Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bird Feeding Management
2.2. Sampling Procedure
2.3. Determination of Fecal Score, Moisture Content and Bacterial Load in Feces
2.4. Bacterial Genomic DNA Extraction and 16S rDNA Gene Amplicon Sequencing
2.5. Intestinal Morphology of Broilers
2.6. Detection of Gene Expression Levels by qPCR
2.7. Determination of Jejunal Immune Factors and Antioxidant Indexes
2.8. Statistical Analysis
3. Results
3.1. Fecal Score, Moisture Content and Bacterial Load in Feces
3.2. Cecal Microbiota Composition
3.3. Jejunal Morphology
3.4. Gene Expression of Tight Junction Proteins in Jejunum
3.5. Immune Factors and Antioxidant Indexes in Jejunal Mucosa
4. Discussion
4.1. Intestinal Luminal Micro-Ecosystem
4.2. Intestinal Mucosal Homeostasis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Suresh, G.; Das, R.K.; Kaur, B.S.; Rouissi, T.; Avalos, R.A.; Chorfi, Y.; Godbout, S. Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS ONE 2018, 13, e0192450. [Google Scholar] [CrossRef] [PubMed]
- Duskaev, G.K.; Rakhmatullin, S.G.; Kazachkova, N.M.; Sheida, Y.V.; Mikolaychik, I.N.; Morozova, L.A.; Galiev, B.H. Effect of the combined action of Quercus cortex extract and probiotic substances on the immunity and productivity of broiler chickens. Vet. World 2018, 11, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Rahman, M.A.; Ahmed, B.; Abbas, R.Z.; Hassan, F.U. Copper nanoparticles as growth promoter, antioxidant and anti-bacterial agents in poultry nutrition: Prospects and future implications. Biol. Trace Elem. Res. 2021, 199, 3825–3836. [Google Scholar] [CrossRef]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef]
- Baker, D.H.; Odle, J.; Funk, M.A.; Wieland, T.M. Research note: Bioavailability of copper in cupric oxide, cuprous oxide, and in a copper-lysine complex. Poult. Sci. 1991, 70, 177–179. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Ognik, K.; Sembratowicz, I.; Cholewinska, E.; Jankowski, J.; Kozlowski, K.; Juskiewicz, J.; Zdunczyk, Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J. 2018, 89, 579–588. [Google Scholar] [CrossRef]
- Gulzar, A.; Yang, P.; He, F.; Xu, J.; Yang, D.; Xu, L.; Jan, M.O. Bioapplications of graphene constructed functional nanomaterials. Chem. Biol. Interact. 2017, 262, 69–89. [Google Scholar] [CrossRef]
- Kana, J.R.; Teguia, A.; Mungfu, B.M.; Tchoumboue, J. Growth performance and carcass characteristics of broiler chickens fed diets supplemented with graded levels of charcoal from maize cob or seed of Canarium schweinfurthii Engl. Trop. Anim. Health Prod. 2011, 43, 51–56. [Google Scholar] [CrossRef]
- Kutlu, H.R.; Ünsal, I.; Görgülü, M. Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Anim. Feed. Sci. Tech. 2001, 90, 213–226. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Wu, S.; Lin, Q.; Fan, Z.; Wang, C.; Ye, D.; Guo, P. Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. J. Anim. Sci. 2023, 101, skad362. [Google Scholar] [CrossRef] [PubMed]
- Kong, W. Effects of Fulvic Acid on the Production Performance and Intestinal Health of Broilers. Master Dissertation, Shandong Agriculture University, Tai’an, China, 2022. [Google Scholar]
- GB/T 6435-2014; Determination of Moisture in Feedstuffs. China National Standardization Management Committee: Beijing, China, 2014.
- GB/T 13093-2006; Examination of Bacterial Count in Feeds. China National Standardization Management Committee: Beijing, China, 2006.
