Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Fermentation of A. amstelodami BSX001
2.3. Extraction and Isolation
2.4. DPPH Radical Scavenging Assay
2.5. Total Reducing Power Assay
2.6. Determination of Neoechinulin A in Fermentation Products by HPLC Method
2.7. Single-Factor Test
2.8. Box–Behnken Design
2.9. Statistical Analysis
3. Results and Discussion
3.1. Structural Identification of Compounds
3.2. Determination of Antioxidant Activity
3.3. Optimization for Ultrasound-Assisted Extraction of Neoechinulin A
3.3.1. Optimization Results with Single-Factor Test
3.3.2. Response Model Establishment
3.3.3. Response Surface Analysis
3.3.4. Optimal Conditions and Model Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, M.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.; Xu, W.; Li, J.; Lin, H.; Zhang, Z.; Xiao, J.; et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2020, 312, 126043. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, T.; Yang, T.; Zheng, H.; Zhao, J.; Xiang, D.; Zou, L.; Wan, Y. Research progress on Eurotium cristatum and its fermentation application. Shipin Gongye Keji 2022, 43, 454–462. [Google Scholar]
- Deng, J.; Li, Y.; Yuan, Y.; Yin, F.; Chao, J.; Huang, J.; Liu, Z.; Wang, K.; Zhu, M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023, 12, 4452. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Liu, D. Study on indole-diketopiperazine alkaloids from marine-derived fungus Aspergillus ruber CTD-5000-2. Zhongguo Haiyang Yaowu 2022, 41, 31–37. [Google Scholar]
- Wohlgemuth, V.; Kindinger, F.; Xie, X.; Wang, B.-G.; Li, S.-M. Two Prenyltransferases Govern a Consecutive Prenylation Cascade in the Biosynthesis of Echinulin and Neoechinulin. Org. Lett. 2017, 19, 5928–5931. [Google Scholar] [CrossRef] [PubMed]
- Smetanina, O.F.; Yurchenko, A.N.; Girich, E.V.; Phan Thi Hoai, T.; Antonov, A.S.; Dyshlovoy, S.A.; von Amsberg, G.; Kim, N.Y.; Chingizova, E.A.; Pislyagin, E.A.; et al. Biologically Active Echinulin-Related Indolediketopiperazines from the Marine Sediment-Derived Fungus Aspergillus niveoglaucus. Molecules 2020, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-N.; Zhu, T.-J.; Cai, S.-X.; Gu, Q.-Q.; Li, D.-H. Three New Indole-Containing Diketopiperazine Alkaloids from a Deep-Ocean Sediment Derived Fungus Penicillium griseofulvum. Helv. Chim. Acta 2010, 93, 1758–1763. [Google Scholar] [CrossRef]
- Mitra, S.; Anand, U.; Sanyal, R.; Jha, N.K.; Behl, T.; Mundhra, A.; Ghosh, A.; Radha; Kumar, M.; Prockow, J.; et al. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed. Pharmacother. 2022, 145, 112378. [Google Scholar] [CrossRef] [PubMed]
- Sasaki-Hamada, S.; Hoshi, M.; Niwa, Y.; Ueda, Y.; Kokaji, A.; Kamisuki, S.; Kuramochi, K.; Sugawara, F.; Oka, J.-I. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 71, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Cui, X.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp SF-5989 through the Suppression of NF-κB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages. Molecules 2013, 18, 13245–13259. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Li, Y.-X.; Vo, T.-S.; Ta, Q.V.; Ngo, D.-H.; Kim, S.-K. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process. Biochem. 2013, 48, 68–72. [Google Scholar] [CrossRef]
- Jia, B.; Ma, Y.; Chen, D.; Chen, P.; Hu, Y. Studies on Structure and Biological Activity of Indole Diketopiperazine Alkaloids. Huaxue Jinzhan 2018, 30, 1067–1081. [Google Scholar]
- Yan, L.-H.; Du, F.-Y.; Li, X.-M.; Yang, S.-Q.; Wang, B.-G.; Li, X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar. Drugs 2023, 21, 195. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Li, Y.; Zhang, X.; Li, Q.; Liu, X.; Huang, Y.; Tang, T.; Zheng, S.; Wang, W.; Tang, J. A New Prenylated Indole Diketopiperazine Alkaloid from Eurotium cristatum. Molecules 2014, 19, 17839–17847. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Gu, Q.; Yang, W.; Yu, X. In vitro screening and probiotic evaluation of anti-obesity and antioxidant lactic acid bacteria. Food Biosci. 2023, 54, 102844. [Google Scholar] [CrossRef]
- Li, D.-L.; Li, X.-M.; Li, T.-G.; Dang, H.-Y.; Wang, B.-G. Dioxopiperazine Alkaloids Produced by the Marine Mangrove Derived Endophytic Fungus Eurotium rubrum. Helv. Chim. Acta 2008, 91, 1888–1893. [Google Scholar] [CrossRef]
- Wei, X.; Feng, C.; Wang, S.-Y.; Zhang, D.-M.; Li, X.-H.; Zhang, C.-X. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3. Chem. Biodivers. 2020, 17, e2000106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.F.; Kim, S.K.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem. Pharm. Bull. 2004, 52, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.M.; Dethoup, T.; Singburaudom, N.; Gales, L.; Silva, A.M.S.; Kijjoa, A. Eurocristatine, a new diketopiperazine dimer from the marine sponge-associated fungus Eurotium cristatum. Phytochem. Lett. 2012, 5, 717–720. [Google Scholar] [CrossRef]
- Nies, J.; Li, S.-M. Prenylation and Dehydrogenation of a C2-Reversely Prenylated Diketopiperazine as a Branching Point in the Biosynthesis of Echinulin Family Alkaloids in Aspergillus ruber. ACS Chem. Biol. 2021, 16, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kuramochi, K.; Ohnishi, K.; Fujieda, S.; Nakajima, M.; Saitoh, Y.; Watanabe, N.; Takeuchi, T.; Nakazaki, A.; Sugawara, F.; Arai, T.; et al. Synthesis and Biological Activities of Neoechinulin A Derivatives: New Aspects of Structure-Activity Relationships for Neoechinulin A. Chem. Pharm. Bull. 2008, 56, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Doi, M. Isolation of an antioxidative substance produced by Aspergillus repens. Biosci. Biotechnol. Biochem. 1999, 63, 932–933. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, K.; Aoki, T.; Shibata, Y.; Kamisuki, S.; Sugawara, F.; Kuramochi, K.; Nakazaki, A.; Kobayashi, S.; Kuroiwa, K.; Watanabe, N.; et al. Structure-activity relationships of neoechinulin a analogues with Cytoprotection against peroxynitrite-induced PC12 cell death. J. Antibiot. 2007, 60, 614–621. [Google Scholar] [CrossRef]
- Aoki, T.; Ohnishi, K.; Kimoto, M.; Fujieda, S.; Kuramochi, K.; Takeuchi, T.; Nakazaki, A.; Watanabe, N.; Sugawara, F.; Arai, T.; et al. Synthesis and Neuroprotective Action of Optically Pure Neoechinulin A and Its Analogs. Pharmaceuticals 2010, 3, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Hemwimon, S.; Pavasant, P.; Shotipruk, A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep. Purif. Technol. 2007, 54, 44–50. [Google Scholar] [CrossRef]
- Huang, W.; Xue, A.; Niu, H.; Jia, Z.; Wang, J. Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 2009, 114, 1147–1154. [Google Scholar] [CrossRef]
- Meng, L.; Chen, Y.; Zheng, Z.; Wang, L.; Xu, