clin. Gastroenterol. 2008, 42, S142–S143. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.; Lang, M.; Holley, H.; Crepaz, D.; Hausmann, B.; Pjevac, P.; Moser, D.; Haller, F.; Hof, F.; Beer, A.; et al. Mucosal Biofilms Are an Endoscopic Feature of Irritable Bowel Syndrome and Ulcerative Colitis. Gastroenterology 2021, 161, 1245–1256.e20. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, Z.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients With Diarrhea-Predominant Irritable Bowel Syndrome and Patients With Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611.e5. [Google Scholar] [CrossRef] [PubMed]
- Ringel-Kulka, T.; Benson, A.K.; Carroll, I.M.; Kim, J.; Legge, R.M.; Ringel, Y. Molecular Characterization of the Intestinal Microbiota in Patients with and without Abdominal Bloating. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 310, G417–G426. [Google Scholar] [CrossRef]
- Dior, M.; Delagrèverie, H.; Duboc, H.; Jouet, P.; Coffin, B.; Brot, L.; Humbert, L.; Trugnan, G.; Seksik, P.; Sokol, H.; et al. Interplay between Bile Acid Metabolism and Microbiota in Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2016, 28, 1330–1340. [Google Scholar] [CrossRef]
- Duboc, H.; Rainteau, D.; Rajca, S.; Humbert, L.; Farabos, D.; Maubert, M.; Grondin, V.; Jouet, P.; Bouhassira, D.; Seksik, P.; et al. Increase in Fecal Primary Bile Acids and Dysbiosis in Patients with Diarrhea-Predominant Irritable Bowel Syndrome: Bile Acids and Dysbiosis in IBS-D Patients. Neurogastroenterol. Motil. 2012, 24, 513-e247. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, W.; Chen, Y.; Huang, F.; Lu, L.; Lin, C.; Huang, T.; Ning, Z.; Zhai, L.; Zhong, L.L.D.; et al. A Clostridia-Rich Microbiota Enhances Bile Acid Excretion in Diarrhea-Predominant Irritable Bowel Syndrome. J. Clin. Investig. 2019, 130, 438–450. [Google Scholar] [CrossRef]
- Sun, Q.; Jia, Q.; Song, L.; Duan, L. Alterations in Fecal Short-Chain Fatty Acids in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Medicine 2019, 98, e14513. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, Q.; Luo, M.; Xiong, L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Front. Cell. Infect. Microbiol. 2021, 11, 729346. [Google Scholar] [CrossRef] [PubMed]
- Isolation of Methanogenic Bacteria from Feces of Man-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/4881707/ (accessed on 10 August 2023).
- Miller, T.L.; Wolin, M.J. Enumeration of Methanobrevibacter Smithii in Human Feces. Arch. Microbiol. 1982, 131, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Lin, H.C.; Enayati, P.; van den Burg, B.; Lee, H.-R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a Gas Produced by Enteric Bacteria, Slows Intestinal Transit and Augments Small Intestinal Contractile Activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef]
- Jahng, J.; Jung, I.S.; Choi, E.J.; Conklin, J.L.; Park, H. The Effects of Methane and Hydrogen Gases Produced by Enteric Bacteria on Ileal Motility and Colonic Transit Time: Effects of Methane and Hydrogen Gases on Bowel Function. Neurogastroenterol. Motil. 2012, 24, 185-e92. [Google Scholar] [CrossRef]
- Hwang, L.; Low, K.; Khoshini, R.; Melmed, G.; Sahakian, A.; Makhani, M.; Pokkunuri, V.; Pimentel, M. Evaluating Breath Methane as a Diagnostic Test for Constipation-Predominant IBS. Dig. Dis. Sci. 2010, 55, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, D.; Basseri, R.J.; Makhani, M.D.; Chong, K.; Chang, C.; Pimentel, M. Methane on Breath Testing Is Associated with Constipation: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2011, 56, 1612–1618. [Google Scholar] [CrossRef]
- Chatterjee, S.; Park, S.; Low, K.; Kong, Y.; Pimentel, M. The Degree of Breath Methane Production in IBS Correlates With the Severity of Constipation. Am. J. Gastroenterol. 2007, 102, 837–841. [Google Scholar] [CrossRef]