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, P.; Fan, P.; He, T.; Jacobs, D.; Levesque, C.L.; Johnston, L.J.; Ji, L.; Ma, N.; Chen, Y.; et al. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Front. Cell. Infect. Microbiol. 2018, 8, 246. [Google Scholar] [CrossRef]
- Guo, P.; Tong, Y.; Yang, R.; Zhang, M.; Lin, Q.; Lin, S.; Wang, C. Effects of hydrolyzed gallotannin on intestinal physical barrier, immune function, and microbiota structure of yellow-feather broilers. Poult. Sci. 2023, 102, 103010. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Levkut, M.; Levkutová, M.; Grešáková, Ľ.; Bobíková, K.; Revajová, V.; Dvorožňáková, E.; Ševčíková, Z.; Herich, R.; Karaffová, V.; Žitňan, R.; et al. Production of intestinal mucins, sIgA, and metallothionein after administration of zinc and infection of Ascaridia galli in chickens: Preliminary data. Life 2022, 13, 67. [Google Scholar] [CrossRef]
- Saminathan, M.; Selamat, J.; Abbasi Pirouz, A.; Abdullah, N.; Zulkifli, I. Effects of nano-composite adsorbents on the growth performance, serum biochemistry, and organ weights of broilers fed with aflatoxin-contaminated feed. Toxins 2018, 10, 345. [Google Scholar] [CrossRef]
- Sawosz, E.; Lukasiewicz, M.; Lozicki, A.; Sosnowska, M.; Jaworski, S.; Niemiec, J.; Scott, A.; Jankowski, J.; Jozefiak, D.; Chwalibog, A. Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch. Anim. Nutr. 2018, 72, 396–406. [Google Scholar] [CrossRef]
- Png, C.W.; Linden, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 2010, 105, 2420–2428. [Google Scholar] [CrossRef]
- Hoskins, L.C.; Boulding, E.T. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J. Clin. Investig. 1981, 67, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liang, X.; Wang, K.; Lin, J.; Wang, X.; Wang, P.; Zhang, Y.; Nie, Q.; Liu, H.; Zhang, Z.; et al. Intestinal hypoxia-inducible factor 2alpha regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 2021, 33, 1988–2003.e7. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermudez-Humaran, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Wang, M.Q.; Du, Y.J.; Wang, C.; Tao, W.J.; He, Y.D.; Li, H. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace Elem. Res. 2012, 149, 184–189. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, X.; Wang, B.; Wang, F.; Zhou, Y.; Xu, S.; Li, X.; Tang, L.; Jin, Q.; Li, W.; et al. Modified montmorillonite improved growth performance of broilers by modulating intestinal microbiota and enhancing intestinal barriers, anti-inflammatory response, and antioxidative capacity. Antioxidants 2022, 11, 1799. [Google Scholar] [CrossRef]
- Pajarillo, E.A.B.; Lee, E.; Kang, D.K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim. Nutr. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Robinson, N.J.; Winge, D.R. Copper Metallochaperones. Annu. Rev. Biochem. 2010, 79, 537–562. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montes, G.; Argüello, J.M.; Valderrama, B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiol. 2012, 12, 249. [Google Scholar] [CrossRef] [PubMed]
- Reznik, N.; Gallo, A.D.; Rush, K.W.; Javitt, G.; Fridmann-Sirkis, Y.; Ilani, T.; Nairner, N.A.; Fishilevich, S.; Gokhman, D.; Chacon, K.N.; et al. Intestinal mucin is a chaperone of multivalent copper. Cell 2022, 185, 4206–4215.e11. [Google Scholar] [CrossRef] [PubMed]
- Van Itallie, C.M.; Anderson, J.M. Architecture of tight junctions and principles of molecular composition. Semin. Cell Dev. Biol. 2014, 36, 157–165. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal zonulin: Open sesame! Gut 2001, 49, 159. [Google Scholar] [CrossRef]
