New Approaches to Tackling Intractable Issues in Infectious Disease
Abstract
:1. Introduction
2. Immunomodulation of Persistent Typhoid-like Salmonella Infections
2.1. Infection Biology of Salmonella Infections
2.2. The Biology of Persistent Infection (Carrier State)
2.3. Alternative Strategy to Reduction in the Carrier State
3. AMR in Pathogenic and Commensal Bacteria
3.1. The Problem
3.2. New Approaches to Address the Problem
3.3. Parasite Viruses and Virus Therapy—A New Approach to Difficult Diseases?
4. Conclusions
Funding
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Capela, R.; Moreira, R.; Lopes, F. An Overview of Drug Resistance in Protozoal Diseases. Int. J. Mol. Sci. 2019, 20, 5748. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Grassl, G.A.; Finlay, B.B. Salmonella, the host and disease: A brief review. Immunol. Cell Biol. 2007, 85, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hornick, R.B.; Greisman, S.E.; Woodward, T.E.; DuPont, H.L.; Dawkins, A.T.; Snyder, M.J. Typhoid fever: Pathogenesis and immunologic control. N. Engl. J. Med. 1970, 283, 739–746. [Google Scholar] [CrossRef]
- Monack, D.M.; Bouley, D.M.; Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 2004, 1999, 231–241. [Google Scholar] [CrossRef]
- Monack, D.M.; Mueller, A.; Falkow, S. Persistent bacterial infections: The interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2004, 2, 747–765. [Google Scholar] [CrossRef] [PubMed]
- Wigley, P.; Berchieri, A., Jr.; Page, K.L.; Smith, A.L.; Barrow, P.A. Salmonella enterica Serovar pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 2001, 69, 7873–7879. [Google Scholar] [CrossRef]
- Wilson, G.S.; Miles, A.A.; Topley, W.C.C. Topley and Wilson’s Principles of Bacteriology and Immunity, 5th ed.; Edward Arnold: London, UK, 1964. [Google Scholar]
- Uzzau, S.; Brown, D.J.; Wallis, T.; Rubino, S.; Leori, G.; Bernard, S.; Casadeus, J.; Platt, D.J.; Olsen, J.E. Host-adapted serotypes of Salmonella enterica. Epidemiol. Infect. 2000, 125, 229–255. [Google Scholar] [CrossRef]
- Foster, N.; Tang, Y.; Berchieri, A., Jr.; Geng, S.; Jiao, X.; Barrow, P. Revisiting persistent Salmonella infection and the carrier state; what do we know? Pathog. J. 2021, 10, 1299. [Google Scholar] [CrossRef]
- Barrow, P.A.; Hassan, J.O.; Berchieri, A., Jr. Reduction in faecal excretion by chickens of Salmonella typhimurium by immunization with avirulent mutants of S. typhimurium. Epidemiol. Infect. 1990, 104, 413–426. [Google Scholar] [CrossRef]
- Mastroeni, P.; Harrison, J.A.; Robinson, J.H.; Clare, S.; Khan, S.; Maskell, D.J.; Dougan, G.; Hormaeche, C.E. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: Role of gamma interferon and macrophage activation. Infect. Immun. 1998, 66, 4767–4776. [Google Scholar] [CrossRef]
- Berndt, A.; Wilhelm, A.; Jugert, C.; Pieper, J.; Sachse, K.; Methner, U. Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect. Immun. 2007, 75, 5993–6007. [Google Scholar] [CrossRef] [PubMed]
- Withanage, G.S.; Wigley, P.; Kaiser, P.; Mastroeni, P.; Brooks, H.; Powers, C.; Beal, R.; Barrow, P.; Maskell, D.; McConnell, I. Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infect. Immun. 2005, 73, 5173–5182. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Foster, N.; Jones, M.A.; Barrow, P.A. A model of persistent Salmonella infection: Salmonella Pullorum modulates the immune response of the chicken from a Th17 towards a Th2-type response. Infect. Immun. 2018, 86, e00307-18. [Google Scholar] [CrossRef] [PubMed]
- Caron, J.; Loredo-Osti, J.C.; Laroche, L.; Skamene, E.K.; Morgan, K.; Malo, D. Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: An unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes Immun. 2002, 3, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Berchieri, A., Jr.; Murphy, C.K.; Marston, K.; Barrow, P.A. Observations on the persistence and vertical transmission of Salmonella enterica serovars Pullorum and Gallinarum in chickens; effect of bacterial and host genetic background. Avian Pathol. 2001, 30, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Raffatellu, M.; Chessa, D.; Wilson, R.P.; Dusold, R.; Rubino, S.; Bäumler, A.J. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 2005, 73, 3367–3374. [Google Scholar] [CrossRef]
