Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem
Abstract
:1. Introduction
2. Material and Methods
2.1. Endophytic Fungi
2.2. Solid-State Fermentation
2.3. Chemical Profile
2.4. Obtation of Crude Extract
2.5. Biological Assays
2.5.1. Cytotoxicity Assays
2.5.2. Virucidal Assay
2.5.3. The Antiparasitic Assays Were Carried Out against Leishmania and Trypanosoma
2.5.4. Bacteriostatic Assay
2.5.5. Yeast Assay
3. Results
3.1. Chemical Profile of the Fungi-Derived Crude Extracts
Peak No | tR (min) | Identification | Molecular Formula | ESI(+) [M + H]+ | ESI(−) [M − H]− | Fragment | References | |
---|---|---|---|---|---|---|---|---|
(m/z) | (m/z) | ESI(+) | ESI(−) | |||||
1 | 0.42 | Ethylidene-3,39-biplumbagin | C22H16O6 | 387.0875 | [31] | |||
2 | 0.79 | NI | C27H47N3O19 | 716.2758 | ||||
3 | 1.15 | Pestauvicolactone A | C16H15NO5 | 300.0878 | [32] | |||
4 | 7.54 | calanone derivative | C27H20O5 | 425.1372 | - | - | [44] | |
5 | 7.98 | Terpestacin | C25H38O4 | 403.2865 | - | 385.2729 | - | [45] |
6 | 8.35 | Asperbiphenyl | C24H30O6 | 415.2101 | - | - | - | [46] |
7 | 9.08 | Fusaproliferin | C27H40O5 | 467.2774 a | - | 427.2863, 409.2721, 367.2633, 349.2526 | - | [36] |
8 | 9.59 | Sespendole | C33H45NO4 | 520.3412 | - | - | - | [38] |
9 | 10.03 | NI | C31H45NO4 | 496.3417 | - | - | - | |
10 | 11.06 | Pestalotiopin B | C32H49NO6 | 544.3632 | - | - | - | [47] |
11 | 12.53 | Monopalmitin | C19H38O4 | 331.2851 | 313.2743, 281.2473, 239.2385 | - | ||
12 | 12.60 | Linoleic acid | C18H32O2 | 279.2338 | ||||
13 | 13.41 | Palmitic acid | C16H32O2 | 255.2329 | ||||
14 | 13.48 | Oleic acid | C18H34O2 | 281.2493 | [40] | |||
15 | 13.78 | Monostearin | C21H42O4 | 359.3150 | 341.3063 | - | ||
16 | 14.58 | - | C24H38O4 | 413.2662 a | - | - |
Peak No | tR (min) | Identification | Molecular Formula | ESI(+) [M + H]+ | ESI(−) [M − H]− | Fragment | References | |
---|---|---|---|---|---|---|---|---|
(m/z) | (m/z) | ESI(+) | ESI(−) | |||||
1 | 0.42 | Sucrose | C12H21O11 | 365.1072 [M + Na]+ | 325.1122, 205.0542 | [48] | ||
2 | 0.49 | Citric acid | C6H8O7 | 191.0205 | ||||
3 | 1.37 | 2-Isopropylmalic acid | C7H12O5 | 175.0612 | [49] | |||
4 | 3.43 | Phenylalanine | C9H11NO2 | 164.0339 | 120.0461 | [50] | ||
5 | 4.16 | NI | 245.1380 | |||||
6 | 4.38 | Polyhydroxylated fatty acid | C10H20O5 | 203.1278 (−2.5) | ||||
7 | 6.36 | trihydroxy octadecenoic acid I | C18H34O5 | 329.2314 (4.3) | 311.2223, 211.1303, 183.0106 | [46] | ||
8 | 6.73 | trihydroxy octadecenoic acid I | C18H34O5 | 329.2314 (4.3) | 311.2223, 211.1303, 183.0106 | [46] | ||
9 | 8.86 | 1-Myristoyl-2-lysophosphatidylcholine | C22H46N1O7P | 468.3103 (2.8) | 285.2425, 184.0734, 104.1070 | [51] | ||
10 | 9.59 | 1-Linoleoylphosphatidylcholine | C26H50N1O7P | 520.3409 (1.2) | 483.2483 [M + Na]+, 184.0734, 104.1070 | [51] | ||
11 | 10.11 | 1-Palmitoylphosphatidylcholine | C24H50N1O7P | 496.3400 (−0.6) | 313.2738, 184.0734, 104.1070 | [51] | ||
12 | 11.06 | NI | 358.3701 | |||||
13 | 12.60 | Linoleic acid | C18H22O2 | 279.2325 (0.4) | ||||
14 | 13.34 | Palmitic acid | C16H32O2 | 255.2314 (−3.9) | - | [52] | ||
15 | 13.48 | Octadecenoid acid | C18H34O2 | 281.2477 (−1.4) | [53] |
3.2. Biological Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Ethical Statements
References
- Fong, T.-T.; Lipp, E.K. Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools. Microbiol. Mol. Biol. Rev. 2005, 69, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Kotwal, G.; Cannon, J.L. Environmental persistence and transfer of enteric viruses. Curr. Opin. Virol. 2014, 4, 37–43. [Google Scholar] [CrossRef]
- de Melo, G.D.; Coatnoan, N.; Gouault, N.; Cupif, J.-F.; Renault, J.; Cosson, A.; Uriac, P.; Blondel, A.; Minoprio, P. Prodrugs as new therapies against Chagas disease: In vivo synergy between Trypanosoma cruzi proline racemase inhibitors and benznidazole. J. Glob. Antimicrob. Resist. 2022, 28, 84–89. [Google Scholar] [CrossRef]
- Chagas Disease (Also Known as American Trypanosomiasis). Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 14 April 2023).
- Doenças Tropicais Negligenciadas: OPAS Pede Fim dos Atrasos no Tratamento nas Américas—OPAS/OMS|Organização Pan-Americana da Saúde. Available online: https://www.paho.org/pt/noticias/28-1-2022-doencas-tropicais-negligenciadas-opas-pede-fim-dos-atrasos-no-tratamento-nas (accessed on 14 April 2023).
- Beltran-Hortelano, I.; Alcolea, V.; Font, M.; Pérez-Silanes, S. Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorganic Med. Chem. 2022, 58, 116577. [Google Scholar] [CrossRef]
- Highlights of Prescribing Information. Metabolism. 2008. Available online: www.fda.gov/medwatch (accessed on 14 April 2023).
- Ruppé, É.; Woerther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensiv. Care 2015, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz; Özcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 2017, 133, 43–62. [Google Scholar] [CrossRef]
- Pan American Health Organization. Leishmaniasis: Epidemiological Report for the Americas. No. 11 (December 2022). In Leishmaniases: Epidemiological Report of the Americas; Pan American Health Organization: Washington, DC, USA, 2022; Available online: https://iris.paho.org/handle/10665.2/56831 (accessed on 14 April 2023).
- Lindoso, J.A.; Cota, G.F.; Da Cruz, A.M.; Goto, H.; Maia-Elkhoury, A.N.S.; Romero, G.A.S.; De Sousa-Gomes, M.L.; Santos-Oliveira, J.R.; Rabello, A. Visceral Leishmaniasis and HIV Coinfection in Latin America. PLOS Negl. Trop. Dis. 2014, 8, e3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar] [CrossRef]
- de Souza Sebastianes, F.L.; Romão-Dumaresq, A.S.; Lacava, P.T.; Harakava, R.; Azevedo, J.L.; de Melo, I.S.; Pizzirani-Kleiner, A.A. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 2013, 59, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Helaly, S.E.; Thongbai, B.; Stadler, M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 2018, 35, 992–1014. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Li, X.-Q.; Zhao, D.-L.; Zhang, P. Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. Front. Microbiol. 2021, 12, 1428. [Google Scholar] [CrossRef]
- Shang, Z.; Li, X.-M.; Li, C.-S.; Wang, B.-G. Diverse Secondary Metabolites Produced by Marine-Derived Fungus Nigrospora sp. MA75 on Various Culture Media. Chem. Biodivers. 2012, 9, 1338–1348. [Google Scholar] [CrossRef]
- El-Gendy, M.M.A.; El-Bondkly, A.M.A.; Yahya, S.M.M. Production and Evaluation of Antimycotic and Antihepatitis C Virus Potential of Fusant MERV6270 Derived from Mangrove Endophytic Fungi Using Novel Substrates of Agroindustrial Wastes. Appl. Biochem. Biotechnol. 2014, 174, 2674–2701. [Google Scholar] [CrossRef]
- Ukwatta, K.M.; Lawrence, J.L.; Wijayarathna, C.D. The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology 2019, 10, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Han, Z.; Ge, X.; Tian, P. Distinct Promoters Affect Pyrroloquinoline Quinone Production in Recombinant Escherichia coli and Klebsiella pneumoniae. Curr. Microbiol. 2014, 69, 451–456. [Google Scholar] [CrossRef]
- de Azevedo, J.L.; de Melo, I.S. Ecologia Microbiana; Embrapa Meio Ambiente: Jaguariúna, Brazil, 1998. [Google Scholar]
- White, T.J.; Bruns, T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; White, T.J., Innis, M.A., Gelfand, D.H., Sninsky, J.J., Eds.; Academic Press: Cambridge, MA, USA, 1989; pp. 315–322. [Google Scholar]
- Riddell, R.W. Permanent Stained Mycological Preparations Obtained by Slide Culture. Mycologia 2018, 42, 265–270. [Google Scholar] [CrossRef]
- Su, Y.Y.; Qi, Y.L.; Cai, L. Induction of sporulation in plant pathogenic fungi. Mycology 2012, 3, 195–200. [Google Scholar] [CrossRef]
- Robl, D.; Costa, P.D.S.; Büchli, F.; Lima, D.J.D.S.; Delabona, P.D.S.; Squina, F.M.; Pimentel, I.C.; Padilla, G.; Pradella, J.G.D.C. Enhancing of sugar cane bagasse hydrolysis by Annulohypoxylon stygium glycohydrolases. Bioresour. Technol. 2015, 177, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [Google Scholar] [CrossRef] [Green Version]
- Romanha, A.J.; de Castro, S.L.; de Nazaré Correia Soeiro, M.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memórias Do Inst. Oswaldo Cruz 2010, 105, 233–238. Available online: http://www.cdc.gov/od/ (accessed on 14 April 2023). [CrossRef] [PubMed]
- Fumarola, L.; Spinelli, R.; Brandonisio, O. In vitro assays for evaluation of drug activity against Leishmania spp. Res. Microbiol. 2004, 155, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Lee, J.A.; Chee, H.Y. In Vitro Antifungal Activity of Equol against Candida albicans. Mycobiology 2010, 38, 328–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, M.; Noha, N.; Yokaryo, H.; Ogihara, K.; Yogi, S. Three New Naphthoquinone Derivatives from Diospyros maritima Blume. Chem. Pharm. Bull. 2002, 50, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.M.; Xu, X.M.; Wang, Q.; Li, D.Y.; Li, Z.L. Hybrid of dehydroergosterol and nitrogenous alternariol derivative from the fungus Pestalotiopsis uvicola. Steroids 2018, 138, 43–46. [Google Scholar] [CrossRef]
- Cao, S.G.; Chong, K.L.; Vittal, J.J.; Sim, K.Y.; Goh, S.H. Isocalanone, a New Pyranocoumarin from cAlophyllum teysmannii(Guttiferae). Nat. Prod. Lett. 1998, 11, 233–236. [Google Scholar] [CrossRef]
- Oka, M.; Iimura, S.; Tenmyo, O.; Sawada, Y.; Sugawara, M.; Ohkusa, N.; Yamamoto, H.; Kawano, K.; Hu, S.-L.; Fukagawa, Y.; et al. Terpestacin, a new syncytium formation inhibitor from Arthrinium sp. J. Antibiot. 1993, 46, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.J.; Ouyang, M.A.; Tan, Q.W. New asperxanthone and asperbiphenyl from the marine fungus Aspergillus sp. Pest Manag. Sci. 2009, 65, 60–65. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Fornelli, F.; Fogliano, V.; Ritieni, A.; Caiaffa, M.F.; Randazzo, G.; Bottalico, A.; Macchia, L. Fusaproliferin production by Fusarium subglutinans and its toxicity to Artemia salina, SF-9 insect cells, and IARC/LCL 171 human B lymphocytes. Appl. Environ. Microbiol. 1996, 62, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Uchida, R.; Tomoda, H.; Omura, S. Biosynthesis of Sespendole. J. Antibiot. 2006, 59, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Yin, R.; Zhou, Z.; Gu, G.; Dai, J.; Lai, D.; Zhou, L. Eremophilane-Type Sesquiterpenoids from the Endophytic Fungus Rhizopycnis vagum and Their Antibacterial, Cytotoxic, and Phytotoxic Activities. Front. Chem. 2020, 8, 596889. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Zhao, B.T.; Kim, Y.H.; Min, B.S.; Woo, M.H. Cytotoxic and Antioxidant Compounds Isolated from the Cork of Euonymus alatus Sieb. Nat. Prod. Sci. 2013, 19, 366–371. [Google Scholar]
- Salvatore, M.M.; Alves, A.; Andolfi, A. Secondary Metabolites Produced by Neofusicoccum Species Associated with Plants: A Review. Agriculture 2021, 11, 149. [Google Scholar] [CrossRef]
- Wu, T.-S.; Leu, Y.-L.; Chan, Y.-Y. Constituents of the Fresh Leaves of Aristolochia cucurbitifolia. Pharm. Bull. 1999, 47, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Erenler, R.; Pabuccu, K.; Yaglioglu, A.S.; Demirtas, I.; Gul, F. Chemical constituents and antiproliferative effects of cultured Mougeotia nummuloides and Spirulina major against cancerous cell lines. Z. Fur Nat. Sect. C J. Biosci. 2016, 71, 87–92. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Li, Y.; Cheng, Y.; Zhu, W. Co-cultured methanogen improved the metabolism in the hydrogenosome of anaerobic fungus as revealed by gas chromatography-mass spectrometry analysis. Asian-Australas J. Anim. Sci. 2020, 33, 1948–1956. [Google Scholar] [CrossRef] [Green Version]
- Wibisono, L.K.; Kimia, B.; Kedokteran, F.; Indonesia, U.; Salemba, J.; No, R. Pengaruh Derivat Kumarin Dari Kulit Batang Calophyllum Biflorum Terhadap Pertumbuhan In Vivo Tumor Kelenjar Susu Mencit C3H. Makara Kesehat. 2002, 6, 12–16. [Google Scholar]
- Jin, Y.; Qiu, F.G. A convergent stereocontrolled total synthesis of (−)-terpestacin. Org. Biomol. Chem. 2012, 10, 5452–5455. [Google Scholar] [CrossRef]
- Menezes, R.D.P.; Bessa, M.A.D.S.; Siqueira, C.D.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, D.Y.; Xu, J. Two new polyketides from endophytic fungus Pestalotiopsis sp. HQD-6 isolated from the Chinese mangrove plant Rhizophora mucronata. J. Asian Nat. Prod. Res. 2022, 24, 52–58. [Google Scholar] [CrossRef]
