Molecular Analysis of Escherichia coli and Correlations Between Phylogroups and Sequence Types from Different Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Bacterial Identification and Antimicrobial Susceptibility Test
2.3. ERIC-PCR
2.4. DNA Isolation and Whole-Genome Sequencing
2.5. Bioinformatic Analysis
2.6. Statistical Analysis
3. Results
3.1. Antibiotic Resistance Genes
3.2. Virulence-Associated Genes
3.3. Serotypes
3.4. Sequence Types
3.5. Phylogroups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Zhou, Z.; Zheng, L.; Gong, Z.; Li, Y.; Jin, Y.; Huang, Y.; Chi, M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int. J. Mol. Sci. 2023, 24, 10537. [Google Scholar] [CrossRef]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Hilaire, M.G. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef]
- Soncini, J.G.M.; Cerdeira, L.; Sano, E.; Koga, V.L.; Tizura, A.T.; Tano, Z.N.; Nakazato, G.; Kobayashi, R.K.T.; Aires, C.A.M.; Lincopan, N.; et al. Genomic insights of high-risk clones of ESBL-producing Escherichia coli isolated from community infections and commercial meat in southern Brazil. Sci. Rep. 2022, 12, 9354. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Daga, A.P.; Koga, V.L.; Soncini, J.G.M.; De Matos, C.M.; Perugini, M.R.E.; Pelisson, M.; Kobayashi, R.K.T.; Vespero, E.C. Escherichia coli Bloodstream Infections in Patients at a University Hospital: Virulence Factors and Clinical Characteristics. Front. Cell. Infect. Microbiol. 2019, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Giedraitiene, A.; Pereckaite, L.; Bredelyte-Gruodiene, E.; Virgailis, M.; Ciapiene, I.; Tatarunas, V. CTX-M-Producing Escherichia coli Strains: Resistance to Temocillin, Fosfomycin, Nitrofurantoin and Biofilm Formation. Future Microbiol. 2022, 17, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, F.; Rasool, M.H.; Shafiq, M.; Aslam, B.; Khurshid, M. Emergence of Carbapenem-Resistant Uropathogenic Escherichia coli (ST405 and ST167) Strains Carrying blaCTX-M-15, blaNDM-5 and Diverse Virulence Factors in Hospitalized Patients. Pathogens 2024, 13, 964. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed]
- Kudinha, T.; Kong, F. Possible step-up in prevalence for Escherichia coli ST131 from fecal to clinical isolates: Inferred virulence potential comparative studies within phylogenetic group B2. J. Biomed. Sci. 2022, 29, 78. [Google Scholar] [CrossRef]
- Kocsis, B.; Gulyás, D.; Szabó, D. Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. Life 2022, 12, 2077. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: Another pandemic clone combining multiresistance and extraintestinal virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef]
- Byarugaba, D.K.; Erima, B.; Wokorach, G.; Alafi, S.; Kibuuka, H.; Mworozi, E.; Musinguzi, A.K.; Kiyengo, J.; Najjuka, F.; Wabwire-Mangen, F. Resistome and virulome of high-risk pandemic clones of multidrug-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) isolated from tertiary healthcare settings in Uganda. PLoS ONE 2023, 18, e0294424. [Google Scholar] [CrossRef]
- CLSI Document M100-S30; Performance Standards for Antimicrobial Susceptibility Testing. 30th Informational Supplement. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020.