- Jansen, A.M.; Hall, L.J.; Clare, S.; Goulding, D.; Holt, K.E.; Grant, A.J.; Mastroeni, P.; Dougan, G.; Kingsley, R.A. A Salmonella Typhimurium-Typhi genomic chimera: A model to study Vi polysaccharide capsule function in vivo. PLoS Pathog. 2011, 7, e1002131. [Google Scholar] [CrossRef]
- Froh, M.; Thurman, R.G.; Wheeler, M.D. Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G856–G863. [Google Scholar] [CrossRef]
- Pan, D.; Rostagno, M.H.; Ebner, P.D.; Eicher, S.D. Differential innate immune responses of bovine peripheral blood leukocytes to Salmonella enterica serovars Dublin, Typhimurium, and Enteritidis. Vet. Immunol. Immunopathol. 2015, 165, 14–21. [Google Scholar] [CrossRef]
- McArthur, M.A.; Fresnay, S.; Magde, L.S.; Darton, T.C.; Jones, C.; Waddington, C.S.; Blohmke, C.J.; Dougan, G.; Angus, B.; Levine, M.M.; et al. Activation of Salmonella Typhi-Specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015, 11, e1004914. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.; Mathuri, N.K.; Job, C.K.; Nath, I.; Cohn, Z. Effect of multiple interferon y injections on the disposal of Mycobacterium leprae. Proc. Natl. Acad. Sci. USA 1989, 86, 8073–8077. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.F.; Kaplan, G.; Levis, W.R.; Nusrat, A.; Witmer, M.D.; Sherwin, S.A.; Job, C.K.; Horowitz, C.R.; Steinman, R.M.; Cohn, Z.A. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N. Engl. J. Med. 1986, 315, 6–15. [Google Scholar] [CrossRef]
- Heinzel, F.P.; Schoenhaut, D.S.; Rerko, R.M.; Rosser, L.E.; Gately, M.K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 1993, 177, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Finkelman, F.D.; Madden, K.B.; Cheever, A.W.; Katona, I.M.; Morris, S.C.; Gately, M.K.; Hubbard, B.R.; Gause, W.C.; Urban, J.F. Effects of Interleukin 12 on Immune Responses and Host Protection in Mice Infected with Intestinal Nematode Parasites. J. Exp. Med. 1994, 179, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Sung, H.W.; Yoon, B.I.; Kwon, H.M. Protection of chicken against very virulent IBDV provided by in ovo priming with DNA vaccine and boosting with killed vaccine and the adjuvant effects of plasmid-encoded chicken interleukin-2 and interferon-γ. J. Vet. Sci. 2009, 10, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Thomas, J.D.; Bruce, M.P.; Hinton, T.M.; Bean, A.G.D.; Lowenthal, J.W. The chicken Th1 response: Potential therapeutic applications of ChIFN-γ. Dev. Comp. Immunol. 2013, 41, 389–396. [Google Scholar] [CrossRef]
- Okamura, M.; Lillehoj, H.S.; Raybourne, R.B.; Babu, U.S.; Heckert, R.A.; Tani, H.; Sasai, K.; Baba, E.; Lillehoj, E.P. Differential responses of macrophages to Salmonella enterica serovars Enteritidis and Typhimurium. Vet. Immunol. Immunopathol. 2005, 107, 327–335. [Google Scholar] [CrossRef]
- Nath, G.; Mauryal, P.; Gulati, A.K.; Singh, T.B.; Srivastava, R.; Kumar, K.; Tripathi, S.K. Comparison of Vi serology and nested PCR in diagnosis of chronic typhoid carriers in two different study populations in typhoid endemic area of India. Southeast Asian J. Trop. Med. Public Health 2010, 41, 636–640. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally. Final Report and Recommendations. The Review on Antimicrobial Resistance; UK Government/Wellcome Trust: London, UK, 2016. [Google Scholar]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, D.L. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Schembri, M.A.; Ben Zakour, N.L.; Phan, M.-D.; Forde, B.M.; Stanton-Cook, M.; Beatson, S.M.A. Molecular Characterization of the Multidrug Resistant Escherichia coli ST131 Clone. Pathogens 2015, 4, 422–430. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; HM Government/Wellcome Trust: London, UK, 2014. [Google Scholar]
- European Union. A European Action Plan against Antimicrobial Resistance (AMR). 2017. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 21 June 2022).
- WHO Call for Action on Antimicrobial Resistance. 2021. Available online: https://icars-global.org/cta-resources/#:~:text=On%2015%2D17th%20November,significant%20pressure%20on%20healthcare%20resources (accessed on 21 June 2022).
- WHO/OIE/FAO. Antimicrobial Resistance—Tripartite Update—Spring. 2021. Available online: https://health.ec.europa.eu/system/files/2021-04/ev_20210325_co05_en_0.pdf (accessed on 21 June 2022).
- O’Neill, J. The Report on Antimicrobial Resistance: Vaccines and Alternative Approaches: Reducing Our Dependence on Antimicrobials; HM Government/Wellcome Trust: London, UK, 2016. [Google Scholar]
- De Lucia, A.; Card, R.M.; Duggett, N.; Smith, R.P.; Davies, R.; Cawthraw, S.; Najum, M.; Rambaldi, M.; Ostanello, F.; Martelli, F. Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet. Microbiol. 2021, 258, 109125. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W.; Huggins, M.B. Successful treatment of experimental Escherichia coli infections in mice using phage: Its general superiority over antibiotics. J. Gen. Microbiol. 1982, 128, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W.; Huggins, M.B. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 1983, 129, 2659–2675. [Google Scholar] [CrossRef] [PubMed]
- Barrow, P.A.; Soothill, J.S. Bacteriophage therapy and prophylaxis—Rediscovery and renewed assessment of potential. Trends Microbiol. 1997, 5, 268–272. [Google Scholar] [CrossRef]
- Ojala, V.; Laitalainen, J.; Jalasvuori, M. Fight evolution with evolution: Plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evolut. App. 2013, 6, 925–932. [Google Scholar] [CrossRef]
- Ojala, V.; Mattila, S.; Hoikkala, V.; Bamford, J.K.H.; Hiltunen, T.; Jalasvuori, M. Scoping the effectiveness and evolutionary obstacles in using plasmid- dependent phages to fight antibiotic resistance. Future Microbiol. 2016, 11, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Colom, J.; Batista, D.; Baig, A.; Tang, Y.; Liu, S.; Yuan, F.; Belkhiri, A.; Marcelino, L.; Barbosa, F.; Rubio, M.; et al. Sex pilus specific bacteriophage to drive bacterial population towards antibiotic sensitivity. Nature Sci. Rep. 2019, 9, 12616. [Google Scholar] [CrossRef]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Nature Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef]
- Torgerson, P.R. One world health: Socioeconomic burden and parasitic disease control priorities. Vet. Parasitol. 2013, 195, 223–232. [Google Scholar] [CrossRef]
- Jensen, K. Global Burden of Parasitic Disease. 2015. Available online: http://faculty.ucmerced.edu/kjensen5/index.php/research/global-burden-of-parasitic-disease (accessed on 12 May 2020).
