Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Type I Collagen Matrices
2.2. Bacterial Culture
2.3. P. gingivalis Inoculum and Bacterial Viability
2.4. Stimulation of HCAECs with Live P. gingivalis W83
Aggregatibacter actinomycetemcomitans
2.5. Evaluation of the Cellular Viability of HCAECs Stimulated with P. gingivalis W83 in Both the 2D and 3D Cell Cultures
2.6. Evaluation of eNOS, COX-2, and vWF Gene Expression in HCAECs Stimulated with live P. gingivalis W83
2.7. Quantification of Pro-Inflammatory Cytokines and Chemokines Produced by HCAECs Stimulated with Live P. gingivalis W83
2.8. Quantification of the Levels of Thromboxane A2 (TXA2) and Prostaglandin I2 (PGI2) Produced by HCAECs Stimulated with Live P. gingivalis W83
2.9. Data Analysis
3. Results
3.1. Effect of live P. gingivalis W83 on the Viability of HCAECs
3.2. P. gingivalis W83 Increased COX-2 Gene Expression in HCAECs in the 3D Cell Culture Model
3.3. P. gingivalis W83 Reduced the Levels of MCP-1 in HCAECs in the 2D and 3D Cell Cultures, While the Levels of IL-8 Were Maintained in the 3D Cell Cultures
3.4. P. gingivalis W83 Tended to Increase the Levels of PGI2 and TXA2 in HCAECs in 3D Cell Cultures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sumpio, B.E.; Timothy Riley, J.; Dardik, A. Cells in Focus: Endothelial Cell. Int. J. Biochem. Cell Biol. 2002, 34, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Giannotti, G.; Landmesser, U. Endothelial Dysfunction as an Early Sign of Atherosclerosis. Herz 2007, 32, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Yamaki, F.; Koike, K.; Toro, L. New Insights into the Intracellular Mechanisms by Which PGI2 Analogues Elicit Vascular Relaxation: Cyclic AMP-Independent, Gs-Protein Mediated-Activation of MaxiK Channel. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2004, 2, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in Health and Disease. J. Lipid Res. 2009, 50, S423–S428. [Google Scholar] [CrossRef] [PubMed]
- Stitham, J.; Midgett, C.; Martin, K.A.; Hwa, J. Prostacyclin: An Inflammatory Paradox. Front. Pharmacol. 2011, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Yokoyama, M. Dysfunction of Endothelial Nitric Oxide Synthase and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Kawashima, S.; Yamashita, T.; Hirase, T.; Namiki, M.; Inoue, N.; Hirata, K.I.; Yasui, H.; Sakurai, H.; Yoshida, Y.; et al. Overexpression of Endothelial Nitric Oxide Synthase Accelerates Atherosclerotic Lesion Formation in ApoE-Deficient Mice. J. Clin. Investig. 2002, 110, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.F.; Fazio, S. Cyclooxygenase Products and Atherosclerosis. Drug Discov. Today Ther. Strateg. 2008, 5, 25–36. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tahara, Y.; Matsumoto, M.; Iguchi, M.; Sano, H.; Murayama, T.; Arai, H.; Oida, H.; Yurugi-Kobayashi, T.; Yamashita, J.K.; et al. Roles of Thromboxane A2 and Prostacyclin in the Development of Atherosclerosis in ApoE-Deficient Mice. J. Clin. Investig. 2004, 114, 784–794. [Google Scholar] [CrossRef]
- Gabrielsen, A.; Qiu, H.; Bäck, M.; Hamberg, M.; Hemdahl, A.L.; Agardh, H.; Folkersen, L.; Swedenborg, J.; Hedin, U.; Paulsson-Berne, G.; et al. Thromboxane Synthase Expression and Thromboxane A2 Production in the Atherosclerotic Lesion. J. Mol. Med. 2010, 88, 795–806. [Google Scholar] [CrossRef]