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Heras, J.; Domínguez, C.; Mata, E.; Pascual, V.; Lozano, C.; Torres, C.; Zarazaga, M. GelJ—A tool for analyzing DNA fingerprint gel images. BMC Bioinform. 2015, 16, 270. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Kleinheinz, K.A.; Joensen, K.G.; Larsen, M.V. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 2014, 4, e27943. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Tchesnokova, V.; Allesøe, R.; Muradova, M.; Chattopadhyay, S.; Ahrenfeldt, J.; Thomsen, M.C.F.; Lund, O.; Hansen, F.; Hammerum, A.M.; et al. Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. Diekema DJ, organizador. J. Clin. Microbiol. 2017, 55, 2538–2543. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Tetzschner, A.M.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef]
- Alves, W.O.; Scavuzzi, A.M.L.; Beltrão, E.M.B.; De Oliveira, É.M.; Vasconcelos, C.R.S.; Rezende, A.M.; Lopes, A.C.S. Occurrence of blaNDM-7 and association with blaKPC-2, blaCTX-M15, aac, aph, mph(A), catB3 and virulence genes in a clinical isolate of Klebsiella pneumoniae with different plasmids in Brazil. Arch. Microbiol. 2022, 204, 459. [Google Scholar] [CrossRef]
- Tchesnokova, V.; Larson, L.; Basova, I.; Sledneva, Y.; Choudhury, D.; Solyanik, T.; Heng, J.; Bonilla, T.C.; Pham, S.; Schartz, E.M.; et al. Increase in the community circulation of ciprofloxacin-resistant Escherichia coli despite reduction in antibiotic prescriptions. Commun. Med. 2023, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Heinz, E.; Van Aartsen, J.; Howard, A.; Roberts, P.; Corless, C.; Fraser, A.J.; Williams, C.T.; Bulgasim, I.; Cuevas, L.E.; et al. Piperacillin/tazobactam-resistant, cephalosporin-susceptible Escherichia coli bloodstream infections are driven by multiple acquisition of resistance across diverse sequence types. Microb. Genom. 2022, 8, 000789. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, X.; Hedman, H.; Villagomez, A.; Cardenas, P.; Eisenberg, J.N.S.; Levy, K.; Zhang, L.; Trueba, G. Distribution of blaCTX-M-gene variants in E. coli from different origins in Ecuador. Med. Microecol. 2023, 18, 100092. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Sellera, F.P.; Cunha, M.P.V.; Lopes, R.; Cerdeira, L.; Lincopan, N. Emergence of CTX-M-27-producing Escherichia coli of ST131 and clade C1-M27 in an impacted ecosystem with international maritime traffic in South America. J. Antimicrob. Chemother. 2020, 75, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, B.; Zhao, L.; Wei, Z.; Ji, J.; Li, L.; Xiao, Y. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect. Dis. 2014, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.S.; Zong, Z.Y.; Yuan, L.; Du, X.D.; Huang, H.; Zhong, X.H.; Hu, G.Z. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying blaCTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain. Front. Microbiol. 2016, 7, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.; Filho, R.A.C.P.; Andrade, L.N.; Junior, A.B.; Darini, A.L.C. Evaluation and characterization of plasmids carrying CTX-M genes in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil. Diagn. Microbiol. Infect. Dis. 2016, 85, 444–448. [Google Scholar] [CrossRef]