- Ghoshal, U.; Shukla, R.; Srivastava, D.; Ghoshal, U.C. Irritable Bowel Syndrome, Particularly the Constipation-Predominant Form, Involves an Increase in Methanobrevibacter Smithii, Which Is Associated with Higher Methane Production. Gut Liver 2016, 10, 932–938. [Google Scholar] [CrossRef]
- Muskal, S.M.; Sliman, J.; Kokai-Kun, J.; Pimentel, M.; Wacher, V.; Gottlieb, K. Lovastatin Lactone May Improve Irritable Bowel Syndrome with Constipation (IBS-C) by Inhibiting Enzymes in the Archaeal Methanogenesis Pathway. F1000Research 2016, 5, 606. [Google Scholar] [CrossRef]
- Corazza, G.R.; Menozzi, M.G.; Strocchi, A.; Rasciti, L.; Vaira, D.; Lecchini, R.; Avanzini, P.; Chezzi, C.; Gasbarrini, G. The Diagnosis of Small Bowel Bacterial Overgrowth. Gastroenterology 1990, 98, 302–309. [Google Scholar] [CrossRef]
- Rao, S.S.C.; Bhagatwala, J. Small Intestinal Bacterial Overgrowth: Clinical Features and Therapeutic Management. Clin. Transl. Gastroenterol. 2019, 10, e00078. [Google Scholar] [CrossRef] [PubMed]
- Romagnuolo, J.; Schiller, D.; Bailey, R.J. Using Breath Tests Wisely in a Gastroenterology Practice: An Evidence-Based Review of Indications and Pitfalls in Interpretation. Am. J. Gastroenterol. 2002, 97, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Talley, N.J.; Jones, M.; Kendall, B.J.; Koloski, N.; Walker, M.M.; Morrison, M.; Holtmann, G.J. Small Intestinal Bacterial Overgrowth in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. Am. J. Gastroenterol. 2020, 115, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Saad, R.J.; Long, M.D.; Rao, S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar] [CrossRef]
- Gandhi, A.; Shah, A.; Jones, M.P.; Koloski, N.; Talley, N.J.; Morrison, M.; Holtmann, G. Methane Positive Small Intestinal Bacterial Overgrowth in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Gut Microbes 2021, 13, 1933313. [Google Scholar] [CrossRef]
- Wu, K.-Q.; Sun, W.-J.; Li, N.; Chen, Y.-Q.; Wei, Y.-L.; Chen, D.-F. Small Intestinal Bacterial Overgrowth Is Associated with Diarrhea-Predominant Irritable Bowel Syndrome by Increasing Mainly Prevotella Abundance. Scand. J. Gastroenterol. 2019, 54, 1419–1425. [Google Scholar] [CrossRef]
- Li, J.; Zhu, W.; Liu, W.; Wu, Y.; Wu, B. Rifaximin for Irritable Bowel Syndrome: A Meta-Analysis of Randomized Placebo-Controlled Trials. Medicine 2016, 95, e2534. [Google Scholar] [CrossRef]
- Ford, A.C.; Harris, L.A.; Lacy, B.E.; Quigley, E.M.M.; Moayyedi, P. Systematic Review with Meta-Analysis: The Efficacy of Prebiotics, Probiotics, Synbiotics and Antibiotics in Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2018, 48, 1044–1060. [Google Scholar] [CrossRef]
- Lembo, A.; Pimentel, M.; Rao, S.S.; Schoenfeld, P.; Cash, B.; Weinstock, L.B.; Paterson, C.; Bortey, E.; Forbes, W.P. Repeat Treatment With Rifaximin Is Safe and Effective in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. Gastroenterology 2016, 151, 1113–1121. [Google Scholar] [CrossRef]
- Pimentel, M.; Lembo, A.; Chey, W.D.; Zakko, S.; Ringel, Y.; Yu, J.; Mareya, S.M.; Shaw, A.L.; Bortey, E.; Forbes, W.P. Rifaximin Therapy for Patients with Irritable Bowel Syndrome without Constipation. N. Engl. J. Med. 2011, 364, 22–32. [Google Scholar] [CrossRef]