- Hyman, P.; Atterbury, R.; Barrow, P. Fleas and smaller fleas: Virotherapy for parasite infections. Trends Microbiol. 2013, 21, 215–220. [Google Scholar] [CrossRef]
- Barrow, P.A.; Dujardin, J.C.; Fasel, N.; Greenwood, A.D.; Osterrieder, K.; Lomonossoff, G.; Fiori, P.L.; Atterbury, R.J.; Rossi, M.; Lalle, M. Viruses of protozoan parasites and viral therapy: Is the time now right? Virol. J. 2020, 17, 142. [Google Scholar] [CrossRef]
- Félix, M.A.; Wang, D. Natural Viruses of Caenorhabditis Nematodes. Annu. Rev. Genet. 2019, 53, 313–326. [Google Scholar] [CrossRef]
- Ives, A.; Ronet, C.; Prevel, F.; Ruzzante, G.; Fuertes-Marraco, S.; Schutz, F.; Zangger, H.; Revaz-Breton, M.; Lye, L.-F.; Hickerson, S.M.; et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 2011, 331, 775–778. [Google Scholar] [CrossRef]
- Bourreau, E.; Ginouves, M.; Pervot, G.; Hartley, M.-A.; Gangneux, J.-P.; Robert-Gangneux, F.; Dufour, J.; Sainte-Marie, D.; Bertolotti, A.; Pratlong, F.; et al. Presence of Leishmania RNA Virus 1 in Leishmania guyanensis Increases the Risk of First-Line Treatment Failure and Symptomatic Relapse. J. Infect. Dis. 2016, 13, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Wang, A.L.; Wang, C.C. Purification and characterization of the Giardia Lamblia double stranded RNA virus. Mol. Biochem. Parasitol. 1988, 28, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, M.; Chang, T.H.; Alderete, J.F. Visualization of new virus-like-particles in Trichomonas vaginalis. Tissue Cell 2002, 34, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Champney, W.S.; Curtis, S.K.; Samuels, R. Cytopathology and release of an RNA virus from a strain of Trichomonas vaginalis. Int. J. Parasitol. 1995, 25, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Fichorova, R.N.; Lee, Y.; Yamamoto, H.S.; Takagi, Y.; Hayes, G.R.; Goodman, R.P.; Chepa-Lotrea, X.; Buck, O.R.; Murray, R.; Kula, T.; et al. Endobiont viruses sensed by the human host—Beyond conventional antiparasitic therapy. PLoS ONE 2012, 7, e48418. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.C.; Higgins, J.; Abrahante, J.E.; Kniel, K.E.; O’Brien, C.; Trout, J.; Lacto, C.A.; Abrahamsen, M.S.; Fayer, R. Fecundity of Cryptosporidium parvum is correlated with intracellular levels of the viral symbiont CPV. Int. J. Parasitol. 2008, 38, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.S.; Mattern, C.F.; Bartgis, I.L. Viruses of Entamoeba histolytica. I. Identification of transmissible virus-like agents. J. Virol. 1972, 9, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Schuster, F.L.; Dunnebacke, T.H. Virus-like particles and an unassociated infectious agent in amoebae of the genus Naegleria. Ann. Soc. Belge. Med. Trop. 1974, 54, 359–370. [Google Scholar]
- Felix, M.-A.; Ashe, A.; Piffaretti, J.; Guan, W.; Nuez, I.; Belicard, T.; Jang, Y.; Guoyan, G.; Farnz, C.J.; Goldstein, L.D.; et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011, 9, e1000586. [Google Scholar] [CrossRef] [PubMed]
- Milgroom, M.G.; Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu. Rev. Phytopathol. 2004, 42, 311–338. [Google Scholar] [CrossRef]
- Kirn, D. Virotherapy for cancer: Current status, hurdles, and future directions. Cancer Gene Ther. 2002, 9, 959–960. [Google Scholar] [CrossRef]
Salmonella Serovar | Host Specificity | Effect on Man | Effect on Target Host | Gut Colonizer as Major Feature | Persistent Systemic Infection | Multiplication in Macrophages Central | Nature of Immune Response |
