Dietary and Animal Gut Microbiota

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Veterinary Microbiology".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 2345

Special Issue Editor

Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: animal nutrition; gut microbiota; microbial metabolism; gut health; pigs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The gut microbiota is crucial in animal health and performance, interacting closely with dietary components. Recent research has highlighted how one’s diet shapes the gut microbiota, affecting immune function, nutrient absorption, and overall health. However, the complex interactions between diet and the gut microbiota remain poorly understood, especially across animal species and production systems.

This Special Issue focuses on the relationship between diet and the gut microbiota in animals (e.g., pigs, ruminants, poultry, or pets), examining how these interactions influence health, growth, and disease resistance. The scope of this Special Issue includes, but is not limited to, the following topics: (1) Dietary modulation of the gut microbiota; (2) The role of the gut microbiota in nutrient metabolism; (3) The gut microbiota and immune function; (4) Comparative studies across species; and (5) Technological innovations in microbiota analysis.

Dr. Yu Pi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dietary
  • animal nutrition
  • gut microbiota
  • microbial metabolism
  • gut health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 537 KiB  
Article
Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers
by Xianglin Wang, Chunlong Xiao, Shuqing Wu, Qingjie Lin, Shiying Lin, Jing Liu, Dingcheng Ye, Changkang Wang and Pingting Guo
Microorganisms 2024, 12(11), 2247; https://doi.org/10.3390/microorganisms12112247 - 6 Nov 2024
Viewed by 742
Abstract
The present study was undertaken to evaluate the impacts of nano-composites of copper and carbon (NCCC) on the intestinal luminal micro-ecosystem and mucosal homeostasis of yellow-feather broilers. A total of two-hundred and forty 1-day-old male yellow-feather broilers were randomly allocated into four groups, [...] Read more.
The present study was undertaken to evaluate the impacts of nano-composites of copper and carbon (NCCC) on the intestinal luminal micro-ecosystem and mucosal homeostasis of yellow-feather broilers. A total of two-hundred and forty 1-day-old male yellow-feather broilers were randomly allocated into four groups, each with five replications of twelve birds. The control (CON) group received a corn-soybean basal diet, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial duration was 63 days. The findings demonstrated that there were slight impacts of NCCC addition on the intestinal luminal micro-ecosystem of broilers, with the fecal moisture content in the N100 group being slightly higher on Day 3 in the starter phase (p < 0.05). The cecal microbiota structure also did not obviously change (p > 0.05), in spite of the fall in the relative abundance of the Ruminococcus torques group in the N50 group and norank Clostridia UCG-014 in N200 group (p < 0.05). But for intestinal mucosal homeostasis, NCCC played a crucial part in jejunal morphology, tight junction, immunologic status, and antioxidant capacity. There was linear growth in villus height and a quadratic increase in villus height, crypt depth and their ratio with the increase in NCCC dosage (p < 0.05), and 100 mg/kg NCCC supplementation could intensify the expression of CLDN-3 genes (p < 0.05). In addition, IL-4 and IL-10 linearly increased after NCCC treatment (p < 0.05), along with some irregular changes in sIgA (p < 0.05). In addition, higher jejunal mucosal total antioxidant capacities in N50 and N200 groups were also observed (p < 0.05). Overall, NCCC treatment optimized the intestinal mucosa function of broilers in terms of physical barrier and immune and antioxidant capacities, but exerted subtle influence in the luminal environment of yellow-feather broilers. More precisely, dietary supplementation with 50 mg/kg NCCC is recommended for intestinal homeostasis of broilers. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