- Ma, F.; Huo, Y.; Li, H.; Yang, F.; Liao, J.; Han, Q.; Li, Y.; Pan, J.; Hu, L.; Guo, J.; et al. New insights into the interaction between duodenal toxicity and microbiota disorder under copper exposure in chicken: Involving in endoplasmic reticulum stress and mitochondrial toxicity. Chem. Biol. Interact. 2022, 366, 110132. [Google Scholar] [CrossRef]
- Ma, Y.L.; Guo, T. Intestinal morphology, brush border and digesta enzyme activities of broilers fed on a diet containing Cu2+-loaded montmorillonite. Br. Poult. Sci. 2008, 49, 65–73. [Google Scholar] [CrossRef]
- Scott, A.; Vadalasetty, K.P.; Chwalibog, A.; Sawosz, E. Copper nanoparticles as an alternative feed additive in poultry diet: A review. Nanotechnol. Rev. 2018, 7, 69–93. [Google Scholar] [CrossRef]
- Bakema, J.E.; van Egmond, M. Immunoglobulin A: A next generation of therapeutic antibodies? In MAbs; Taylor & Francis: Abingdon, UK, 2011; Volume 3, pp. 352–361. [Google Scholar]
- Zhang, H.; Wu, X.; Mehmood, K.; Chang, Z.; Li, K.; Jiang, X.; Nabi, F.; Ijaz, M.; Rehman, M.U.; Javed, M.T.; et al. Intestinal epithelial cell injury induced by copper containing nanoparticles in piglets. Environ. Toxicol. Pharmacol. 2017, 56, 151–156. [Google Scholar] [CrossRef]
- Kozłowski, K.; Jankowski, J.; Otowski, K.; Zduńczyk, Z.; Ognik, K. Metabolic parameters in young turkeys fed diets with different inclusion levels of copper nanoparticles. Pol. J. Vet. Sci. 2018, 21, 245–253. [Google Scholar] [CrossRef]
- Nassiri, M.; Ahmadi, F. Effects of copper oxide nanoparticles on the growth performance, antioxidant enzymes activity and gut morphology of broiler chickens. Int. J. Agric. Biosyst. Eng. 2015, 9, 1–11. [Google Scholar]
- Vest, K.E.; Hashemi, H.F.; Cobine, P.A. The copper metallome in eukaryotic cells. In Metallomics and the Cell; Banci, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 451–478. [Google Scholar]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequences (5′→3′) | Accession Number | Annealing Temperature | Product Size/bp |
---|---|---|---|---|
GAPDH | F: 5′-GGTGGCCATCAATGATCCCT-3′ | NM_204305.2 | 56 | 174 |
R: 5′-GCCCATTTGATGTTGCTGGG-3′ | ||||
OCLN | F: 5′-AGTTCGACACCGACCTGAAG-3′ | XM_025144247.2 | 55 | 124 |
R: 5′-TCCTGGTATTGAGGGCTGTC-3′ | ||||
CLDN-1 | F: 5′-TCCTGGGTCTGGTTGGTGTGTT-3′ | NM_001013611.2 | 59 | 172 |
R: 5′-CGAGCCACTCTGTTGCCATACC-3′ | ||||
CLDN-3 | F: 5′-CCTTCATCGGCAACAACATCGT-3′ | NM_204202.2 | 58 | 114 |
R: 5′-CCAGCATGGAGTCGTACACCTT-3′ | ||||
ZO-1 | F: 5′-GGTGCTTCCAGTGCCAACAGAA-3′ | XM_046899248.1.1 | 57 | 186 |
R: 5′-GCTTGCCAACCGTAGACCATACTC-3′ |
Days of Age | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | ANOVA | Linear | Quadratic | ||
D1 | 3.40 | 3.20 | 3.30 | 3.40 | 0.055 | 0.547 | 0.844 | 0.404 |
D2 | 3.30 | 3.30 | 3.30 | 3.40 | 0.055 | 0.907 | 0.554 | 0.767 |
D3 | 2.30 | 2.30 | 2.30 | 2.20 | 0.057 | 0.917 | 0.571 | 0.784 |
D4 | 2.50 | 2.20 | 2.30 | 2.40 | 0.073 | 0.543 | 0.770 | 0.399 |
D5 | 2.30 | 2.00 | 2.10 | 2.10 | 0.050 | 0.186 | 0.272 | 0.173 |
D6 | 2.00 | 1.90 | 2.00 | 1.90 | 0.050 | 0.828 | 0.667 | 0.914 |
D7 | 1.80 | 1.80 | 1.70 | 1.90 | 0.050 | 0.698 | 0.702 | 0.647 |
D8 | 1.60 | 1.30 | 1.40 | 1.30 | 0.086 | 0.600 | 0.310 | 0.515 |
D9 | 1.80 | 1.40 | 1.80 | 1.50 | 0.088 | 0.258 | 0.539 | 0.803 |
D10 | 1.50 | 1.10 | 1.20 | 1.40 | 0.091 | 0.424 | 0.815 | 0.267 |
D11 | 1.70 | 1.50 | 1.50 | 1.20 | 0.099 | 0.379 | 0.091 | 0.242 |