- Fodor, A.A.; Pimentel, M.; Chey, W.D.; Lembo, A.; Golden, P.L.; Israel, R.J.; Carroll, I.M. Rifaximin Is Associated with Modest, Transient Decreases in Multiple Taxa in the Gut Microbiota of Patients with Diarrhoea-Predominant Irritable Bowel Syndrome. Gut Microbes 2019, 10, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hong, G.; Yang, M.; Li, G.; Jin, Y.; Xiong, H.; Qian, W.; Hou, X. Fecal Bacteria Can Predict the Efficacy of Rifaximin in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Pharmacol. Res. 2020, 159, 104936. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Pimentel, M.; Brenner, D.M.; Chey, W.D.; Keefer, L.A.; Long, M.D.; Moshiree, B. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021, 116, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The Pros, Cons, and Many Unknowns of Probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Simon, E.; Călinoiu, L.F.; Mitrea, L.; Vodnar, D.C. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 2021, 13, 2112. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Rodiño-Janeiro, B.K.; Vicario, M.; Alonso-Cotoner, C.; Pascua-García, R.; Santos, J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. Adv. Ther. 2018, 35, 289–310. [Google Scholar] [CrossRef]
- O’Mahony, L.; McCarthy, J.; Kelly, P.; Hurley, G.; Luo, F.; Chen, K.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.; et al. Lactobacillus and Bifidobacterium in Irritable Bowel Syndrome: Symptom Responses and Relationship to Cytokine Profiles. Gastroenterology 2005, 128, 541–551. [Google Scholar] [CrossRef]
- Ishaque, S.M.; Khosruzzaman, S.M.; Ahmed, D.S.; Sah, M.P. A Randomized Placebo-Controlled Clinical Trial of a Multi-Strain Probiotic Formulation (Bio-Kult®) in the Management of Diarrhea-Predominant Irritable Bowel Syndrome. BMC Gastroenterol. 2018, 18, 71. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Natarajan, S.; Sivakumar, A.; Ali, F.; Pande, A.; Majeed, S.; Karri, S.K. Bacillus Coagulans MTCC 5856 Supplementation in the Management of Diarrhea Predominant Irritable Bowel Syndrome: A Double Blind Randomized Placebo Controlled Pilot Clinical Study. Nutr. J. 2015, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Kim, A.; Lee, J.-H.; Cho, D.; Seo, J.; Jung, E.S.; Kang, H.; Roh, J.; Kim, W. Effect of Oral Intake of Lactiplantibacillus Plantarum APsulloc 331261 (GTB1TM) on Diarrhea-Predominant Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2022, 14, 2015. [Google Scholar] [CrossRef] [PubMed]
- Hod, K.; Dekel, R.; Aviv Cohen, N.; Sperber, A.; Ron, Y.; Boaz, M.; Berliner, S.; Maharshak, N. The Effect of a Multispecies Probiotic on Microbiota Composition in a Clinical Trial of Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2018, 30, e13456. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, S.; Candela, M.; Turroni, S.; Centanni, M.; Severgnini, M.; Consolandi, C.; Cavina, P.; Brigidi, P. IBS-Associated Phylogenetic Unbalances of the Intestinal Microbiota Are Not Reverted by Probiotic Supplementation. Gut Microbes 2012, 3, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Pineton De Chambrun, G.; Neut, C.; Chau, A.; Cazaubiel, M.; Pelerin, F.; Justen, P.; Desreumaux, P. A Randomized Clinical Trial of Saccharomyces Cerevisiae versus Placebo in the Irritable Bowel Syndrome. Dig. Liver Dis. 2015, 47, 119–124. [Google Scholar] [CrossRef]
- Mourey, F.; Decherf, A.; Jeanne, J.-F.; Clément-Ziza, M.; Grisoni, M.-L.; Machuron, F.; Legrain-Raspaud, S.; Bourreille, A.; Desreumaux, P. Saccharomyces Cerevisiae I-3856 in Irritable Bowel Syndrome with Predominant Constipation. World J. Gastroenterol. 2022, 28, 2509–2522. [Google Scholar] [CrossRef]
- Spiller, R.; Pélerin, F.; Cayzeele Decherf, A.; Maudet, C.; Housez, B.; Cazaubiel, M.; Jüsten, P. Randomized Double Blind Placebo-Controlled Trial of Saccharomyces Cerevisiae CNCM I-3856 in Irritable Bowel Syndrome: Improvement in Abdominal Pain and Bloating in Those with Predominant Constipation. United Eur. Gastroenterol. J. 2016, 4, 353–362. [Google Scholar] [CrossRef]
- Gayathri, R.; Aruna, T.; Malar, S.; Shilpa, B.; Dhanasekar, K.R. Efficacy of Saccharomyces Cerevisiae CNCM I-3856 as an Add-on Therapy for Irritable Bowel Syndrome. Int. J. Color. Dis. 2020, 35, 139–145. [Google Scholar] [CrossRef]
