Comprehensive Analysis of blaCTX-M1 Gene Expression Alongside iutA, csgA, and kpsMII Virulence Genes in Septicemic Escherichia coli Using Real-Time PCR
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Antibiotic Susceptibility Assessment
2.3. Detection of ESBL-Positive Isolates
2.4. Detection of Beta-Lactamase Genes
2.5. Genotyping of Virulence Genes
2.6. Real-Time PCR
2.7. Ethical Approval
3. Results
3.1. Sample Processing and Phenotypic Characterization
3.2. Antibiotic Susceptibility Profile
3.3. The Prevalence of ESBL Genes
3.4. Detected Virulence Genes in ESBL-Producing Isolates
3.5. Real-Time PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öztürk, R.; Murt, A. Epidemiology of urological infections: A global burden. World J. Urol. 2020, 38, 2669–2679. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.R.A.; Habibi, M.; Bouzari, S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol. Immunol. 2019, 108, 56–67. [Google Scholar] [CrossRef]
- López-Sampedro, I.; Hernández-Chico, I.; Gómez-Vicente, E.; Expósito-Ruiz, M.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae from Urine Cultures. Arch. Esp. De Urol. 2023, 76, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Bunduki, G.K.; Heinz, E.; Phiri, V.S.; Noah, P.; Feasey, N.; Musaya, J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 753. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Fröding, I. Bloodstream Infections with ESBL-Producing Enterobacterales: Prediction, Rapid Diagnosis and Molecular Epidemiology; Karolinska Institutet: Solna, Sweden, 2019. [Google Scholar]
- Yousefi, B.; Pakdel, A.; Hasanpour, S.; Abdolshahi, A.; Emadi, A.; Pahlevan, D.; Dadashpour, M.; Eslami, M. CTX-M gene and presence of insertion elements in patients with septicemia caused by Escherichia coli. Rev. Res. Med. Microbiol. 2023, 34, 140–148. [Google Scholar] [CrossRef]
- Hussain, H.I.; Aqib, A.I.; Seleem, M.N.; Shabbir, M.A.; Hao, H.; Iqbal, Z.; Kulyar, M.F.-e.-A.; Zaheer, T.; Li, K. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb. Pathog. 2021, 158, 105040. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.o.G.d.M.; Fernandes, L.S.; dos Santos, R.V.; Tasic, L.; Fill, T.P. Virulence factors in the phytopathogen–host interactions: An overview. J. Agric. Food Chem. 2020, 68, 7555–7570. [Google Scholar] [CrossRef]
- Butcher, C.R.; Rubin, J.; Mussio, K.; Riley, L.W. Risk factors associated with community-acquired urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli: A systematic review. Curr. Epidemiol. Rep. 2019, 6, 300–309. [Google Scholar] [CrossRef]
- Kardos, N. CRE (Carbapenem Resistant Enterobacteriaceae) and the Globalization of Antimicrobial Resistance: Problems and Solutions. SunText Rev. Biotechnol. 2020, 1, 103. [Google Scholar]
- Shahin, N.P.; Majid, E.; Amin, T.B.A.; Bita, B. Host characteristics and virulence typing of Escherichia coli isolated from diabetic patients. Gene Rep. 2019, 15, 100371. [Google Scholar] [CrossRef]