---|---|---|---|---|---|---|---|
S. Infantis | Non-specific (mainly poultry—zoonotic) | Enteritis | Virtually no disease | Yes | No | No | Not known—probably Th1-type |
S. Heidelberg | Non-specific (mainly poultry—zoonotic) | Mainly enteritis | Virtually no disease | Yes | No | No | Not known—probably Th1-type |
S. Typhimurium | Non-specific—zoonotic | Mainly enteritis | Typhoid in mice. Disease in young chickens and calves | Yes | In Salmonella-resistant mice | Yes, in mouse typhoid | Th1-type |
S. Enteritidis | Non-specific (mainly poultry—zoonotic) | Mainly enteritis | Typhoid in mice. Disease in young chickens | Yes | Possibly same as Typhimurium | Yes, in mouse typhoid | Th1-type |
S. Typhi | Man | Typhoid | Typhoid | No | Yes | Yes | Th1 and Th2 depending on host genetics |
S. Gallinarum | Birds esp. poultry | Rare systemic disease | Typhoid | No | Yes—mainly in Salmonella-resistant chickens | Yes | Anti-inflammatory |
S. Pullorum | Birds esp. poultry | Rare systemic disease | Systemic disease in young chickens | No | Yes—in Salmonella-susceptible chickens | Yes | Th2-type |
S. Dublin | Mainly cattle—also mice | Infrequent severe systemic disease | Enteritis and systemic disease cattle, typhoid in mice | In enteritis but not systemic disease | Yes, but unclear | Yes, in systemic disease | Not known |
S. Abortusovis | Mainly sheep and goats—also mice | Rare systemic disease | Enteritis and systemic disease. Typhoid in mice | In enteritis but not systemic disease | Yes, but unclear | Yes, in systemic disease | Not known |
Parasite | Virus | Nucleic Acid | Effect on Parasite | Reference |
---|---|---|---|---|
Protists | ||||
Leishmania | Totivirus (Leishmaniavirus), Leishbunyavirus | RNA | Increasing virulence—inflammatory | [52,53] |
Giardia | Totivirus (Giardiavirus) | RNA | Cell division affected | [54] |
Trichomonas | Totivirus (Trichomonasvirus) | RNA | Lysis and giant cell formation—increased inflammation | [55,56,57] |
Cryptosporidium | Partitivirus (Cryspovirus) | RNA (segmented) | Altered fecundity | [58] |
Plasmodium | Narna-like virus | RNA | Not known | |
Eimeria | Totivirus, Victorivirus (Eimeriavirus) | RNA | Not known | |
Entamoeba | Mimivirus | DNA | Lysis | [59] |
Naegleria | Virus-like particles | Not known | Lysis | [60] |
Selected metazoans | ||||
Caenorhabditis | Related to Nodaviruses | RNA | Cytopathology | [61] |
Other nematodes (e.g., Schistosoma) | Nothing so far | Not relevant | Not relevant | |
Trematodes | Nothing so far | Not relevant | Not relevant | |
Cestodes | Nothing so far | Not relevant | Not relevant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrow, P. New Approaches to Tackling Intractable Issues in Infectious Disease. Microorganisms 2024, 12, 421. https://doi.org/10.3390/microorganisms12030421
Barrow P. New Approaches to Tackling Intractable Issues in Infectious Disease. Microorganisms. 2024; 12(3):421. https://doi.org/10.3390/microorganisms12030421
Chicago/Turabian StyleBarrow, Paul. 2024. "New Approaches to Tackling Intractable Issues in Infectious Disease" Microorganisms 12, no. 3: 421. https://doi.org/10.3390/microorganisms12030421
APA StyleBarrow, P. (2024). New Approaches to Tackling Intractable Issues in Infectious Disease. Microorganisms, 12(3), 421. https://doi.org/10.3390/microorganisms12030421