Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Production of Grape Seed Powder
2.3. Preparation of Grape Seed Extract
2.4. Spectrophotometric Analysis
2.4.1. Total Polyphenolic Content
2.4.2. Total Flavonoids
2.4.3. Procyanidins
- A0 = [1 mL methanol + 2.5 mL methanol + 2.5 mL 9 mol/L HCl]
- Ab = [1 mL methanol + 2.5 mL 1% vanillin solution + 2.5 mL 9 mol/L HCl]
- Ac = [1 mL CT (20–500 μg/mL) or GSE + 2.5 mL methanol + 2.5 mL 9 mol/L HCl]
- As = [1 mL CT (20–500 μg/mL) or GSE + 2.5 mL 1% vanillin + 2.5 mL 9 mol/L HCl]
- Absorption was calculated for each standard and sample solution as follows: A = (As–Ab)–(Ac–A0).
2.4.4. Total Anthocyanins
2.4.5. Ascorbic Acid Content
2.4.6. Determination of ABTS Radical Cation Scavenging Activity
2.4.7. Determination of DPPH Radical Scavenging Activity
2.5. HPLC Analysis
2.6. Preparation of Bacterial Inoculum
2.7. Determination of Antimicrobial Activity Using the Agar Diffusion Method
2.8. Minimum Inhibitory Concentration Test
2.9. Statistical Analysis
3. Results
3.1. Chemical Composition and Antioxidant Activity of Grape Seed Extracts
3.2. Antibacterial Activity of the Different GSEs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linscott, A.J. Food-Borne Illnesses. Clin. Microbiol. Newsl. 2011, 33, 41–45. [Google Scholar] [CrossRef]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A Review on Food Preservation: Methods, Harmful Effects and Better Alternatives. Asian J. Pharm. Pharmacol. 2017, 3, 193–199. [Google Scholar]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Overview of plant extracts as natural preservatives in meat. J. Food Process. Preserv. 2022, 46, e16796. [Google Scholar] [CrossRef]
- Han, H.W.; Kwak, J.H.; Jang, T.S.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. Grapefruit Seed Extract as a Natural Derived Antibacterial Substance against Multidrug-Resistant Bacteria. Antibiotics 2021, 10, 85. [Google Scholar] [CrossRef]
- Ahn, J.; Grun, I.U.; Mustapha, A. Effect of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, G.M.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Memar, M.Y.; Adibkia, K.; Farajnia, S.K.; Samadi, H.; Mina, Y.; Naser, A.; Reza, G. The grape seed extract: A natural antimicrobial agent against different pathogens. Rev. Med. Microbiol. 2019, 30, 173–182. [Google Scholar] [CrossRef]
- Karami, S.; Rahimi, M.; Babaei, A. An overview on the antioxidant, anti-inflammatory, antimicrobial and anti-cancer activity of grape extract. Biomed. Res. Clin. Pract. 2018, 3, 1–4. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Gamero-Samino, E.; Sánchez-Valdés, E.; González-Gómez, D. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control. 2012, 24, 136–141. [Google Scholar] [CrossRef]
- Jassy, K.A.; Dillwyn, S.; Pragalyaashree, M.M.; Tiroutchelvame, D. Evaluation of antibacterial and antioxidant properties of different varieties of grape seeds (Vitis vinifera L.). Int. J. Sci. Technol. Res. 2020, 9, 4116–4120. [Google Scholar]
- Cheng, V.J.; Bekhit, A.E.D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Pfukwa, T.M.; Fawole, O.A.; Manley, M.; Gouws, P.A.; Opara, U.L.; Mapiye, C. Food preservative capabilities of grape (Vitis vinifera) and clementine mandarin (Citrus reticulata) by-products extracts in South Africa. Sustainability 2019, 11, 1746. [Google Scholar] [CrossRef]
- Tagurt, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef]