- Wu, M.D.; Atkinson, T.M.; Lindner, J.R. Platelets and von Willebrand Factor in Atherogenesis. Blood 2017, 129, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012, 10, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.P.C.P.S.C.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. Is There an Association Between Periodontitis and Atherosclerosis in Adults? A Systematic Review. Curr. Vasc. Pharmacol. 2018, 16, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Kebschull, M.; Demmer, R.T.; Papapanou, P.N. “Gum Bug, Leave My Heart Alone!”—Epidemiologic and Mechanistic Evidence Linking Periodontal Infections and Atherosclerosis. J. Dent. Res. 2010, 89, 879–902. [Google Scholar] [CrossRef] [PubMed]
- Velsko, I.M.; Chukkapalli, S.S.; Rivera, M.F.; Lee, J.Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Active Invasion of Oral and Aortic Tissues by Porphyromonas gingivalis in Mice Causally Links Periodontitis and Atherosclerosis. PLoS ONE 2014, 9, e97811. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.M.; Sánchez-Beltrán, M.C.; Castellanos, J.E.; Sanz, I.; Mayorga-Fayad, I.; Sanz, M.; Lafaurie, G.I. Detection of Specific Periodontal Microorganisms from Bacteraemia Samples after Periodontal Therapy Using Molecular-Based Diagnostics. J. Clin. Periodontol. 2011, 38, 418–427. [Google Scholar] [CrossRef]
- Hajishengallis, G. Periodontitis: From Microbial Immune Subversion to Systemic Inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Kozarov, E.V.; Dorn, B.R.; Shelburne, C.E.; Dunn, W.A.; Progulske-Fox, A. Human Atherosclerotic Plaque Contains Viable Invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, e17–e18. [Google Scholar] [CrossRef]
- Atarbashi-Moghadam, F.; Havaei, S.R.; Havaei, S.A.; Hosseini, N.S.; Behdadmehr, G.; Atarbashi-Moghadam, S. Periopathogens in Atherosclerotic Plaques of Patients with Both Cardiovascular Disease and Chronic Periodontitis. ARYA Atheroscler. 2018, 14, 53–57. [Google Scholar] [CrossRef]
- Viafara-García, S.M.; Morantes, S.J.; Chacon-Quintero, Y.; Castillo, D.M.; Lafaurie, G.I.; Buitrago, D.M. Repeated Porphyromonas gingivalis W83 Exposure Leads to Release Pro-Inflammatory Cytokynes and Angiotensin II in Coronary Artery Endothelial Cells. Sci. Rep. 2019, 9, 19379. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, C.; Stafford, G.P.; Potempa, J.; Wilkinson, R.N.; Chen, Y.; Murdoch, C.; Widziolek, M. Mechanisms of Vascular Damage by Systemic Dissemination of the Oral Pathogen Porphyromonas gingivalis. FEBS J. 2021, 288, 1479–1495. [Google Scholar] [CrossRef]
- Bugueno, I.M.; Zobairi El-Ghazouani, F.; Batool, F.; El Itawi, H.; Anglès-Cano, E.; Benkirane-Jessel, N.; Toti, F.; Huck, O. Porphyromonas gingivalis Triggers the Shedding of Inflammatory Endothelial Microvesicles That Act as Autocrine Effectors of Endothelial Dysfunction. Sci. Rep. 2020, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Nassar, H.; Chou, H.H.; Khlgatian, M.; Gibson, F.C.; Van Dyke, T.E.; Genco, C.A. Role for Fimbriae and Lysine-Specific Cysteine Proteinase Gingipain K in Expression of Interleukin-8 and Monocyte Chemoattractant Protein in Porphyromonas gingivalis-Infected Endothelial Cells. Infect. Immun. 