- Yousefi, B.; Abdolshahi, A.; Dadashpour, M.; Pahlevan, D.; Ghaffari, H.; Eslami, M. Evaluation of genes involved in the binding and invasion of Klebsiella pneumoniae including FimH-1, EntB, IutA, RmpA and Cnf-1 genes in patients with urinary tract infection. Rev. Res. Med. Microbiol. 2023, 34, 130–135. [Google Scholar] [CrossRef]
- Peerayeh, S.N.; Eslami, M.; Memariani, M.; Siadat, S.D. High prevalence of blaCTX-M-1 group extended-spectrum β-lactamase genes in Escherichia coli isolates from Tehran. Jundishapur J. Microbiol. 2013, 6, e6863. [Google Scholar]
- Peerayeh, S.N.; Rostami, E.; Eslami, M.; Rezaee, M.A. High frequency of extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates from male patients’ Urine. Arch. Clin. Infect. Dis. 2016, 11, e60127. [Google Scholar]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Goli, H.; Javidnia, J.; Alipour, T.; Eslami, M. Genetic Diversity and Antibiotic Resistance Patterns of Escherichia coli Isolates Causing Septicemia: A Phylogenetic Typing and PFGE Analysis. Diagn. Microbiol. Infect. Dis. 2024, 111, 116586. [Google Scholar] [CrossRef]
- Dubois, D.; Delmas, J.; Cady, A.; Robin, F.; Sivignon, A.; Oswald, E.; Bonnet, R. Cyclomodulins in urosepsis strains of Escherichia coli. J. Clin. Microbiol. 2010, 48, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dong, W.; Ma, J.; Yuan, L.; Hejair, H.M.; Pan, Z.; Liu, G.; Yao, H. Characterization and virulence clustering analysis of extraintestinal pathogenic Escherichia coli isolated from swine in China. BMC Vet. Res. 2017, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Nagarjuna, D.; Dhanda, R.; Gaind, R.; Yadav, M. tcpC as a prospective new virulence marker in blood Escherichia coli isolates from sepsis patients admitted to the intensive care unit. New Microbes New Infect. 2015, 7, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Subedi, M.; Luitel, H.; Devkota, B.; Bhattarai, R.K.; Phuyal, S.; Panthi, P.; Shrestha, A.; Chaudhary, D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Sibley, K.; Sibley, C.; Wasmuth, J.; Schaefer, R.; Surette, M.; Edge, T.; Neumann, N. Intergenic sequence comparison of Escherichia coli isolates reveals lifestyle adaptations but not host specificity. Appl. Environ. Microbiol. 2011, 77, 7620–7632. [Google Scholar] [CrossRef]
- Tapader, R.; Chatterjee, S.; Singh, A.; Dayma, P.; Haldar, S.; Pal, A.; Basu, S. The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Khaled, E.; Iqbal, A. Antimicrobial Resistance, Virulence Factor-Encoding Genes, and Biofilm-Forming Ability of Community-Associated Uropathogenic Escherichia coli in Western Saudi Arabia. Pol. J. Microbiol. 2022, 71, 325–339. [Google Scholar]