- Chavez, J.H.; Leal, P.C.; Yunes, R.A.; Nunes, R.J.; Barardi, C.R.; Pinto, A.R.; Simoes, C.M.; Zanetti, C.R. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet. Microbiol. 2006, 116, 53–59. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Dapkeviciu, M.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Ghafoor, K.; Uslu, N.; Özcan, M.; Juhaimi, F.; Babiker, E.; Ahmed, I.; Azmi, I. Influence of grape variety on bioactive compounds, antioxidant activity, and phenolic compounds of some grape seeds grown in Turkey. 2020, 44, e14980. J. Food Process. Preserv. 2020, 44, e14980. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.; Torres, C.; Oliveira, A.; José Eduardo Pereira, E.J.; Amaral, S.A.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control. 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Goksel, Z.; Atak, A.; Ozer, C. Antioxidant activity and phenolic content of seed, skin and pilp of 22 grape cultivars. J. Food Process. Preserv. 2014, 39, 1745–4549. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusova, B.; Cebova, M.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Nedomova, S.; Baron, M.; Sochor, J. Health effects of grape seed and skin extracts and their influence on biochemical markers. Molecules 2020, 25, 5311. [Google Scholar] [CrossRef]
- Guaita, M.; Bosso, A. Polyphenolic characterization of grape skins and seeds of four Italian red cultivars at harvest and fermentative maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [Green Version]
- Brezoiu, A.M.; Matei, C.; Deacinu, M.; Stanciuc, A.M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food Chem. Toxicol. 2019, 33, 110787. [Google Scholar] [CrossRef]
- Kupe, M.; Karatas, N.; Unal, S.M.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Maria-Rizelio, V.; De Souza, A.; Gonçalves, S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic compounds, antioxidant and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2016, 4, 125–133. [Google Scholar] [CrossRef]
- Mandic, I.A.; Dilas, M.S.; Cetkovic, S.G.; Canadanovic-Brunet, M.J.; Tumbas, T.V. Polyphenolic composition and antioxidant activities of grape seed extract. Int. J. Food Prop. 2008, 11, 713–726. [Google Scholar] [CrossRef]
- Szabó, E.; Marosvölgyi, T.; Szilágyi, G.; Kőrösi, L.; Schmidt, J.; Csepregi, K.; Márk, L.; Bóna, A. Correlations between total antioxidant capacity, polyphenol and fatty acid content of native grape seed and pomace of four different grape varieties in Hungary. Antioxidants 2021, 10, 1101. [Google Scholar] [CrossRef]
- Kapcsandi, V.; Lakatos, E.; Sik, B.; Linka, L.; Szekelyhidi, R. Antioxidant and polyphenol content of different Vitis vinifera seed cultivars and two facilities of production of a functional bakery product. Chem. Papers. 2021, 75, 5711–5717. [Google Scholar] [CrossRef]
- Tita, O.; Lengyel, E.; Stegarus, D.I.; Savescu, P.; Ciubara, A.B.; Constantinescu, M.A.; Tita, M.A.; Rata, D.; Ciubara, A. Identification and Quantification of Valuable Compounds in red grape seeds. Appl. Sci. 2021, 11, 5124. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skin: Antioxidant capacity of catechin, epicatechi and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A.M. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-Da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.; Wrolstad, R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 2003, 87, 14–41. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miliauskas, G.P.; Venskutonis, R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plants. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, M.M.W.; Sherris, S.J.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Das, S.; Anjeza, C.; Mandal, S. Synergistic or additive antimicrobial activities of Indian spice and herbal extracts against pathogenic, probiotic and food-spoiler micro-organisms. Int. Food Res. J. 2012, 19, 1185–1191. [Google Scholar]