- Riou-Khamlichi, C.; Menges, M.; Healy, J.M.S.; Murray, J.A.H. Sugar Control of the Plant Cell Cycle: Differential Regulation of Arabidopsis D-Type Cyclin Gene Expression. Mol. Cell. Biol. 2000, 20, 4513–4521. [Google Scholar] [CrossRef] [Green Version]
- Calvo, J.M.; Kalyanpur, M.G.; Stevens, C.M. 2-Isopropylmalate and 3-Isopropylmalate as Intermediates in Leucine Biosynthesis. Biochemistry 1962, 1, 1157–1161. [Google Scholar] [CrossRef]
- Lekar, A.V.; Vetrova, E.V.; Borisenko, N.I.; Yakovishin, L.A.; Grishkovets, V.I.; Borisenko, S.N. Electrospray ionization mass spectrometry of mixtures of triterpene glycosides with l-phenylalanine. J. Appl. Spectrosc. 2011, 78, 501–505. [Google Scholar] [CrossRef]
- Buré, C.; Ayciriex, S.; Testet, E.; Schmitter, J.-M. A single run LC-MS/MS method for phospholipidomics. Anal. Bioanal. Chem. 2013, 405, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Ellenbogen, B.B.; Aaronson, S.; Goldstein, S.; Belsky, M. Polyunsaturated fatty acids of aquatic fungi: Possible phylogenetic significance. Comp. Biochem. Physiol. 1969, 29, 805–811. [Google Scholar] [CrossRef]
- Khudyakova, Y.V.; Sobolevskaya, M.P.; Moiseenko, O.P.; Kuznetsova, T.A. Fatty-Acid Composition of Certain Species of Marine Mycelial Fungi. Chem. Nat. Compd. 2009, 45, 18–20. [Google Scholar] [CrossRef]
- Dezam, A.P.G.; Vasconcellos, V.M.; Lacava, P.T.; Farinas, C.S. Microbial production of organic acids by endophytic fungi. Biocatal. Agric. Biotechnol. 2017, 11, 282–287. [Google Scholar] [CrossRef]
- Chang, J.; Kwon, H.J. Discovery of novel drug targets and their functions using phenotypic screening of natural products. J. Ind. Microbiol. Biotechnol. 2016, 43, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Vera, J.; Srain, B.; Quiñones, R.; Wörmer, L.; Hinrichs, K.; Pantoja-Gutiérrez, S. Biochemical fingerprints of marine fungi: Implications for trophic and biogeochemical studies. Aquat. Microb. Ecol. 2020, 84, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jin, Z.; Jin, Q.; Dong, M. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya Grandis. Microbiol. (Russ. Fed.) 2015, 84, 710–716. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Elmasry, G.F.; Refaey, R.H.; El-Shiekh, R.A. Lepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamics. ACS Omega 2022, 7, 17339–17357. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Shridhar, M.P.D.; D’Souza, L.; Naik, C.G. Cellular fatty acid composition of marine-derived fungi. Indian J. Geo-Mar. Sci. 2006, 35, 359–363. Available online: http://nopr.niscpr.res.in/handle/123456789/1535 (accessed on 13 April 2023).
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crous, P.W.; Slippers, B.; Wingfield, M.J.; Rheeder, J.; Marasas, W.F.O.; Philips, A.J.L.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J.Z. Neofusicoccum eucalypticola (Slippers Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips. comb. nov. Available online: https://www.gbif.org/pt/species/2611893 (accessed on 17 March 2023).
- Buergenerula Spartinae Kohlm. & R.V.Gessner, 1976-Taxonomy. Available online: https://inpn.mnhn.fr/espece/cd_nom/45904/tab/taxo?lg=en (accessed on 3 December 2022).
- Gupta, R.B.; Khanna, R.N.; Sharma, N.N. A new binaphthoquinone from Asplenium laciniatum. Indian J. Chem. Sect. B 1977, 15, 394–395. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002097348574961 (accessed on 3 December 2022).
- Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem. 2020, 199, 112326. [Google Scholar] [CrossRef]
- Mdluli, K.; Ma, Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets 2008, 7, 159–168. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef]
- Nollmann, M.; Crisona, N.J.; Arimondo, P.B. Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie 2007, 89, 490–499. [Google Scholar] [CrossRef]
- Karkare, S.; Chung, T.T.H.; Collin, F.; Mitchenall, L.; McKay, A.R.; Greive, S.J.; Meyer, J.J.M.; Lall, N.; Maxwell, A. The Naphthoquinone Diospyrin Is an Inhibitor of DNA Gyrase with a Novel Mechanism of Action. J. Biol. Chem. 2013, 288, 5149–5156. [Google Scholar] [CrossRef] [Green Version]
- Ekowati, H.; Astuti, I.; Mustofa, M. Anticancer Activity of Calanone on Hela Cell Line. Indones. J. Chem. 2010, 10, 240–244. [Google Scholar] [CrossRef]
- Kudo, K.; Liu, C.; Matsumoto, T.; Minami, A.; Ozaki, T.; Toshima, H.; Gomi, K.; Oikawa, H. Heterologous Biosynthesis of Fungal Indole Sesquiterpene Sespendole. Chembiochem 2018, 19, 1492–1497. [Google Scholar] [CrossRef]
- Sugino, K.; Nakazaki, A.; Isobe, M.; Nishikawa, T. Synthetic study on sespendole, an indole sesquiterpene alkaloid: Stereo-controlled synthesis of the sesquiterpene segment bearing all requisite stereogenic centers. Synlett 2011, 2011, 647–650. [Google Scholar] [CrossRef]
- Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Sarrocco, S.; Masi, M.; Diquattro, S.; Evidente, M.; Vannacci, G.; Evidente, A. Fusaproliferin, Terpestacin and Their Derivatives Display Variable Allelopathic Activity Against Some Ascomycetous Fungi. Chem. Biodivers. 2016, 13, 1593–1600. [Google Scholar] [CrossRef]
- Xiang, J.G.; Shan, W.-G.; Liang, D.-E.; Ying, Y.-M.; Gan, L.-S.; Wang, J.-W.; Zhan, Z.-J. N-Bearing Furanone Derivatives from an Endophytic Fungus inHuperzia serrata. Helvetica Chim. Acta 2013, 96, 997–1003. [Google Scholar] [CrossRef]
- Schmidt, R.; Zajkowski, P.; Wink, J. Toxicity ofFusarium sambucinum Fuckel sensu lato to brine shrimp. Mycopathologia 1995, 129, 173–175. [Google Scholar] [CrossRef]
- Munkvold, A.R.G.; Stahr, H.M.; Logrieco, A.; Moretti, A.; Ritieni, A. Occurrence of Fusaproliferin and Beauvericin inFusarium-Contaminated Livestock Feed in Iowa. Appl. Environ. Microbiol. 1998, 64, 10. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; El Fishawy, A.M.; A El-Toumy, S.; Amer, K.F.; Mansour, A.M.; E Taha, H. Antihepatotoxic effect and metabolite profiling of Panicum turgidum extract via UPLC-qTOF-MS. Pharmacogn. Mag. 2016, 12, S446–S453. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Ind. Crop. Prod. 2020, 155, 112818. [Google Scholar] [CrossRef]
- Kapalka, G.M. Depression. In Nutritional and Herbal Therapies for Children and Adolescents; Elsevier: Amsterdam, The Netherlands, 2010; pp. 141–187. [Google Scholar] [CrossRef]