D12 | 1.40 | 1.00 | 1.10 | 1.10 | 0.064 | 0.130 | 0.167 | 0.106 |
D13 | 1.40 | 1.30 | 1.10 | 1.00 | 0.067 | 0.125 | 0.015 | 0.056 |
D14 | 1.10 | 1.10 | 1.00 | 1.00 | 0.034 | 0.585 | 0.202 | 0.453 |
Days of Age | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | Diet | Linear | Quadratic | ||
D4 | 5.48 | 5.90 | 5.25 | 5.73 | 0.346 | 0.941 | 0.852 | 0.532 |
D8 | 7.31 | 7.02 | 7.20 | 6.75 | 0.237 | 0.871 | 0.495 | 0.786 |
D12 | 7.47 | 7.78 | 7.66 | 8.34 | 0.271 | 0.757 | 0.877 | 0.937 |
Days of Age | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | Diet | Linear | Quadratic | ||
D3 | 77.90 b | 77.29 b | 79.65 a | 78.03 b | 0.290 | 0.013 | 0.298 | 0.407 |
D5 | 77.53 | 76.64 | 77.98 | 77.36 | 0.385 | 0.701 | 0.822 | 0.962 |
D7 | 77.70 | 76.68 | 78.01 | 76.93 | 0.337 | 0.489 | 0.748 | 0.950 |
D9 | 78.02 | 77.18 | 78.03 | 77.53 | 0.244 | 0.573 | 0.785 | 0.913 |
D11 | 78.19 | 77.91 | 78.81 | 77.97 | 0.211 | 0.445 | 0.919 | 0.815 |
D13 | 75.83 | 75.44 | 77.17 | 76.32 | 0.327 | 0.287 | 0.287 | 0.544 |
Items | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | Diet | Linear | Quadratic | ||
VH (μm) | 866.4 | 1091 | 1153 | 1419 | 121.94 | 0.078 | 0.007 | <0.001 |
CD (μm) | 187.2 | 176.5 | 185.5 | 220.5 | 15.58 | 0.333 | 0.124 | <0.001 |
VH/CD | 4.67 | 6.32 | 6.56 | 6.95 | 0.775 | 0.274 | 0.081 | <0.001 |
Genes | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | Diet | Linear | Quadratic | ||
OCLN | 1.00 | 1.01 | 0.72 | 0.85 | 0.051 | 0.132 | 0.103 | 0.234 |
CLDN-1 | 1.00 ab | 0.64 b | 1.23 a | 1.33 a | 0.079 | 0.002 | 0.021 | 0.018 |
CLDN-3 | 1.00 b | 0.85 b | 1.79 a | 1.26 ab | 0.107 | 0.003 | 0.075 | 0.140 |
ZO-1 | 1.00 | 1.34 | 1.10 | 1.14 | 0.055 | 0.138 | 0.850 | 0.380 |
Items | Groups | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | N50 | N100 | N200 | Diet | Linear | Quadratic | ||
Immune factors | ||||||||
sIgA (ng/mg prot) | 1596.01 b | 1549.98 b | 1413.30 c | 1830.26 a | 45.24 | <0.001 | 0.110 | 0.002 |
IL-2 (ng/mg prot) | 259.07 | 287.22 | 296.01 | 285.58 | 8.930 | 0.529 | 0.280 | 0.319 |
IL-4 (pg/mg prot) | 69.08 | 71.14 | 82.53 | 83.29 | 2.407 | 0.054 | 0.009 | 0.036 |
IL-10 (pg/mg prot) | 38.86 | 39.09 | 41.58 | 46.78 | 1.419 | 0.166 | 0.035 | 0.073 |
Antioxidant indexes | ||||||||
MDA (nmol/mg prot) | 9.68 | 10.41 | 8.81 | 10.62 | 0.291 | 0.175 | 0.504 | 0.700 |
T-AOC (U/mg prot) | 23.96 b | 37.59 a | 32.50 ab | 38.57 a | 2.036 | 0.016 | 0.015 | 0.032 |
GSH/GSSG | 6.05 | 5.89 | 6.17 | 5.98 | 0.062 | 0.485 | 0.909 | 0.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xiao, C.; Wu, S.; Lin, Q.; Lin, S.; Liu, J.; Ye, D.; Wang, C.; Guo, P. Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers. Microorganisms 2024, 12, 2247. https://doi.org/10.3390/microorganisms12112247
Wang X, Xiao C, Wu S, Lin Q, Lin S, Liu J, Ye D, Wang C, Guo P. Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers. Microorganisms. 2024; 12(11):2247. https://doi.org/10.3390/microorganisms12112247
Chicago/Turabian StyleWang, Xianglin, Chunlong Xiao, Shuqing Wu, Qingjie Lin, Shiying Lin, Jing Liu, Dingcheng Ye, Changkang Wang, and Pingting Guo. 2024. "Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers" Microorganisms 12, no. 11: 2247. https://doi.org/10.3390/microorganisms12112247
APA StyleWang, X., Xiao, C., Wu, S., Lin, Q., Lin, S., Liu, J., Ye, D., Wang, C., & Guo, P. (2024). Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers. Microorganisms, 12(11), 2247. https://doi.org/10.3390/microorganisms12112247