- Cayzeele-Decherf, A.; Pélerin, F.; Leuillet, S.; Douillard, B.; Housez, B.; Cazaubiel, M.; Jacobson, G.K.; Jüsten, P.; Desreumaux, P. Saccharomyces Cerevisiae CNCM I-3856 in Irritable Bowel Syndrome: An Individual Subject Meta-Analysis. World J. Gastroenterol. 2017, 23, 336. [Google Scholar] [CrossRef]
- McFarland, L.V.; Karakan, T.; Karatas, A. Strain-Specific and Outcome-Specific Efficacy of Probiotics for the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. eClinicalMedicine 2021, 41, 101154. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, N.; Niu, F.; Li, Y.; Guo, K.; Shang, X.; Fenfen, E.; Yang, C.; Yang, K.; Li, X. Probiotics Therapy for Adults with Diarrhea-Predominant Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of 10 RCTs. Int. J. Color. Dis. 2022, 37, 2263–2276. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, J.; Seo, J.-G.; Kim, H. Efficacy of Double-Coated Probiotics for Irritable Bowel Syndrome: A Randomized Double-Blind Controlled Trial. J. Gastroenterol. 2017, 52, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Bahrudin, M.F.; Abdul Rani, R.; Tamil, A.M.; Mokhtar, N.M.; Raja Ali, R.A. Effectiveness of Sterilized Symbiotic Drink Containing Lactobacillus Helveticus Comparable to Probiotic Alone in Patients with Constipation-Predominant Irritable Bowel Syndrome. Dig. Dis. Sci. 2020, 65, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Fen-Fen, E.; Guo, K.-L.; Li, Y.-F.; Zhao, H.-L.; Wang, Y.; Chen, N.; Nian, T.; Yang, C.-Q.; Yang, K.-H.; et al. Effectiveness and Safety of Probiotics for Patients with Constipation-Predominant Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of 10 Randomized Controlled Trials. Nutrients 2022, 14, 2482. [Google Scholar] [CrossRef]
- Wilson, B.; Whelan, K. Prebiotic Inulin-Type Fructans and Galacto-Oligosaccharides: Definition, Specificity, Function, and Application in Gastrointestinal Disorders: Prebiotic Fructans and GOS. J. Gastroenterol. Hepatol. 2017, 32, 64–68. [Google Scholar] [CrossRef]
- Ooi, S.L.; Correa, D.; Pak, S.C. Probiotics, Prebiotics, and Low FODMAP Diet for Irritable Bowel Syndrome–What Is the Current Evidence? Complement. Ther. Med. 2019, 43, 73–80. [Google Scholar] [CrossRef]
- Wilson, B.; Rossi, M.; Dimidi, E.; Whelan, K. Prebiotics in Irritable Bowel Syndrome and Other Functional Bowel Disorders in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2019, 109, 1098–1111. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota—Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- Bărboi, O.-B.; Ciortescu, I.; Chirilă, I.; Anton, C.; Drug, V. Effect of Inulin in the Treatment of Irritable Bowel Syndrome with Constipation (Review). Exp. Ther. Med. 2020, 20, 185. [Google Scholar] [CrossRef]
- Bărboi, O.-B.; Chirilă, I.; Ciortescu, I.; Anton, C.; Drug, V.-L. Inulin, Choline and Silymarin in the Treatment of Irritable Bowel Syndrome with Constipation—Randomized Case-Control Study. J. Clin. Med. 2022, 11, 2248. [Google Scholar] [CrossRef] [PubMed]
- Cappello, C.; Tremolaterra, F.; Pascariello, A.; Ciacci, C.; Iovino, P. A Randomised Clinical Trial (RCT) of a Symbiotic Mixture in Patients with Irritable Bowel Syndrome (IBS): Effects on Symptoms, Colonic Transit and Quality of Life. Int. J. Color. Dis. 2013, 28, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Shavakhi, A.; Minakari, M.; Farzamnia, S.; Peykar, M.S.; Taghipour, G.; Tayebi, A.; Hashemi, H.; Shavakhi, S. The Effects of Multi-Strain Probiotic Compound on Symptoms and Quality-of-Life in Patients with Irritable Bowel Syndrome: A Randomized Placebo-Controlled Trial. Adv. Biomed. Res. 2014, 3, 140. [Google Scholar] [CrossRef] [PubMed]