- Pacheco-Tapia, R.; Vásquez-Ocmín, P.; Duthen, S.; Ortíz, S.; Jargeat, P.; Amasifuen, C.; Haddad, M.; Vansteelandt, M. Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids. Fungal Biol. 2022, 126, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Nischitha, R.; Shivanna, M.B. Antimicrobial activity and metabolite profiling of endophytic fungi in Digitaria bicornis (Lam) Roem. and Schult. and Paspalidium flavidum (Retz.) A. Camus. 3 Biotech 2021, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- El-Zawawy, N.A.; Ali, S.S.; Nouh, H.S. Exploring the potential of Rhizopus oryzae AUMC14899 as a novel endophytic fungus for the production of l-tyrosine and its biomedical applications. Microb. Cell Factories 2023, 22, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Marobbio, C.M.T.; Giannuzzi, G.; Paradies, E.; Pierri, C.L.; Palmieri, F. α-Isopropylmalate, a Leucine Biosynthesis Intermediate in Yeast, Is Transported by the Mitochondrial Oxalacetate Carrier. J. Biol. Chem. 2008, 283, 28445–28453. [Google Scholar] [CrossRef] [Green Version]
- Ricciutelli, M.; Bartolucci, G.; Campana, R.; Salucci, S.; Benedetti, S.; Caprioli, G.; Maggi, F.; Sagratini, G.; Vittori, S.; Lucarini, S. Quantification of 2- and 3-isopropylmalic acids in forty Italian wines by UHPLC-MS/MS triple quadrupole and evaluation of their antimicrobial, antioxidant activities and biocompatibility. Food Chem. 2020, 321, 126726. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, X.; Peng, X.; Ou, Q.; Zhang, Z.; Qiu, C.; Yao, Y.; Shen, F.; Yang, H.; Ma, F.; et al. Development and validation of a liquid chromatography–mass spectrometry metabonomic platform in human plasma of liver failure caused by hepatitis B virus. Acta Biochim. Biophys. Sin. 2010, 42, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, T.; Ishida, H.; Yamaguchi, T. Isolation of an Anti-histaminic Substances from Green-Lipped Mussel (Perna canaliculus). Chem. Pharm. Bull. 1986, 11, 4825–4828. Available online: http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/ (accessed on 25 April 2023).
Extracts | L929 | A549 | VERO |
---|---|---|---|
Neofusicoccum parvum | >500 μg/mL | >500 μg/mL | >500 μg/mL |
Buergenerula spartinae | >500 μg/mL | >500 μg/mL | >500 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadamuro, R.D.; Bastos, I.M.A.d.S.; de Freitas, A.C.O.; Rosa, M.d.S.; Costa, G.d.O.; da Silva, I.T.; Robl, D.; Stoco, P.H.; Sandjo, L.P.; Treichel, H.; et al. Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms 2023, 11, 1599. https://doi.org/10.3390/microorganisms11061599
Cadamuro RD, Bastos IMAdS, de Freitas ACO, Rosa MdS, Costa GdO, da Silva IT, Robl D, Stoco PH, Sandjo LP, Treichel H, et al. Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms. 2023; 11(6):1599. https://doi.org/10.3390/microorganisms11061599
Chicago/Turabian StyleCadamuro, Rafael Dorighello, Isabela Maria Agustini da Silveira Bastos, Ana Claudia Oliveira de Freitas, Marilene da Silva Rosa, Geovanna de Oliveira Costa, Izabella Thaís da Silva, Diogo Robl, Patricia Hermes Stoco, Louis Pergaud Sandjo, Helen Treichel, and et al. 2023. "Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem" Microorganisms 11, no. 6: 1599. https://doi.org/10.3390/microorganisms11061599
APA StyleCadamuro, R. D., Bastos, I. M. A. d. S., de Freitas, A. C. O., Rosa, M. d. S., Costa, G. d. O., da Silva, I. T., Robl, D., Stoco, P. H., Sandjo, L. P., Treichel, H., Steindel, M., & Fongaro, G. (2023). Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms, 11(6), 1599. https://doi.org/10.3390/microorganisms11061599