20 pages, 8457 KiB  
Article
Prickly Ash Seeds Improve the Ruminal Epithelial Development and Growth Performance of Hu Sheep by Modulating the Rumen Microbiota and Metabolome
by Qiao Li, Yi Wu, Xingcai Qi, Zilong Liu, Chunhui Wang, Xueyi Ma and Youji Ma
Microorganisms 2024, 12(11), 2242; https://doi.org/10.3390/microorganisms12112242 - 6 Nov 2024
Viewed by 562
Abstract
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and [...] Read more.
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and its metabolites in sheep is limited. The current study was designed to explore the effects of PASs on sheep rumen development and growth performance using metagenomics and metabolomics. Eighteen 3-month-old Hu lambs were randomly allotted to three different dietary treatment groups: 0% (basal diet, CK), 3% (CK with 3% PAS, low-dose PAS, LPS), and 6% (CK with 6% PAS, high-dose PAS, HPS) PASs. The lambs were slaughtered to evaluate production performance. Our results showed that dietary PAS addition improved the average daily gain and reduced the F/G ratio of the experimental animals. Additionally, the height and width of the rumen papilla in the treatment groups were significantly higher than those in the CK group. The fermentation parameters showed that the levels of acetate and butyrate were significantly higher in the LPS group than in the CK and HPS groups. The propionate levels in the HPS group were significantly higher than those in the CK and LPS groups. Metagenomics analysis revealed that PAS dietary supplementation improved the abundance of Clostridiales and Bacteroidales and reduced the abundance of Prevotella, Butyrivibrio, and Methanococcus. Metabolomic analyses revealed that increased metabolite levels, such as those of serotonin, L-isoleucine, and L-valine, were closely related to growth-related metabolic pathways. The correlations analyzed showed that papilla height and muscular thickness were positively and negatively correlated with serotonin and L-valine, respectively. Average daily gain (ADG) was positively and negatively correlated with L-valine and several Prevotella, respectively. In addition, muscular thickness was positively correlated with Sodaliphilus pleomorphus, four Prevotella strains, Sarcina_sp_DSM_11001, and Methanobrevibacter_thaueri. Overall, PAS addition improved sheep growth performance by regulating beneficial microorganism and metabolite abundances, facilitating bacterial and viral invasion resistance. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 934 KiB  
Review
The Influence of Microbiota on Wild Birds’ Parental Coprophagy Behavior: Current Advances and Future Research Directions
by Saba Gul, Yurou Shi, Jie Hu and Sen Song
Microorganisms 2024, 12(12), 2468; https://doi.org/10.3390/microorganisms12122468 - 30 Nov 2024
Viewed by 607
Abstract
This comprehensive review provides an in-depth exploration of the intriguing phenomenon of parental coprophagy in wild birds and its profound implications on the influence of adult avian parents’ health. This review investigates the composition and dynamics of avian feces’ microbiota, casting light on [...] Read more.
This comprehensive review provides an in-depth exploration of the intriguing phenomenon of parental coprophagy in wild birds and its profound implications on the influence of adult avian parents’ health. This review investigates the composition and dynamics of avian feces’ microbiota, casting light on the various dietary, environmental, and genetic factors that influence its diversity. Furthermore, it emphasizes parental coprophagy, a behavior observed in numerous bird species, particularly among herbivorous and passerine birds. The review investigates multiple hypotheses proposed to explain the occurrence of coprophagy. It delves into its function as a potential mechanism for transmitting microorganisms, particularly feces bacteria, from nestlings to their parents. This microbial transfer may affect the health and well-being of adult avian parents. In addition, the review highlights the current research deficits and debates surrounding coprophagy. These gaps include crucial aspects such as the onset of coprophagy, its long-term effects on both parents and offspring, the nutritional implications of consuming nestling feces, the potential risks of pathogen transmission, and the ecological and evolutionary factors that drive this behavior. As the review synthesizes existing knowledge and identifies areas requiring additional research, it emphasizes the significance of future studies that comprehensively address these gaps. By doing so, we can understand coprophagy’s ecological and evolutionary significance in wild birds, advancing our knowledge on avian biology. This information can improve conservation efforts to protect migratory bird populations and their complex ecosystems. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

Back to TopTop