- Castro-Lopeza, L.; Castillo-Sanchez, G.; Dıaz-Rubio, L.; Cordova-Guerrero, I. Total content of phenols and antioxidant activity of grape skins and seeds Cabernet Sauvignon cultivated in Valle de Guadalupe, Baja California, México. In Proceedings of the BIO Web of Conferences, 42nd World Congress of Vine and Wine, Geneva, Switzerland, 15–19 July 2019; Volume 15, p. 04001. [Google Scholar] [CrossRef]
- Sofi, F.R.; Raju, S.V.; Lakshmisha, L.P.; Ratankumar, S.R. Antioxidant and antimicrobial properties of grape and papaya seed extracts and their application on the preservation of Indian mackerel (Rastrelliger kanagurta) during ice storage. J. Food Sci. Tech. 2016, 53, 104–117. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.L. Characterisation of Mediterranean grape pomace seed and skin extracts: Polyphenolic content and antioxidant activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef]
- Selcuk, A.R.; Demiray, E.; Yilmaz, Y. Antioxidant Activity of Grape Seeds Obtained from Molasses (Pekmez) and Winery Production. Acad. Food J. Akad. GIDA 2011, 9, 39–43. [Google Scholar]
- Ghouila, Z.; Laurent, S.; Henoumont, C.; Vander-Elst, L.; Muller, N.R.; Baaliouamer, A. Rich extract on total polyphenols and antioxidant activity obtained by conventional and non-conventional methods Fromahmeur Bouamer grape seed. J. Appl. Fundam. Sci. 2016, 8, 692–711. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounin, A.S. Bioactive non-colored polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Godevac, D.; Teśević, V.; Veličlović, M.; Vujisić, L.; Vajs, V.; Milosavljević, S. Polyphenolic compounds in seeds from some grape cultivars grown in Serbia. J. Serbian Chem. Soc. 2010, 75, 1641–1652. [Google Scholar] [CrossRef]
- Radovanović, A.; Radovanović, B.; Jovančićević, B. Free radical scavenging and antibacterial activities of southern Serbian red wines. Food Chem. 2009, 117, 326–331. [Google Scholar] [CrossRef]
- AL-taie, S.L. Antimicrobial Effect of Black Grape Seed Extract Khamael. Iraqi J. Sci. 2014, 55, 382–385. [Google Scholar]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Baydar, N.G.; Sagdic, O.; Ozkan, G.; Cetin, S. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int. J. Food Sci. Technol. 2006, 41, 799–804. [Google Scholar] [CrossRef]
- Rajakumari, R.; Volova, T.; Oluwafemi, O.S.; Rajesh Kumar, S.; Thomas, S.; Kalarikkal, N. Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Dev. Ind. Pharm. 2020, 46, 1219–1229. [Google Scholar] [CrossRef]
Time (min) | Solution A (%) | Solution B (%) |
---|---|---|
0–5 | 90 | 10 |
5.1–20 | 80 | 20 |
20.1–25 | 75 | 25 |
25.1–50 | 70 | 30 |
Grapes | TPC (mg GAE/g DW) | TF (mg QE/g DW) | TA (mg CGE/g DW) | AA (mg/g DW) | PC (mg CE/g DW) | DPPH (µM TE/g DW) | ABTS (µM TE/g DW) |
---|---|---|---|---|---|---|---|
Cabernet Sauvignon | 88.22 ± 0.72 | 45.95 ± 0.14 | 0.05 ± 0.02 | 3.01 ± 0.11 | 157.22 ± 2.10 | 435.25 ± 3.3 | 2246.23 ± 11.33 |
Marselan | 103.24 ± 1.11 | 52.01 ± 0.34 | 0.062 ± 0.01 | 2.71 ± 0.13 | 152.18 ± 2.05 | 597.23 ± 4.12 | 2273.92 ± 12.32 |