- Dhanji, H.; Doumith, M.; Clermont, O.; Denamur, E.; Hope, R.; Livermore, D.M.; Woodford, N. Real-time PCR for detection of the O25b-ST131 clone of Escherichia coli and its CTX-M-15-like extended-spectrum β-lactamases. Int. J. Antimicrob. Agents 2010, 36, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, N.; de Oliveira Solla Sobral, F.; Lehmann, F.K.M.; da Silveira, V.P.; de Carli, S.; Casanova, Y.S.; Celmer, Á.J.; Fonseca, A.S.K.; Lunge, V.R. Taqman real-time PCR assays for rapid detection of avian pathogenic Escherichia coli isolates. Avian Dis. 2014, 58, 628–631. [Google Scholar] [CrossRef]
- Hou, Z.; Fink, R.; Black, E.; Sugawara, M.; Zhang, Z.; Diez-Gonzalez, F.; Sadowsky, M. Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere. J. Appl. Microbiol. 2012, 113, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Navasa, N.; Rodríguez-Aparicio, L.B.; Ferrero, M.Á.; Moteagudo-Mera, A.; Martínez-Blanco, H. Growth temperature regulation of some genes that define the superficial capsular carbohydrate composition of Escherichia coli K92. FEMS Microbiol. Lett. 2011, 320, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Moirongo, R.M.; Lorenz, E.; Ntinginya, N.E.; Dekker, D.; Fernandes, J.; Held, J.; Lamshöft, M.; Schaumburg, F.; Mangu, C.; Sudi, L. Regional variation of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, fluoroquinolone-resistant Salmonella enterica and methicillin-resistant Staphylococcus aureus among febrile patients in sub-Saharan Africa. Front. Microbiol. 2020, 11, 567235. [Google Scholar] [CrossRef]
- Hijazi, K.; Joshi, C.; Gould, I.M. Challenges and opportunities for antimicrobial stewardship in resource-rich and resource-limited countries. Expert Rev. Anti-Infect. Ther. 2019, 17, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Fu, Y.; Guo, S.; Shi, Y.; Zhang, Y.; Fan, Z.; Yang, B.; Ding, B.; Liao, Y. Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria. Aggregate 2024, 5, e402. [Google Scholar] [CrossRef]
- Damlin, A. Responsible Antibiotic Use and Diagnostic Challenges in Infectious Diseases: Studies in a Resource-Limited Setting and a High-Income Setting; Karolinska Institutet: Solna, Sweden, 2020. [Google Scholar]
- Hawkey, J.; Wyres, K.L.; Judd, L.M.; Harshegyi, T.; Blakeway, L.; Wick, R.R.; Jenney, A.W.; Holt, K.E. ESBL plasmids in Klebsiella pneumoniae: Diversity, transmission and contribution to infection burden in the hospital setting. Genome Med. 2022, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D. Infections with extended-spectrum β-lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Oguadinma, I.C.; Mishra, A.; Juneja, V.K.; Dev Kumar, G. Antibiotic Resistance Influences Growth Rates and Cross-Tolerance to Lactic Acid in Escherichia coli O157:H7 H1730. Foodborne Pathog. Dis. 2022, 19, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Sun, W.; Nie, T.; Quanquin, N.; Sun, Y. Escherichia coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Genes 2020, 11, 991. [Google Scholar] [CrossRef]
- Zeng, M.; Zou, Y.; Shi, Z.; Wang, J.; Yang, Y.; Bai, Y.; Ping, A.; Zhang, P.; Chen, Y.; Tao, H.; et al. A broad-spectrum broth rapidly and completely repairing the sublethal injuries of Escherichia coli caused by freezing and lactic acid alone or in combination for accurate enumeration. LWT 2024, 201, 116219. [Google Scholar] [CrossRef]