- Bogovič Matijašić, B.; Obermajer, T.; Lipoglavšek, L.; Sernel, T.; Locatelli, I.; Kos, M.; Šmid, A.; Rogelj, I. Effects of Synbiotic Fermented Milk Containing Lactobacillus Acidophilus La-5 and Bifidobacterium Animalis Ssp. Lactis BB-12 on the Fecal Microbiota of Adults with Irritable Bowel Syndrome: A Randomized Double-Blind, Placebo-Controlled Trial. J. Dairy Sci. 2016, 99, 5008–5021. [Google Scholar] [CrossRef] [PubMed]
- Bucci, C.; Tremolaterra, F.; Gallotta, S.; Fortunato, A.; Cappello, C.; Ciacci, C.; Iovino, P. A Pilot Study on the Effect of a Symbiotic Mixture in Irritable Bowel Syndrome: An Open-Label, Partially Controlled, 6-Month Extension of a Previously Published Trial. Tech. Coloproctol. 2014, 18, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bonetto, S.; Boano, V.; Valenzi, E.; Saracco, G.M.; Pellicano, R. Non-Pharmacological Strategies to Treat Irritable Bowel Syndrome: 2022 Update. Minerva Gastroenterol. 2022, 68, 475–481. [Google Scholar] [CrossRef]
- Compare, D.; Rocco, A.; Coccoli, P.; Angrisani, D.; Sgamato, C.; Iovine, B.; Salvatore, U.; Nardone, G. Lactobacillus Casei DG and Its Postbiotic Reduce the Inflammatory Mucosal Response: An Ex-Vivo Organ Culture Model of Post-Infectious Irritable Bowel Syndrome. BMC Gastroenterol. 2017, 17, 53. [Google Scholar] [CrossRef]
- Azpiroz, F.; Dubray, C.; Bernalier-Donadille, A.; Cardot, J.-M.; Accarino, A.; Serra, J.; Wagner, A.; Respondek, F.; Dapoigny, M. Effects of scFOS on the Composition of Fecal Microbiota and Anxiety in Patients with Irritable Bowel Syndrome: A Randomized, Double Blind, Placebo Controlled Study. Neurogastroenterol. Motil. 2017, 29, e12911. [Google Scholar] [CrossRef]
- FDA. Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridioides Difficile Infection Not Responsive to Standard Therapies; Guidance for Industry; FDA: Rockville, MD, USA, 2022. [Google Scholar]
- Youngster, I.; Russell, G.H.; Pindar, C.; Ziv-Baran, T.; Sauk, J.; Hohmann, E.L. Oral, Capsulized, Frozen Fecal Microbiota Transplantation for Relapsing Clostridium Difficile Infection. JAMA 2014, 312, 1772–1778. [Google Scholar] [CrossRef]
- Sachs, R.E.; Edelstein, C.A. Ensuring the Safe and Effective FDA Regulation of Fecal Microbiota Transplantation. J. Law Biosci. 2015, 2, 396–415. [Google Scholar] [CrossRef]
- Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; De Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.W.M.; Tijssen, J.G.P.; et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium Difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Casen, C.; Valeur, J.; Hausken, T.; Hatlebakk, J.G. Responses to Faecal Microbiota Transplantation in Female and Male Patients with Irritable Bowel Syndrome. World J. Gastroenterol. 2021, 27, 2219–2237. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, P.H.; Hilpüsch, F.; Cavanagh, J.P.; Leikanger, I.S.; Kolstad, C.; Valle, P.C.; Goll, R. Faecal Microbiota Transplantation versus Placebo for Moderate-to-Severe Irritable Bowel Syndrome: A Double-Blind, Randomised, Placebo-Controlled, Parallel-Group, Single-Centre Trial. Lancet Gastroenterol. Hepatol. 2018, 3, 17–24. [Google Scholar] [CrossRef]
- Holvoet, T.; Joossens, M.; Vázquez-Castellanos, J.F.; Christiaens, E.; Heyerick, L.; Boelens, J.; Verhasselt, B.; Van Vlierberghe, H.; De Vos, M.; Raes, J.; et al. Fecal Microbiota Transplantation Reduces Symptoms in Some Patients With Irritable Bowel Syndrome With Predominant Abdominal Bloating: Short- and Long-Term Results From a Placebo-Controlled Randomized Trial. Gastroenterology 2021, 160, 145–157.e8. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xie, X.; Zhao, S.; Ma, X.; Wang, Z.; Zhang, Y. Fecal Microbiota Transplantation for Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Immunol. 2023, 14, 1136343. [Google Scholar] [CrossRef] [PubMed]
