Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Soil Physical and Chemical Properties
2.3. DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.4. Data Analysis
3. Results
3.1. Sequencing Quality
3.2. Alpha Diversity
3.3. Bacterial Community in the Rhizosphere of P. squamata
3.4. Beta Diversity
3.5. Difference Analysis of Bacterial Communities in Rhizosphere of P. squamata
3.6. Relationships between Bacterial Communities and Soil Physicochemical Factors
3.7. Function Prediction in Rhizosphere Bacteria of P. squamata
4. Discussion
4.1. Diversity of P. squamata Rhizosphere Soil Bacteria
4.2. Structure of the Rhizosphere Bacterial Community of P. squamata
4.3. Relationships between Soil Physicochemical Properties and Bacterial Community
4.4. Prediction of Function of the P. squamata Rhizosphere Bacterial Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y. Diversity and distribution of gymnosperms in China. Biodivers. Sci. 2015, 23, 243–246. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Njenga, D.M. Red list assessment and conservation status of gymnosperms from China. Biodivers. Sci. 2017, 25, 758–764. [Google Scholar] [CrossRef]
- Peng, Z.H. Sect. Strobus originate in China. J. Anhui Agric. Univ. 1992, 6, 1–8. [Google Scholar]
- Tao, C. The Study of Endangered Mechanism about the Threatened Plants of Pinus Sect. Strobus in China. Master’s Thesis, Beijing Forestry University, Beijing, China, 2013. [Google Scholar]
- Li, X.W. A new series and a new species of Pinus from Yunnan. Acta Bot. Yunnanica 1992, 14, 259–260. [Google Scholar]
- Li, W.H. Pinus squamata is labeled as the global list of the most endangered species. Yunnan For. 2012, 33, 37. [Google Scholar]
- Sun, W.B. Conservation of Plant Species with Extremely Small Populations in Yunnan—Practices and Exploration; Yunnan Science and Technology Press: Kunming, China, 2013. [Google Scholar]
- Ma, Y.P.; Chen, G.; Grumbine, R.E.; Dao, Z.L.; Sun, W.B.; Guo, H.J. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 2013, 22, 803–809. [Google Scholar] [CrossRef]
- Sun, W.B.; Han, C.Y. Researches and conservation for plant species with extremely small populations (PSESP). Biodivers. Sci. 2015, 23, 426–429. [Google Scholar] [CrossRef]
- Yang, J.; Cai, L.; Liu, D.T.; Chen, G.; Gratzfeld, J.; Sun, W.B. China’s conservation program on Plant Species with Extremely Small Populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Sun, W.B.; Liu, D.T.; Zhang, P. Conservation research of plant species with extremely small populations (PSESP): Progress and future direction. Guihaia 2021, 41, 1605–1617. [Google Scholar]
- Volis, S. How to conserve threatened Chinese plant species with extremely small populations? Plant Divers. 2016, 38, 45–52. [Google Scholar] [CrossRef]
- Crane, P. Conserving our global botanical heritage: The PSESP plant conservation program. Plant Divers. 2020, 42, 319–322. [Google Scholar] [CrossRef]
- Cogoni, D.; Fenu, G.; Dessì, C.; Deidda, A.; Giotta, C.; Piccitto, M.; Bacchetta, G. Importance of plants with extremely small populations (PSESPs) in endemic-rich areas, elements often forgotten in conservation strategies. Plants 2021, 10, 1504. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.B.; Yang, J.; Dao, Z.L. Study and Conservation of Plant Species with Extremely Small Populations (PSESP) in Yunnan Province; Science Press: Beijing, China, 2019. [Google Scholar]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils. 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Ahmad, H. Plant growth promoting bacteria: Role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 2018, 37, 1599–1609. [Google Scholar] [CrossRef]
- Olenska, E.; Malek, W.; Wojcik, I.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Goswami, M.; Deka, S. Plant growth-promoting rhizobacteria—Alleviators of abiotic stresses in soil: A review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Jia, Z.J.; Myrold, D.D.; Conrad, R. Soil biodiversity in a rapidly changing world. Pedosphere 2020, 30, 1–4. [Google Scholar] [CrossRef]
- Li, F.R.; Sun, W.B. Comparative analysis of rhizospheric fungi using high-throughput sequencing between wild, ex situ, and reintroduced Pinus squamata, a Plant Species with Extremely Small Populations in Yunnan Province, China. Diversity 2023, 15, 868. [Google Scholar] [CrossRef]
- Yu, F.Q. Effects of Rhizospheric Microorganisms on Populations of Scutellaria tsinyunensis. Master’s Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
- National Agricultural Technology Extension and Service Center. Technical Specification for Soil Analysis; Chinese Agricultural Press: Beijing, China, 2006.