- Fontoura, I.; Veriato, T.S.; Raniero, L.J.; Castilho, M.L. Analysis of Capped Silver Nanoparticles Combined with Imipenem against Different Susceptibility Profiles of Klebsiella pneumoniae. Antibiotics 2023, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Du, Y.; Li, X.; Yao, C. Lipoic acid modified antimicrobial peptide with enhanced antimicrobial properties. Bioorg. Med. Chem. 2020, 28, 115682. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Ma, J.; Pang, H.; Wang, H. Overproduction of α-Lipoic Acid by Gene Manipulated Escherichia coli. PLoS ONE 2017, 12, e0169369. [Google Scholar] [CrossRef]
Target Gene | Product | Sequence | Annealing | Ref. |
---|---|---|---|---|
blaTEM | 850 bp | FP: 5′-ATGAGTATTCAACATTTCCG-3′ | 53 °C for 1 min | [14] [15] |
RP: 5′-CCAATGCTTAATCAGTGAGG-3′ | ||||
blaCTX-M1 | 850 bp | FP: 5′-GGTTAAAAAATCACTGCGTC-3′ | 53 °C for 45 s | |
RP: 5′-TTGGTGACGATTTTAGCCGC-3′ | ||||
blaSHV | 230 bp | FP: 5′-AAGATCCACTATCGCCAGCAG-3′ | 56 °C for 50 s | |
RP: 5′-ATTCAGTTCCGTTTCCCAGCGG-3′ | ||||
blaKPC | 900 bp | FP: 5′-TGTCACTGTATCGCCGTC-3′ | 52 °C for 1 min | [16] |
RP: 5′-CTCAGTGCTCTACAGAAAACC-3′ | ||||
blaIPM | 587 bp | FP: 5′-GAAGGCGTTTATGTTCATAC-3′ | 50 °C for 45 s | [17] |
RP: 5′-GTACGTTTCAAGAGTGATGC-3′ | ||||
blaVIM | 389 bp | FP: 5′-GTTTGGTCGCATATCGCAAC-3′ | 57 °C for 1 min | |
RP: 5′-AATGCGCAGCACCAGGATAG-3′ | ||||
blaOXA-48 | 438 bp | FP: 5′-GCGTGGTTAAGGATGAACAC-3′ | 56 °C for 1 min | |
RP: 5′-CATCAAGTTCAACCCAACCG-3′ | ||||
cdt | 430 bp | FP: 5′-AAATCACCAAGAATCATCCAGTTA-3′ | 58 °C for 1 min | [18] |
RP: 5′-AAATCTCCTGCAATCATCCAGTTTA-3′ | ||||
kpsMII | 272 bp | FP: 5′-GCGCATTTGCTGATACTGTTG-3′ | 50 °C for 45 s | [19] |
RP: 5′-CATCCAGACGATAAGCATGAGCA-3′ | ||||
tcpC | 544 bp | FP: 5′-GAGTGGAAGGAGGTTGAGGC-3′ | 61 °C for 1 min | [20] |
RP: 5′-GCAGTGCCATTTTATCCGCC-3′ | ||||
iutA | 302 bp | FP: 5′-GGCTGGACATCATGGGAACTGG-3′ | 55 °C for 1 min | [21] |
RP: 5′-CGTCGGGAACGGGTAGAATCG-3′ | ||||
traT | 290 bp | FP: 5′-GGTGTGGTGCGATGAGCACAG-3′ | 62 °C for 50 s | [22] |
RP: 5′-CACGGTTCAGCCATCCCTGAG-3′ | ||||
hlyA | 534 bp | FP: 5′- GCATCATCAAGCGTACGTTCC-3′ | 49 °C for 1 min | [23] |
RP: 5′- AATGAGCCAAGCTGGTTAAGCT-3′ | ||||
cnf1 | 498 bp | FP: 5′- AAGATGGAGTTTCCTATGCAGGAG-3′ | 59 °C for 45 s | |
RP: 5′- CATTCAGAGTCCTGCCCTCATTAT-3′ | ||||
ibeA | 171 bp | FP: 5′- AGGCAGGTGTGCGCCGCGTAC-3′ | 60 °C for 1 min | |
RP: 5′-TGGTGCTCCGGCAAACCATGC-3′ | ||||
vat | 420 bp | FP: 5′-AACGGTTGGTGGCAACAATCC-3′ | 62 °C for 50 s | [12] |
RP: 5′-AGCCCTGTAGAATGGCGAGTA-3′ | ||||
sat | 330 bp | FP: 5′-TCAGAAGCTCAGCGAATCATTG-3′ | 55 °C for 1 min | |
RP: 5′-CCATTATCACCAGTAAAACGCACC-3′ | ||||
pic | 572 bp | FP: 5′-ACTGGATCTTAAGGCTCAGGAT-3′ | 58 °C for 45 s | |
RP: 5′-GACTTAATGTCACTGTTCAGCG-3′ | ||||
csgA | 295 bp | FP: 5′-GGCGGAAATGGTTCAGATGTTG-3′ | 52 °C for 1 min | [24] |