- Halkjær, S.I.; Christensen, A.H.; Lo, B.Z.S.; Browne, P.D.; Günther, S.; Hansen, L.H.; Petersen, A.M. Faecal Microbiota Transplantation Alters Gut Microbiota in Patients with Irritable Bowel Syndrome: Results from a Randomised, Double-Blind Placebo-Controlled Study. Gut 2018, 67, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.A.; Halkjær, S.I.; Christensen, A.H.; Günther, S.; Browne, P.D.; Kallemose, T.; Hansen, L.H.; Petersen, A.M. The Effect of Faecal Microbiota Transplantation on Abdominal Pain, Stool Frequency, and Stool Form in Patients with Moderate-to-Severe Irritable Bowel Syndrome: Results from a Randomised, Double-Blind, Placebo-Controlled Study. Scand. J. Gastroenterol. 2021, 56, 761–769. [Google Scholar] [CrossRef]
- Xu, D.; Chen, V.L.; Steiner, C.A.; Berinstein, J.A.; Eswaran, S.; Waljee, A.K.; Higgins, P.D.R.; Owyang, C. Efficacy of Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 1043–1050. [Google Scholar] [CrossRef]
- Ianiro, G.; Eusebi, L.H.; Black, C.J.; Gasbarrini, A.; Cammarota, G.; Ford, A.C. Systematic Review with Meta-Analysis: Efficacy of Faecal Microbiota Transplantation for the Treatment of Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2019, 50, 240–248. [Google Scholar] [CrossRef]
- Guo, Q.; Lin, H.; Chen, P.; Tan, S.; Wen, Z.; Lin, L.; He, J.; Wen, J.; Lu, S. Dynamic Changes of Intestinal Flora in Patients with Irritable Bowel Syndrome Combined with Anxiety and Depression after Oral Administration of Enterobacteria Capsules. Bioengineered 2021, 12, 11885–11897. [Google Scholar] [CrossRef]
- Camilleri, M.; Dilmaghani, S. Update on Treatment of Abdominal Pain in Irritable Bowel Syndrome: A Narrative Review. Pharmacol. Ther. 2023, 245, 108400. [Google Scholar] [CrossRef] [PubMed]
- Overview|Irritable Bowel Syndrome in Adults: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/cg61 (accessed on 8 September 2023).
- McKenzie, Y.A.; Bowyer, R.K.; Leach, H.; Gulia, P.; Horobin, J.; O’Sullivan, N.A.; Pettitt, C.; Reeves, L.B.; Seamark, L.; Williams, M.; et al. British Dietetic Association Systematic Review and Evidence-Based Practice Guidelines for the Dietary Management of Irritable Bowel Syndrome in Adults (2016 Update). J. Hum. Nutr. Diet. 2016, 29, 549–575. [Google Scholar] [CrossRef]
- Black, C.J.; Staudacher, H.M.; Ford, A.C. Efficacy of a Low FODMAP Diet in Irritable Bowel Syndrome: Systematic Review and Network Meta-Analysis. Gut 2022, 71, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Van Den Houte, K.; Colomier, E.; Schol, J.; Carbone, F.; Tack, J. Recent Advances in Diagnosis and Management of Irritable Bowel Syndrome. Curr. Opin. Psychiatry 2020, 33, 460–466. [Google Scholar] [CrossRef]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the Gut Microbiota in Disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, S.L.; Chey, W.D.; Han-Markey, T.; Ball, S.; Jackson, K. A Randomized Controlled Trial Comparing the Low FODMAP Diet vs. Modified NICE Guidelines in US Adults with IBS-D. Am. J. Gastroenterol. 2016, 111, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Van Lanen, A.-S.; De Bree, A.; Greyling, A. Efficacy of a Low-FODMAP Diet in Adult Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2021, 60, 3505–3522. [Google Scholar] [CrossRef]
- Simrén, M.; Månsson, A.; Langkilde, A.M.; Svedlund, J.; Abrahamsson, H.; Bengtsson, U.; Björnsson, E.S. Food-Related Gastrointestinal Symptoms in the Irritable Bowel Syndrome. Digestion 2001, 63, 108–115. [Google Scholar] [CrossRef]
- Halmos, E.P.; Christophersen, C.T.; Bird, A.R.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Diets That Differ in Their FODMAP Content Alter the Colonic Luminal Microenvironment. Gut 2015, 64, 93–100. [Google Scholar] [CrossRef]