- Clemente, L.; Manageiro, V.; Correia, I.; Amaro, A.; Albuquerque, T.; Themudo, P.; Ferreira, E.; Caniça, M. Revealing mcr-1-positive ESBL-producing Escherichia coli strains among Enterobacteriaceae from food-producing animals (bovine, swine and poultry) and meat (bovine and swine), Portugal, 2010–2015. Int. J. Food Microbiol. 2019, 296, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Madni, W.A.; Mohsin, M.; Nawaz, Z.; Muzammil, S.; Zahoor, M.A.; Asif, R. Molecular mechanism of antimicrobial co-resistance Colistin (mcr-1) and ESBLs genes among Escherichia coli isolates from commercial chickens in Pakistan. Braz. J. Biol. 2024, 84, e267494. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Feng, S.; Chen, H.; Dai, M.; Paterson, D.L.; Zheng, X.; Wu, X.; Zhong, L.L.; Liu, Y.; Xia, Y.; et al. Transmission of mcr-1 -Producing Multidrug-resistant Enterobacteriaceae in Public Transportation in Guangzhou, China. Clin. Infect. Dis. 2018, 67, S217–S224. [Google Scholar] [CrossRef]
- Torres, R.T.; Cunha, M.V.; Araujo, D.; Ferreira, H.; Fonseca, C.; Palmeira, J.D. Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates. Environ. Pollut. 2021, 291, 118136. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Subedi, M.; Luitel, H.; Devkota, B.; Bhattarai, R.K.; Phuyal, S.; Panthi, P.; Shrestha, A.; Chaudhary, D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 113. [Google Scholar] [CrossRef]
- Rezatofighi, S.E.; Najafifar, A.; Badouei, M.A.; Peighambari, S.M.; Soltani, M. An Integrated Perspective on Virulence-Associated Genes (VAGs), Antimicrobial Resistance (AMR), and Phylogenetic Clusters of Pathogenic and Non-pathogenic Avian Escherichia coli. Front. Vet. Sci. 2021, 8, 758124. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Afayibo, D.J.A.; Zhang, B.; Zhu, H.; Yao, L.; Guo, W.; Wang, X.; Wang, Z.; Wang, D.; Peng, H.; et al. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front. Microbiol. 2022, 13, 1049391. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Barros, M.M.; Araújo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Almeida, C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front. Vet. Sci. 2022, 9, 981207. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed]
- Nasi, G.I.; Georgakopoulou, K.I.; Theodoropoulou, M.K.; Papandreou, N.C.; Chrysina, E.D.; Tsiolaki, P.L.; Iconomidou, V.A. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023, 15, 1018. [Google Scholar] [CrossRef]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; et al. Escherichia coli ST131-H22 as a Foodborne Uropathogen. mBio 2018, 9, e00470. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, S.; Beutin, L.; Mariani-Kurkdjian, P.; Fleiss, A.; Bonacorsi, S.; Fach, P. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters. Front. Cell. Infect. Microbiol. 