2002, 70, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Yoshida, M.; Umeda, M.; Huang, Y.; Kitajima, S.; Inoue, Y.; Ishikawa, I.; Iwai, T. Extended Exposure of Lipopolysaccharide Fraction from Porphyromonas gingivalis Facilitates Mononuclear Cell Adhesion to Vascular Endothelium via Toll-like Receptor-2 Dependent Mechanism. Atherosclerosis 2008, 196, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Champaiboon, C.; Poolgesorn, M.; Wisitrasameewong, W.; Sa-Ard-Iam, N.; Rerkyen, P.; Mahanonda, R. Differential Inflammasome Activation by Porphyromonas gingivalis and Cholesterol Crystals in Human Macrophages and Coronary Artery Endothelial Cells. Atherosclerosis 2014, 235, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Shih, C.M.; Tsao, N.W.; Lin, Y.W.; Shih, C.C.; Chiang, K.H.; Shyue, S.K.; Chang, Y.J.; Hsieh, C.K.; Lin, F.Y. The GroEL Protein of Porphyromonas gingivalis Regulates Atherogenic Phenomena in Endothelial Cells Mediated by Upregulating Toll-like Receptor 4 Expression. Am. J. Transl. Res. 2016, 8, 384–404. [Google Scholar] [PubMed]
- Gualtero, D.F.; Lafaurie, G.I.; Fontanilla, M.R. Two-Dimensional and Three-Dimensional Models for Studying Atherosclerosis Pathogenesis Induced by Periodontopathogenic Microorganisms. Mol. Oral Microbiol. 2018, 33, 29–37. [Google Scholar] [CrossRef]
- Erridge, C.; Spickett, C.M.; Webb, D.J. Non-Enterobacterial Endotoxins Stimulate Human Coronary Artery but Not Venous Endothelial Cell Activation via Toll-like Receptor 2. Cardiovasc. Res. 2007, 73, 181–189. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Manon-Jensen, T.; Kjeld, N.G.; Karsdal, M.A. Collagen-Mediated Hemostasis. J. Thromb. Haemost. 2016, 14, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.E.; Senger, D.R. Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions during Vascular Morphogenesis and Neovessel Stabilization. Circ. Res. 2005, 97, 1093–1107. [Google Scholar] [CrossRef]
- Witjas, F.M.R.; van den Berg, B.M.; van den Berg, C.W.; Engelse, M.A.; Rabelink, T.J. Concise Review: The Endothelial Cell Extracellular Matrix Regulates Tissue Homeostasis and Repair. Stem Cells Transl. Med. 2019, 8, 375–382. [Google Scholar] [CrossRef]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Paul Solomon, F.D. 3D Cell Culture Systems: Advantages and Applications. J. Cell. Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Orr, A.W.; Sanders, J.M.; Bevard, M.; Coleman, E.; Sarembock, I.J.; Schwartz, M.A. The Subendothelial Extracellular Matrix Modulates NF-ΚB Activation by Flow: A Potential Role in Atherosclerosis. J. Cell Biol. 2005, 169, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Heying, R.; Wolf, C.; Beekhuizen, H.; Moelleken, M.L.; Jockenhoevel, S.; Hoylaerts, M.F.; Schmidt, K.G.; Schroten, H. Fibrin-and Collagen-Based Matrices Attenuate Inflammatory and Procoagulant Responses in Human Endothelial Cell Cultures Exposed to Staphylococcus aureus. Tissue Eng. Part. A 2012, 18, 147–156. [Google Scholar] [CrossRef]
- Gualtero, D.F.; Lafaurie, G.I.; Fontanilla, M.R. Differential Responses of Endothelial Cells on Three-Dimensional Scaffolds to Lipopolysaccharides from Periodontopathogens. Mol. Oral Microbiol. 2019, 34, 183–193. [Google Scholar] [CrossRef]
- Espinosa, L.; Sosnik, A.; Fontanilla, M.R. Development and Preclinical Evaluation of Acellular Collagen Scaffolding and Autologous Artificial Connective Tissue in the Regeneration of Oral Mucosa Wounds. Tissue Eng. Part. A 2010, 16, 1667–1679. [Google Scholar] [CrossRef]
- Rodrigues, P.H.; Reyes, L.; Chadda, A.S.; Bélanger, M.; Wallet, S.M.; Akin, D.; Dunn, W.; Progulske-Fox, A. Porphyromonas gingivalis Strain Specific Interactions with Human Coronary Artery Endothelial Cells: A Comparative Study. PLoS ONE 2012, 7, e52606. [Google Scholar] [CrossRef]
- Gualtero Escobar, D.F.; Porras Gaviria, J.P.; Bernau Gutierrez, S.; Buitrago Ramírez, D.M.; Castillo Perdomo, D.M.; Lafaurie Villamil, G.I. Purificación y Caracterización de Lipopolisacáridos de Eikenella corrodens 23834 y Porphyromonas gingivalis W83. Rev. Colomb. Biotecnol. 2014, 16, 34–44. [Google Scholar] [CrossRef]