- Hustoft, T.N.; Hausken, T.; Ystad, S.O.; Valeur, J.; Brokstad, K.; Hatlebakk, J.G.; Lied, G.A. Effects of Varying Dietary Content of Fermentable Short-Chain Carbohydrates on Symptoms, Fecal Microenvironment, and Cytokine Profiles in Patients with Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2017, 29, e12969. [Google Scholar] [CrossRef]
- Huaman, J.-W.; Mego, M.; Manichanh, C.; Cañellas, N.; Cañueto, D.; Segurola, H.; Jansana, M.; Malagelada, C.; Accarino, A.; Vulevic, J.; et al. Effects of Prebiotics vs a Diet Low in FODMAPs in Patients With Functional Gut Disorders. Gastroenterology 2018, 155, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Lomer, M.C.E.; Farquharson, F.M.; Louis, P.; Fava, F.; Franciosi, E.; Scholz, M.; Tuohy, K.M.; Lindsay, J.O.; Irving, P.M.; et al. A Diet Low in FODMAPs Reduces Symptoms in Patients With Irritable Bowel Syndrome and A Probiotic Restores Bifidobacterium Species: A Randomized Controlled Trial. Gastroenterology 2017, 153, 936–947. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Loughman, A.; Staudacher, H.M. Effects of a Low FODMAP Diet on the Colonic Microbiome in Irritable Bowel Syndrome: A Systematic Review with Meta-Analysis. Am. J. Clin. Nutr. 2022, 116, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Bennet, S.M.P.; Böhn, L.; Störsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Törnblom, H.; Öhman, L.; Simrén, M. Multivariate Modelling of Faecal Bacterial Profiles of Patients with IBS Predicts Responsiveness to a Diet Low in FODMAPs. Gut 2018, 67, 872–881. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, K.; Reed, D.E.; Schneider, T.; Dang, F.; Keshteli, A.H.; De Palma, G.; Madsen, K.; Bercik, P.; Vanner, S. FODMAPs Alter Symptoms and the Metabolome of Patients with IBS: A Randomised Controlled Trial. Gut 2017, 66, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, E.; Del Negro, V.; Angeletti, P.; Latella, G. Low-FODMAP Diet Improves Irritable Bowel Syndrome Symptoms: A Meta-Analysis. Nutrients 2017, 9, 940. [Google Scholar] [CrossRef]
- Hahn, J.; Choi, J.; Chang, M.J. Effect of Low FODMAPs Diet on Irritable Bowel Syndromes: A Systematic Review and Meta-Analysis of Clinical Trials. Nutrients 2021, 13, 2460. [Google Scholar] [CrossRef]
- Rao, S.S.C.; Yu, S.; Fedewa, A. Systematic Review: Dietary Fibre and FODMAP-Restricted Diet in the Management of Constipation and Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2015, 41, 1256–1270. [Google Scholar] [CrossRef]
- Nybacka, S.; Störsrud, S.; Lindqvist, H.M.; Törnblom, H.; Simrén, M.; Winkvist, A. Habitual FODMAP Intake in Relation to Symptom Severity and Pattern in Patients with Irritable Bowel Syndrome. Nutrients 2020, 13, 27. [Google Scholar] [CrossRef]
- Morariu, I.-D.; Avasilcai, L.; Vieriu, M.; Lupu, V.V.; Morariu, B.-A.; Lupu, A.; Morariu, P.-C.; Pop, O.-L.; Starcea, I.M.; Trandafir, L. Effects of a Low-FODMAP Diet on Irritable Bowel Syndrome in Both Children and Adults—A Narrative Review. Nutrients 2023, 15, 2295. [Google Scholar] [CrossRef]
- Konstantis, G.; Efstathiou, S.; Pourzitaki, C.; Kitsikidou, E.; Germanidis, G.; Chourdakis, M. Efficacy and Safety of Probiotics in the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Randomised Clinical Trials Using ROME IV Criteria. Clin. Nutr. 2023, 42, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, G.; Graute, M.; Homs Corbera, A. The Translational Roadmap of the Gut Models, Focusing on Gut-on-Chip. Open Res. Eur. 2023, 1, 62. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Pooja; Yadav, S.K. CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. Int. J. Biol. Macromol. 2023, 238, 124054. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, G.; Guarnaccia, A.; Fancello, G.; Agrillo, C.; Iannarelli, F.; Sanguinetti, M.; Masucci, L. Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms 2022, 10, 2424. [Google Scholar] [CrossRef]