2017, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Flores-Oropeza, M.A.; Ochoa, S.A.; Cruz-Córdova, A.; Chavez-Tepecano, R.; Martínez-Peñafiel, E.; Rembao-Bojórquez, D.; Zavala-Vega, S.; Hernández-Castro, R.; Flores-Encarnacion, M.; Arellano-Galindo, J.; et al. Comparative genomic analysis of uropathogenic Escherichia coli strains from women with recurrent urinary tract infection. Front. Microbiol. 2024, 14, 1340427. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Chiñas, U.; Ahumada-Cota, R.E.; Navarro-Ocaña, A.; Chávez-Berrocal, M.E.; Molina-López, J.; Rocha-Ramírez, L.M.; del Prado, A.N.; Eslava, C.A. Phenotypic and genotypic characteristics of Escherichia coli strains isolated during a longitudinal follow-up study of chronic urinary tract infections. Front. Public Health 2023, 11, 1240392. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Lavelle, K.; Huang, A.; Atwill, E.R.; Pitesky, M.; Li, X. Assessment of Prevalence and Diversity of Antimicrobial Resistant Escherichia coli from Retail Meats in Southern California. Antibiotics 2023, 12, 782. [Google Scholar] [CrossRef]
- Nehoya, K.N.; Hamatui, N.; Shilangale, R.P.; Onywera, H.; Kennedy, J.; Mwapagha, L.M. Characterization of Shiga toxin-producing Escherichia coli in raw beef from informal and commercial abattoirs. PLoS ONE 2020, 15, e0243828. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Resistance | Resistance Genes | Sources | p-Value | ||
---|---|---|---|---|---|
Meats | Human | ||||
Chicken Meat n = 52 (%) | Pork n = 24 (%) | Urine n = 59 (%) | |||
ESBL | blaCTX-M-1 | 1 (1.9) | 0 (0.0) | 0 (0.0) | 1.000 |
blaCTX-M-2 | 18 (34.6) | 3 (12.5) | 4 (6.8) | 0.002 * | |
blaCTX-M-3 | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
blaCTX-M-8 | 6 (11.5) | 3 (12.5) | 9 (15.3) | 0.615 | |
blaCTX-M-14 | 1 (1.9) | 0 (0.0) | 6 (10.2) | 0.043 | |
blaCTX-M-15 | 0 (0.0) | 3 (12.5) | 14 (23.7) | 0.001 * | |
blaCTX-M-24 | 0 (0.0) | 0 (0.0) | 2 (3.4) | 0.189 | |
blaCTX-M-27 | 0 (0.0) | 0 (0.0) | 3 (5.1) | 0.081 | |
blaCTX-M-55 | 22 (42.3) | 10 (41.7) | 6 (10.2) | <0.001 * | |
β-lactam | blaCMY-2 | 8 (15.4) | 2 (8.3) | 3 (5.1) | 0.147 |
blaSHV-12 | 2 (3.8) | 0 (0.0) | 0 (0.0) | 0.504 | |
blaOXA-1 | 0 (0.0) | 1 (4.2) | 6 (10.2) | 0.043 * | |
blaTEM-1A | 1 (1.9) | 3 (12.5) | 0 (0.0) | 0.131 | |
blaTEM-1B | 22 (42.3) | 14 (58.3) | 28 (47.6) | 1.000 | |
blaTEM-141 | 9 (17.3) | 6 (25.0) | 0 (0.0) | <0.001 * | |
blaTEM-206 | 9 (17.3) | 6 (25.0) | 0 (0.0) | <0.001 * | |
blaTEM-209 | 0 (0.0) | 1 (4.2) | 0 (0.0) | 1.000 | |
blaTEM-214 | 9 (17.3) | 6 (25.0) | 0 (0.0) | 0.005 * | |
Sulphonamide | sul1 | 25 (48.1) | 7 (29.2) | 36 (61.0) | 0.037 * |
sul2 | 26 (50.0) | 10 (41.7) | 30 (50.8) | 0.730 | |
sul3 | 6 (11.5) | 1 (4.2) | 1 (1.7) | 0.137 | |
Tetracycline | tet(A) | 9 (17.3) | 7 (29.2) | 27 (45.8) | 0.003 * |
tet(B) | 10 (19.2) | 10 (41.7) | 17 (28.8) | 0.846 | |
tet(G) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
tet(M) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
Fosfomycin | fosA | 15 (28.8) | 8 (33.3) | 3 (5.1) | <0.001 * |
Phenicols | catA1 | 1 (1.9) | 1 (4.2) | 4 (6.8) | 0.404 |
catB3 | 0 (0.0) | 0 (0.0) | 7 (11.9) | 0.021 * | |
cmlA1 | 4 (7.7) | 1 (4.2) | 2 (3.4) | 0.465 | |
floR | 3 (5.8) | 4 (16.7) | 2 (3.4) | 0.298 | |
mdf(A) | 4 (7.7) | 1 (4.2) | 2 (3.4) | 0.468 | |