- Slots, J. Detection of Colonies of Bacteroides Gingivalis by a Rapid Fluorescence Assay for Trypsin-like Activity. Oral Microbiol. Immunol. 1987, 2, 139–141. [Google Scholar] [CrossRef]
- Castillo, D.M.; Castillo, Y.; Delgadillo, N.A.; Neuta, Y.; Jola, J.; Calderón, J.L.; Lafaurie, G.I. Viability and Effects on Bacterial Proteins by Oral Rinses with Hypochlorous Acid as Active Ingredient. Braz. Dent. J. 2015, 26, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Gualtero, D.F.; Viafara-Garcia, S.M.; Morantes, S.J.; Buitrago, D.M.; Gonzalez, O.A.; Lafaurie, G.I. Rosuvastatin Inhibits Interleukin (IL)-8 and IL-6 Production in Human Coronary Artery Endothelial Cells Stimulated with Aggregatibacter Actinomycetemcomitans Serotype b. J. Periodontol. 2017, 88, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the Alamarblue Assay. Cold Spring Harb. Protoc. 2018, 2018, 462–464. [Google Scholar] [CrossRef]
- Teng, B.Q.; Murthy, K.S.; Kuemmerle, J.F.; Grider, J.R.; Sase, K.; Michel, T.; Makhlouf, G.M. Expression of Endothelial Nitric Oxide Synthase in Human and Rabbit Gastrointestinal Smooth Muscle Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 1998, 275, G342–G351. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Essengue, S.; Talreja, J.; Reese, J.; Stechschulte, D.J.; Dileepan, K.N. Histamine Directly and Synergistically with Lipopolysaccharide Stimulates Cyclooxygenase-2 Expression and Prostaglandin I2 and E2 Production in Human Coronary Artery Endothelial Cells. J. Immunol. 2007, 179, 7899–7906. [Google Scholar] [CrossRef]
- Chennazhy, K.P.; Krishnan, L.K. Effect of Passage Number and Matrix Characteristics on Differentiation of Endothelial Cells Cultured for Tissue Engineering. Biomaterials 2005, 26, 5658–5667. [Google Scholar] [CrossRef]
- Hajishengallis, G. Immune Evasion Strategies of Porphyromonas gingivalis. J. Oral Biosci. 2011, 53, 233–240. [Google Scholar] [CrossRef]
- Chou, H.H.; Yumoto, H.; Davey, M.; Takahashi, Y.; Miyamoto, T.; Gibson, F.C.; Genco, C.A. Porphyromonas gingivalis Fimbria-Dependent Activation of Inflammatory Genes in Human Aortic Endothelial Cells. Infect. Immun. 2005, 73, 5367–5378. [Google Scholar] [CrossRef]
- Mendez, K.N.; Hoare, A.; Soto, C.; Bugueño, I.; Olivera, M.; Meneses, C.; Pérez-Donoso, J.M.; Castro-Nallar, E.; Bravo, D. Variability in Genomic and Virulent Properties of Porphyromonas gingivalis Strains Isolated from Healthy and Severe Chronic Periodontitis Individuals. Front. Cell. Infect. Microbiol. 2019, 9, 246. [Google Scholar] [CrossRef]
- Coats, S.R.; Kantrong, N.; To, T.T.; Jain, S.; Genco, C.A.; McLean, J.S.; Darveau, R.P. The Distinct Immune-Stimulatory Capacities of Porphyromonas gingivalis Strains 381 and ATCC 33277 Are Determined by the FimB Allele and Gingipain Activity. Infect. Immun. 2019, 87, e00319-19. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, D.; Wan, M.; Liu, J. PPARγ Affects Nitric Oxide in Human Umbilical Vein Endothelial Cells Exposed to Porphyromonas Gingivalis. Arch. Oral Biol. 2016, 68, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wu, J.; Lin, L.; Huang, Y.; Chen, Q.; Ji, Y. Porphyromonas gingivalis Stimulates the Release of Nitric Oxide by Inducing Expression of Inducible Nitric Oxide Synthases and Inhibiting Endothelial Nitric Oxide Synthases. J. Periodontal. Res. 2010, 45, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Guo, S.; Niu, Y.; Yang, L.; Liu, B.; Jiang, N.; Su, M.; Wang, L. Heat-Shock