Mechanism | Description |
---|---|
Impaired gut barrier | Disruption of the intestinal epithelial barrier integrity allows increased gut permeability, permitting translocation of microbes and microbial components across the epithelium. This exposure of the mucosal immune system to luminal microbes and antigens provokes aberrant inflammatory responses that mediate symptoms. Structural and functional defects of tight junction proteins contributing to this barrier impairment have been described in IBS [8,9,10,42]. |
Aberrant immune response | Intestinal mucosa in IBS patients exhibits immune activation, detectable through increased production of pro-inflammatory cytokines. This mucosal inflammation may occur due to direct immune stimulation from translocated microbes or indirect activation by microbial antigens. Immune responses appear skewed towards pro-inflammatory Th1 and Th17 pathways in IBS. Visceral hypersensitivity, i.e., heightened pain perception from the bowel, is also associated with mucosal immune activation, contributing to abdominal pain symptoms [48,49,50,51,75]. |
Molecular mimicry | Molecular mimicry between microbial antigens and host proteins can prompt cross-reactive immune responses due to sequence or structural homology between a bacterial epitope and self-antigen. This bacteria–host mimicry induces autoimmune reactions targeting host cells and tissues, thereby perpetuating inflammation and tissue damage. Antibodies formed against bacterial cytolethal distending toxin B, for example, can cross-react with the host protein vinculin and disrupt intestinal nerve function [58,61,62]. |
Brain–gut axis | The gut microbiota interacts bidirectionally with the central nervous system and enteric nervous system through neuronal, endocrine, and immune signaling pathways in the gut-microbiota–brain axis. Microbial metabolites such as short-chain fatty acids can modulate neurotransmission or induce epigenetic changes that alter nerve signaling. Stress can also change microbiota composition and function through effects on gastrointestinal motility, secretions, and epithelial permeability mediated by the hypothalamic–pituitary–adrenal axis [65,66,67,68,69,70]. |
Epigenetic changes | Microbial metabolites, especially short-chain fatty acids like butyrate, can induce epigenetic changes by inhibiting histone deacetylases. This inhibition causes histone hyperacetylation, thereby regulating chromatin structure and gene transcription. By modifying epigenetic processes controlling host gene expression, microbial metabolites may contribute to intestinal and neural changes underlying IBS [73,74]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, M.; Fasulo, E.; Ungaro, F.; Massimino, L.; Sinagra, E.; Danese, S.; Mandarino, F.V. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms 2023, 11, 2369. https://doi.org/10.3390/microorganisms11102369
Napolitano M, Fasulo E, Ungaro F, Massimino L, Sinagra E, Danese S, Mandarino FV. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms. 2023; 11(10):2369. https://doi.org/10.3390/microorganisms11102369
Chicago/Turabian StyleNapolitano, Maria, Ernesto Fasulo, Federica Ungaro, Luca Massimino, Emanuele Sinagra, Silvio Danese, and Francesco Vito Mandarino. 2023. "Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications" Microorganisms 11, no. 10: 2369. https://doi.org/10.3390/microorganisms11102369
APA StyleNapolitano, M., Fasulo, E., Ungaro, F., Massimino, L., Sinagra, E., Danese, S., & Mandarino, F. V. (2023). Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms, 11(10), 2369. https://doi.org/10.3390/microorganisms11102369