mph(A) | 1 (1.9) | 3 (12.5) | 26 (44.1) | <0.001 * | |
mph(B) | 0 (0.0) | 1 (4.2) | 0 (0.0) | 1.000 | |
Trimethoprim | dfrA1 | 4 (7.7) | 3 (12.5) | 10 (16.9) | 0.314 |
dfrA5 | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
dfrA7 | 2 (3.8) | 0 (0.0) | 0 (0.0) | 0.504 | |
dfrA8 | 0 (0.0) | 1 (4.2) | 3 (5.1) | 0.318 | |
dfrA12 | 3 (5.8) | 0 (0.0) | 5 (8.5) | 0.296 | |
dfrA14 | 3 (5.8) | 1 (4.2) | 2 (3.4) | 0.696 | |
dfrA17 | 6 (11.5) | 3 (12.5) | 27 (45.8) | <0.001 * | |
dfrA25 | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
erm(42) | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
erm(B) | 0 (0.0) | 0 (0.0) | 4 (6.8) | 0.034 * | |
Quinolones | QnrB19 | 6 (11.5) | 3 (12.5) | 4 (6.8) | 0.246 |
QnrS1 | 1 (1.9) | 0 (0.0) | 4 (6.8) | 0.167 | |
rmtB | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
Aminoglycosides | aac(3)-Iv | 0 (0.0) | 1 (4.2) | 0 (0.0) | 1.000 |
aac(3)-VIa | 19 (36.5) | 2 (8.3) | 4 (6.8) | 0.002 * | |
aac(3)-IIa | 0 (0.0) | 0 (0.0) | 3 (5.1) | 0.081 | |
aac(3)-IId | 3 (5.8) | 1 (4.2) | 8 (13.6) | 0.128 | |
aac(6′)Ib-cr | 0 (0.0) | 1 (4.2) | 8 (13.6) | 0.010 * | |
aph(6)-Id | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.131 | |
aph(3′)-Ia | 4 (7.7) | 3 (12.5) | 1 (1.7) | 0.137 | |
aph(3″)-Ib | 4 (7.7) | 6 (25.0) | 0 (0.0) | 0.003 * | |
aph(3′)-Ic | 1 (1.9) | 1 (4.2) | 2 (3.4) | 1.000 | |
aph(4)-Ia | 1 (1.9) | 1 (4.2) | 1 (1.7) | 1.000 | |
ant(2″)-Ia | 2 (3.8) | 0 (0.0) | 0 (0.0) | 0.504 | |
aph(6)-Id | 4 (7.7) | 6 (25.0) | 0 (0.0) | 0.035 * | |
aacA4 | 0 (0.0) | 0 (0.0) | 2 (3.4) | 0.189 | |
aadA1 | 32 (61.5) | 9 (37.5) | 15 (25.4) | 0.001 * | |
aadA2 | 5 (9.6) | 1 (4.2) | 6 (10.2) | 0.763 | |
aadA2b | 1 (1.9) | 0 (0.0) | 0 (0.0) | 1.000 | |
aadA5 | 5 (9.6) | 3 (12.5) | 25 (42.4) | <0.001 * | |
aadA12 | 0 (0.0) | 1 (4.2) | 0 (0.0) | 1.000 | |
aadA24 | 0 (0.0) | 1 (4.2) | 0 (0.0) | 1.000 | |
aadB | 4 (7.7) | 0 (0.0) | 3 (5.1) | 1.000 | |
strA | 12 (23.1) | 9 (37.5) | 25 (42.4) | 0.099 | |
strB | 12 (23.1) | 9 (37.5) | 25 (42.4) | 0.099 | |
Fluroquinoles | parC:p.S56T | 1 (1.9) | 1 (4.2) | 1 (1.7) | 1.000 |
parC:p.S57T | 2 (3.8) | 1 (4.2) | 0 (0.0) | 0.256 | |
parC:p.S80I | 37 (71.2) | 16 (66.7) | 43 (72.9) | 0.707 | |
parC_S80R | 0 (0.0) | 0 (0.0) | 2 (3.4) | 0.189 | |
parC_E84A | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
parC:p.E84K | 2 (3.8) | 2 (8.3) | 0 (0.0) | 0.131 | |
parC:p.E84G | 4 (7.7) | 0 (0.0) | 4 (6.8) | 0.729 | |
parC_E84V | 0 (0.0) | 0 (0.0) | 12 (20.3) | <0.001 * | |
parE_L416F | 0 (0.0) | 0 (0.0) | 4 (6.8) | 0.034 * | |
parE:p.S458A | 4 (7.7) | 7 (29.2) | 14 (23.7) | 0.187 | |
parE:p.I355T | 6 (11.5) | 1 (4.2) | 3 (5.1) | 0.512 | |
parE_I529L | 0 (0.0) | 0 (0.0) | 12 (20.3) | <0.001 * | |
gyrA:p.S83L | 46 (88.5) | 13 (54.2) | 47 (79.7) | 0.348 | |
gyrA:p.D87Y | 1 (1.9) | 8 (33.3) | 3 (5.1) | 1.000 | |
gyrA:pD87N | 33 (63.5) | 13 (54.2) | 41 (69.5) | 0.365 | |
Colistin | mcr-1 | 0 (0.0) | 3 (12.5) | 0 (0.0) | 0.256 |
Peroxide | sitABCD | 19 (36.5) | 7 (29.2) | 0 (0.0) | <0.001 * |
Quaternary | qacE | 14 (26.2) | 4 (16.7) | 0 (0.0) | <0.001 * |
Aldehyde | formA | 3 (5.8) | 3 (12.5) | 0 (0.0) | 0.035 * |