Protein 60 of Porphyromonas gingivalis May Induce Dysfunction of Human Umbilical Endothelial Cells via Regulation of Endothelial-Nitric Oxide Synthase and Vascular Endothelial-Cadherin. Biomed. Rep. 2016, 5, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Luu, N.T.; Rahman, M.; Stone, P.C.; Rainger, G.E.; Nash, G.B. Responses of Endothelial Cells from Different Vessels to Inflammatory Cytokines and Shear Stress: Evidence for the Pliability of Endothelial Phenotype. J. Vasc. Res. 2010, 47, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi-Sakamoto, M.; Isogai, E.; Hirose, K. Porphyromonas gingivalis Modulates the Production of Interleukin 8 and Monocyte Chemotactic Protein 1 in Human Vascular Endothelial Cells. Curr. Microbiol. 2003, 46, 0109–0114. [Google Scholar] [CrossRef] [PubMed]
- Brunner, J.; Scheres, N.; El Idrissi, N.B.; Deng, D.M.; Laine, M.L.; Van Winkelhoff, A.J.; Crielaard, W. The Capsule of Porphyromonas gingivalis Reduces the Immune Response of Human Gingival Fibroblasts. BMC Microbiol. 2010, 10, 5. [Google Scholar] [CrossRef]
- Singh, A.; Wyant, T.; Anaya-Bergman, C.; Aduse-Opoku, J.; Brunner, J.; Laine, M.L.; Curtis, M.A.; Lewis, J.P. The Capsule of Porphyromonas Gingivalis Leads to a Reduction in the Host Inflammatory Response, Evasion of Phagocytosis, and Increase in Virulence. Infect. Immun. 2011, 79, 4533–4542. [Google Scholar] [CrossRef]
- Hashizume, T.; Kurita-Ochiai, T.; Yamamoto, M. Porphyromonas gingivalis stimulates Monocyte Adhesion to Human Umbilical Vein Endothelial Cells. FEMS Immunol. Med. Microbiol. 2011, 62, 57–65. [Google Scholar] [CrossRef]
- Wittig, C.; Szulcek, R. Extracellular Matrix Protein Ratios in the Human Heart and Vessels: How to Distinguish Pathological from Physiological Changes? Front. Physiol. 2021, 12, 708656. [Google Scholar] [CrossRef]
- Boccafoschi, F.; Habermehl, J.; Vesentini, S.; Mantovani, D. Biological Performances of Collagen-Based Scaffolds for Vascular Tissue Engineering. Biomaterials 2005, 26, 7410–7417. [Google Scholar] [CrossRef]
- Copes, F.; Pien, N.; Van Vlierberghe, S.; Boccafoschi, F.; Mantovani, D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front. Bioeng. Biotechnol. 2019, 7, 166. [Google Scholar] [CrossRef]
- Torres, M.A.; Gualtero, D.F.; Lafaurie, G.I.; Fontanilla, M.R. Aggregatibacter Actinomycetemcomitans Induces a Proatherosclerotic Response in Human Endothelial Cells in a Three-Dimensional Collagen Scaffold Model. Mol. Oral Microbiol. 2021, 36, 58–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona-Mendoza, A.; Roa Molina, N.S.; Castillo, D.M.; Lafaurie, G.I.; Gualtero Escobar, D.F. Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model. Microorganisms 2024, 12, 248. https://doi.org/10.3390/microorganisms12020248
Cardona-Mendoza A, Roa Molina NS, Castillo DM, Lafaurie GI, Gualtero Escobar DF. Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model. Microorganisms. 2024; 12(2):248. https://doi.org/10.3390/microorganisms12020248
Chicago/Turabian StyleCardona-Mendoza, Andrés, Nelly Stella Roa Molina, Diana Marcela Castillo, Gloria Inés Lafaurie, and Diego Fernando Gualtero Escobar. 2024. "Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model" Microorganisms 12, no. 2: 248. https://doi.org/10.3390/microorganisms12020248
APA StyleCardona-Mendoza, A., Roa Molina, N. S., Castillo, D. M., Lafaurie, G. I., & Gualtero Escobar, D. F. (2024). Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model. Microorganisms, 12(2), 248. https://doi.org/10.3390/microorganisms12020248