Pinot Noir | 111.22 ± 1.28 | 51.50 ± 0.30 | 0.04 ± 0.02 | 11.07 ± 0.25 | 170.45 ± 2.52 | 579.33 ± 4.15 | 2203.51 ± 10.25 |
Tamyanka | 79.06 ± 0.65 | 40.05 ± 0.18 | no | 4.88 ± 0.13 | 31.44 ± 0.23 | 245.60 ± 3.23 | 1907.24 ± 9.56 |
Compound | Pinot Noir | Cabernet Sauvignon | Marselan | Tamyanka |
---|---|---|---|---|
Gallic acid | 0.61 ± 0.23 | 0.44 ± 0.30 | 0.42 ± 0.31 | 0.35 ± 0.15 |
Gallic acid glucoside Procyanidin B1 | 0.88 ± 0.32 8.81 ± 1.09 | 0.13 ± 0.07 8.82 ± 1.17 | 0.05 ± 0.01 7.57 ± 0.65 | 0.64 ± 0.02 7.05 ± 0.73 |
Procyanidin B3 | 2.90 ± 0.39 | 0.95 ± 0.37 | 1.31 ± 0.93 | 1.69 ± 0.73 |
(+)-Catechin | 12.16 ± 0.98 | 9.17 ± 0.73 | 8.06 ± 0.51 | 7.35 ± 0.50 |
Procyanidin B2 | 4.06 ± 0.41 | 5.17 ± 0.21 | 5.17 ± 0.99 | 3.46 ± 0.62 |
(−)-Epicatechin | 10.16 ± 1.09 | 5.94 ± 0.45 | 14.27 ± 0.64 | 4.89 ± 0.31 |
Procyanidin C1 | 0.34 ± 0.11 | 0.55 ± 0.21 | 0.68 ± 0.32 | 0.14 ± 0.07 |
Group | Compounds | Pinot Noir | Cabernet Sauvignon | Marselan | Tamyanka |
---|---|---|---|---|---|
Monomeric compounds | (+)-Catechin and (−)-epicatechin | 22.32 ± 1.16 | 15.10 ± 0.916 | 22.33 ± 1.06 | 12.24 ± 0.78 |
Dimeric compounds | Procyanidins B1, B2, B3 | 15.76 ± 1.07 | 14.93 ± 1.08 | 14.05 ± 0.98 | 12.19 ± 0.67 |
Trimeric compounds | Procyanidin C1 | 0.34 ± 0.11 | 0.55 ± 0.21 | 0.68 ± 0.32 | 0.136 ± 0.09 |
Total polyphenols | All polyphenols | 38.71 ± 1.72 | 30.44 ± 1.65 | 36.87 ± 1.65 | 24.65 ± 1.52 |
Bacterial Species | Zone of Inhibition (mm) | |||
---|---|---|---|---|
Pinot Noir | Marselan | Cabernet Sauvignon | Tamyanka | |
Staphylococcus aureus | 14 ± 0.25 | 13.5 ± 0.20 | 9 ± 0.12 | 8 ± 0.11 |
Bacillus cereus | 10 ± 0.15 | 8.5 ± 0.11 | 7.5 ± 0.95 | 7 ± 0.95 |
Escherichia coli | 8 ± 0.10 | 6.5 ± 0.10 | - | - |
GSE | MIC (mg/mL) | ||
---|---|---|---|
Staphylococcus aureus | Bacillus cereus | Escherichia coli | |
Pinot Noir | 0.12 ± 0.03 | 0.25 ± 0.08 | 0.50 ± 0.17 |
Marselan | 0.25 ± 0.04 | 0.37 ± 0.11 | 0.50 ± 0.13 |
Cabernet Sauvignon | 0.37 ± 0.07 | 0.37 ± 0.14 | 0.75 ± 0.18 |
Tamyanka | 0.50 ± 0.16 | 0.50 ± 0.17 | 1.00 ± 0.17 |
GSE | Bacillus cereus | Staphylococcus aureus | Escherichia coli | Reference |
---|---|---|---|---|
Black grape | 0.05 | 0.02 | 0.15 | [47] |
Commercial GSE, India | 10 | 15 | 10 | [36] |
Pinot Noir | - | 0.78 | 25 | [13] |
Cabernet Sauvignon | - | 0.625 | - | [48] |
Commercial GSE, South Africa | 2.5 | 9.38 | 12.5 | [14] |
Pinot Meunier | 1.56 | 100 | [13] | |
Touriga Nacional | 0.01 | 0.1 | - | [20] |
Karasi | - | 5 | 10 | [46] |
Commercial GSE, Optipure (Los Angeles, CA, USA) | - | - | 4 | [49] |
Pinot Noir | 0.12 | 0.25 | 0.50 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasteva, D.; Ivanov, Y.; Chengolova, Z.; Godjevargova, T. Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms 2023, 11, 395. https://doi.org/10.3390/microorganisms11020395
Krasteva D, Ivanov Y, Chengolova Z, Godjevargova T. Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms. 2023; 11(2):395. https://doi.org/10.3390/microorganisms11020395
Chicago/Turabian StyleKrasteva, Dimitrina, Yavor Ivanov, Zlatina Chengolova, and Tzonka Godjevargova. 2023. "Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties" Microorganisms 11, no. 2: 395. https://doi.org/10.3390/microorganisms11020395
APA StyleKrasteva, D., Ivanov, Y., Chengolova, Z., & Godjevargova, T. (2023). Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms, 11(2), 395. https://doi.org/10.3390/microorganisms11020395