Lincosamide | Inu(A) | 1 (1.9) | 2 (8.3) | 0 (0.0) | 1.000 |
cmIA1 | 4 (7.7) | 0 (0.0) | 0 (0.0) | 0.256 |
Genes | Virulence-Associated Genes | Sources | p-Value | |||
---|---|---|---|---|---|---|
Meats | Human | |||||
Chicken Meat, n = 52 (%) | Pork, n = 24 (%) | Urine, n = 59 (%) | ||||
Adhesins | afaD | Adhesin Afa | 1 (1.9) | 0 (0.0) | 0 (0.0) | 0.563 |
air | Enteroaggregative immunoglobulin repeat protein | 10 (19.2) | 5 (20.8) | 18 (30.5) | 0.149 | |
iha | Adherence protein | 18 (34.6) | 3 (12.5) | 17 (28.8) | 0.88 | |
Effector delivery system | aaiC | Chromosomal gene | 0 (0.0) | 1 (4.2) | 0 (0.0) | 0.563 |
pic | Serin protease autotransporter | 2 (3.8) | 0 (0.0) | 3 (5.1) | 0.653 | |
sat | Secreted autotransporter toxin | 0 (0.0) | 0 (0.0) | 15 (25.4) | <0.001 * | |
tsh | Temperature-sensitive hemagglutinin | 13 (25.0) | 2 (8.3) | 5 (8.5) | 0.068 | |
vat | Vacuolating autotransporter toxin | 2 (3.8) | 0 (0.0) | 6 (10.2) | 0.066 | |
Exotoxin | astA | EAST-1 heat-stable toxin | 23 (44.2) | 10 (41.7) | 6 (10.2) | <0.001 * |
cba | Colicin B | 8 (15.4) | 0 (0.0) | 0 (0.0) | 0.01 * | |
cea | Colicin E1 | 6 (11.5) | 4 (16.7) | 0 (0.0) | 0.003 * | |
celb | Endonuclease colicin E2 | 3 (5.8) | 1 (4.2) | 0 (0.0) | 0.131 | |
cia | Colicin Ia | 9 (17.3) | 6 (25.0) | 0 (0.0) | <0.001 * | |
cib | Colicin Ib | 2 (3.8) | 0 (0.0) | 0 (0.0) | 0.504 | |
cma | Colicin M activity | 20 (38.5) | 2 (8.3) | 5 (8.5) | 0.004 * | |
cnf1 | Cytotoxic necrotizing factor 1 | 0 (0.0) | 0 (0.0) | 5 (8.5) | 0.014 * | |
hlyE | Hemolysin E | 1 (1.9) | 1 (4.2) | 0 (0.0) | 0.504 | |
hlyF | Hemolysin F | 21 (40.4) | 6 (25.0) | 0 (0.0) | <0.001 * | |
ompT | Outer membrane protease | 26 (50.0) | 13 (54.2) | 0 (0.0) | <0.001 * | |
senB | Enterotoxin SenB/TieB | 0 (0.0) | 0 (0.0) | 10 (16.9) | <0.001 * | |
Nutritional/ metabolic factor | chuA | Outer membrane hemin receptor | 14 (26.9) | 4 (16.7) | 0 (0.0) | <0.001 * |
fyuA | Yersiniabactin siderophore receptor | 7 (13.5) | 3 (12.5) | 0 (0.0) | 0.003 * | |
ireA | Iron-responsive element | 8 (15.4) | 4 (16.7) | 4 (6.8) | 0.178 | |
iroN | Salmochelin siderophore receptor | 27 (51.9) | 5 (20.8) | 16 (27.1) | 0.071 | |
irp2 | Yersiniabactin | 7 (13.5) | 3 (12.5) | 0 (0.0) | 0.003 * | |
iucC | Aerobactin synthetase | 21 (40.4) | 3 (12.5) | 0 (0.0) | <0.001 * | |
iutA | Aerobactin siderophore receptor | 20 (38.5) | 2 (8.3) | 0 (0.0) | <0.001 * | |
sitA | Iron/manganese transport | 23 (44.2) | 8 (33.3) | 0 (0.0) | <0.001 * | |
Capsule | kpsE | Capsule polysaccharide export inner membrane protein | 12 (23.1) | 3 (12.5) | 0 (0.0) | <0.001 * |
kpsMII | Group capsular II | 7 (13.5) | 2 (8.3) | 0 (0.0) | 0.005 * | |
kpsMII_K1 | Group capsular II | 3 (5.8) | 0 (0.0) | 0 (0.0) | 0.256 | |
kpsMII_k5 | Group capsular II | 2 (3.8) | 1 (4.2) | 0 (0.0) | 0.256 | |
neuC | Polysialic acid capsule biosynthesis protein | 3 (5.8) | 0 (0.0) | 0 (0.0) | 0.256 | |
Invasion | ibeA | Invasion of brain endothelium | 1 (1.9) | 0 (0.0) | 0 (0.0) | 0.376 |
Other | aap | Anti-aggregation protein | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 |