- Herbold, C.W.; Pelikan, C.; Kuzyk, O.; Hausmann, B.; Angel, R.; Berry, D.; Loy, A. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbial. 2015, 6, 731. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.M.; Sun, Q.L.; Shi, W.Y.; Qi, H.Y.; Sun, D.Z.; Li, F.H.; Pang, H.F.; Ma, J.C.; Wu, L.H. The services and applications of national microbiology data center. Acta Microbiol. Sin. 2021, 61, 3761–3773. [Google Scholar]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, G.; Shi, C.P.; Liu, L.M.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.X.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multi-omics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.M.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Su, D.F.; Shen, Q.Q.; Yang, J.Y.; Li, Z.Y.; Xiao, W.; Wang, Y.X.; Ding, Z.G.; Cui, X.L. Comparison of the bulk and rhizosphere soil prokaryotic communities between wild and reintroduced Manglietiastrum sinicum plants, a threatened species with extremely small populations. Curr. Microbiol. 2021, 78, 3877–3890. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Q.; Qin, H.G.; Zhang, J.J.; Han, Y.; Yu, H.; Peng, Y.N.; Yang, S.; Wang, J.Y.; He, G.Y.; Qi, Z.H.; et al. Characteristics and function analysis of rhizosphere bacterial community of endangered plant Pinus dabeshanensis. Bull. Bot. 2022, 57, 457. [Google Scholar]
- Sun, J.P.; Liu, Y.H.; Zuo, Y.M.; Han, M.L.; Zhang, H.W.; Lu, J.J. The bacterial community structure and function of Suaeda salsa rhizosphere soil. Chin. J. Eco-Agric. 2020, 28, 1618–1629. [Google Scholar]
- Lee, S.H.; Ka, J.O.; Cho, J.C. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 2008, 285, 263–269. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.L.; Cheng, Q. The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Not. Bot. Horti. Agrobot. 2021, 49, 12183. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [PubMed]
- Dimkic, I.; Janakiev, T.; Petrovic, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms—A review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Mckee, L.S.; Rosa, S.L.L.; Westereng, B.; Eijsink, V.G.; Pope, P.B.; Larsbrink, J. Polysaccharide degradation by the Bacteroidetes: Mechanisms and nomenclature. Environ. Microbiol. Rep. 2021, 13, 559–581. [Google Scholar] [CrossRef] [PubMed]
Site | Sobs | Ace | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
EC | 2107.33 ± 569.81 a | 2698.65 ± 622.67 a | 2705.66 ± 646.43 a | 5.96 ± 0.61 ab | 0.0140 ± 0.0090 a | 0.9790 ± 0.0042 b |
EY | 873.00 ± 95.69 b | 1046.61 ± 112.46 b | 1054.36 ± 132.67 b | 5.33 ± 0.20 c | 0.0112 ± 0.0026 ab | 0.9934 ± 0.0011 a |
EK | 2123.00 ± 99.50 a | 2618.59 ± 96.39 a | 2628.08 ± 114.75 a | 6.42 ± 0.11 ab | 0.0041 ± 0.0007 b | 0.9810 ± 0.0006 b |
WQ | 1979.33 ± 270.18 a | 2531.88 ± 315.85 a | 2530.38 ± 329.07 a | 5.88 ± 0.26 b | 0.0136 ± 0.0036 a | 0.9804 ± 0.0025 b |
RQ | 2404.67 ± 123.63 a | 2999.92 ± 129.49 a | 2996.75 ± 125.41 a | 6.46 ± 0.10 a | 0.0050 ± 0.0006 b | 0.9775 ± 0.0008 b |
EQ | 1909.33 ± 71.45 a | 2448.51 ± 50.58 a | 2466.36 ± 66.05 a | 6.14 ± 0.09 ab | 0.0059 ± 0.0011 b | 0.9814 ± 0.0005 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Lu, S.; Sun, W. Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms 2024, 12, 638. https://doi.org/10.3390/microorganisms12040638
Li F, Lu S, Sun W. Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms. 2024; 12(4):638. https://doi.org/10.3390/microorganisms12040638
Chicago/Turabian StyleLi, Fengrong, Shugang Lu, and Weibang Sun. 2024. "Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites" Microorganisms 12, no. 4: 638. https://doi.org/10.3390/microorganisms12040638
APA StyleLi, F., Lu, S., & Sun, W. (2024). Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms, 12(4), 638. https://doi.org/10.3390/microorganisms12040638