RP: 5′-CGTATTCATAAGCTTCTCCCGA-3′ | ||||
blaCTX-M1 | 49 bp | FP: 5′-TGGGGGATAAAACCGGCAG-3′ | 53 °C for 1 min | [25] |
RP: 5′-GCGATATCGTTGGTGGTGC-3′ | ||||
iutA | 59 bp | FP: 5′-CGGTGGCGTACGCTATCAGT-3′ | 59 °C for 1 min | [26] |
RP: 5′-GCGCGTAGCCGATGAAAT-3′ | ||||
csgA | 68 bp | FP: 5′-GCGGTAATGGTGCAGATGTTG-3′ | 60 °C for 1 min | [27] |
RP: 5′-GAAGCCACGTTGGGTCAGA-3′ | ||||
kpsMII | 134 bp | FP: 5′-GCACTGCTTGAGACACTGATTTACG-3′ | 62 °C for 1 min | [28] |
RP: 5′-GAAAGAATGATTAACAAACTCCAGGAG-3′ | ||||
gyrB | 254 bp | FP: 5′-GCAAGCCACGCAGTTTCTC-3′ | 61 °C for 1 min | [27] |
RP: 5′-GGAAGCCGACCTCTCTGATG-3′ |
Antibiotic Disc | Resistant (%) | Intermediate (%) | Sensitive (%) |
---|---|---|---|
Erythromycin (15 µg) | 81 | 18 | 1 |
Tetracycline (30 µg) | 74 | 19 | 7 |
Cotrimoxazole (25 µg) | 66 | 7 | 27 |
Imipenem (10 µg) | 1 | 2 | 97 |
Meropenem (10 µg) | 1 | 2 | 97 |
Gentamycin (120 µg) | 44 | 17 | 39 |
Ciprofloxacin (5 µg) | 58 | 7 | 35 |
Nitrofurantoin (300 µg) | 7 | 0 | 93 |
Piperacillin-tazobactam (110 µg) | 9 | 0 | 91 |
Co-amoxiclav (30 µg) | 32 | 45 | 23 |
Ceftazidime (30 µg) | 36 | 20 | 44 |
Cefotaxime (30 µg) | 44 | 7 | 49 |
Cefazolin (30 µg) | 75 | 8 | 17 |
Amoxicillin (10 µg) | 80 | 13 | 7 |
Fosfomycin (200 µg) | 0 | 0 | 100 |
Genes | Antibiotics | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CAZ | IMI | MEN | CZ | AMX | FO | E | TE | PTZ | TS | GM | CIP | FM | AMC | CTX | |
blaTEM | 91 | 2.2 | 2.2 | 100 | 100 | 0 | 97.7 | 88.6 | 4.5 | 65.9 | 56.8 | 68.1 | 2.2 | 75 | 100 |
blaSHV | 93 | 3 | 3 | 100 | 100 | 0 | 98 | 91 | 3 | 61 | 64 | 66 | 5 | 76 | 100 |
blaCTX-M1 | 93 | 2 | 2 | 100 | 100 | 0 | 98 | 90 | 4 | 65 | 60 | 69 | 4 | 76 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbalaei, M.; Esmailpour, M.; Oksenych, V.; Eslami, M. Comprehensive Analysis of blaCTX-M1 Gene Expression Alongside iutA, csgA, and kpsMII Virulence Genes in Septicemic Escherichia coli Using Real-Time PCR. Microorganisms 2025, 13, 95. https://doi.org/10.3390/microorganisms13010095
Karbalaei M, Esmailpour M, Oksenych V, Eslami M. Comprehensive Analysis of blaCTX-M1 Gene Expression Alongside iutA, csgA, and kpsMII Virulence Genes in Septicemic Escherichia coli Using Real-Time PCR. Microorganisms. 2025; 13(1):95. https://doi.org/10.3390/microorganisms13010095
Chicago/Turabian StyleKarbalaei, Mohsen, Mojgan Esmailpour, Valentyn Oksenych, and Majid Eslami. 2025. "Comprehensive Analysis of blaCTX-M1 Gene Expression Alongside iutA, csgA, and kpsMII Virulence Genes in Septicemic Escherichia coli Using Real-Time PCR" Microorganisms 13, no. 1: 95. https://doi.org/10.3390/microorganisms13010095
APA StyleKarbalaei, M., Esmailpour, M., Oksenych, V., & Eslami, M. (2025). Comprehensive Analysis of blaCTX-M1 Gene Expression Alongside iutA, csgA, and kpsMII Virulence Genes in Septicemic Escherichia coli Using Real-Time PCR. Microorganisms, 13(1), 95. https://doi.org/10.3390/microorganisms13010095