capU | Hexosyltransferase homolog | 0 (0.0) | 1 (4.2) | 6 (10.2) | 0.043 * | |
ccl | Cloacin | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
cvaC | Microcin C | 12 (23.1) | 3 (12.5) | 0 (0.0) | <0.001 * | |
eatA | Enterotoxigenic E. coli (ETEC) autotransporter A | 0 (0.0) | 0 (0.0) | 1 (1.7) | 0.437 | |
eilA | Salmonella HilA homolog | 18 (34.6) | 9 (37.5) | 20 (33.9) | 0.858 | |
estC | Putative type I secretion outer membrane protein | 17 (32.7) | 4 (16.7) | 0 (0.0) | <0.001 * | |
gad | Glutamate decarboxylase | 33 (63.5) | 17 (70.7) | 57 (96.6) | <0.001 * | |
hra | Heat-resistant agglutinin | 8 (15.4) | 6 (25.0) | 0 (0.0) | <0.001 * | |
IpfA | Long polar fimbriae | 23 (44.2) | 15 (62.5) | 27 (45.8) | 0.625 | |
iss | Increased serum survival | 41 (78.8) | 17 (70.8) | 43 (72.9) | 0.648 | |
katP | Plasmid-encoded catalase peroxidase | 0 (0.0) | 1 (4.2) | 0 (0.0) | 0.563 | |
mchB | ABC transporter protein MchB | 0 (0.0) | 0 (0.0) | 2 (3.4) | 0.189 | |
mchC | ABC transporter protein MchC | 0 (0.0) | 0 (0.0) | 3 (5.1) | 0.081 | |
mchF | ABC transporter protein MchF | 16 (30.8) | 4 (16.7) | 13 (22.0) | 0.566 | |
mcmA | Microcin M part of colicin H | 0 (0.0) | 1 (4.2) | 2 (3.4) | 0.581 | |
nfaE | Nonfimbrial adhesin | 0 (0.0) | 0 (0.0) | 6 (10.2) | 0.006 * | |
papA_F19 | P fimbriae A | 1 (1.9) | 0 (0.0) | 0 (0.0) | 0.563 | |
papA_F20 | P fimbriae A | 1 (1.9) | 1 (4.2) | 0 (0.0) | 0.504 | |
papC | P fimbriae C | 8 (15.4) | 3 (12.5) | 0 (0.0) | 0.002 * | |
terC | Tellurium ion resistance protein | 28 (53.8) | 15 (62.5) | 0 (0.0) | <0.001 * | |
traT | Outer membrane lipoprotein | 24 (46.2) | 12 (50.0) | 0 (0.0) | <0.001 * | |
yfcV | Fimbrial protein | 4 (7.7) | 2 (8.3) | 0 (0.0) | 0.035 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soncini, J.G.M.; Koga, V.L.; Fuga, B.; Tano, Z.N.; Nakazato, G.; Kobayashi, R.K.T.; Lincopan, N.; Vespero, E.C. Molecular Analysis of Escherichia coli and Correlations Between Phylogroups and Sequence Types from Different Sources. Microorganisms 2024, 12, 2645. https://doi.org/10.3390/microorganisms12122645
Soncini JGM, Koga VL, Fuga B, Tano ZN, Nakazato G, Kobayashi RKT, Lincopan N, Vespero EC. Molecular Analysis of Escherichia coli and Correlations Between Phylogroups and Sequence Types from Different Sources. Microorganisms. 2024; 12(12):2645. https://doi.org/10.3390/microorganisms12122645
Chicago/Turabian StyleSoncini, João Gabriel Material, Vanessa Lumi Koga, Bruna Fuga, Zuleica Naomi Tano, Gerson Nakazato, Renata Katsuko Takayama Kobayashi, Nilton Lincopan, and Eliana Carolina Vespero. 2024. "Molecular Analysis of Escherichia coli and Correlations Between Phylogroups and Sequence Types from Different Sources" Microorganisms 12, no. 12: 2645. https://doi.org/10.3390/microorganisms12122645
APA StyleSoncini, J. G. M., Koga, V. L., Fuga, B., Tano, Z. N., Nakazato, G., Kobayashi, R. K. T., Lincopan, N., & Vespero, E. C. (2024). Molecular Analysis of Escherichia coli and Correlations Between Phylogroups and Sequence Types from Different Sources. Microorganisms, 12(12), 2645. https://doi.org/10.3390/microorganisms12122645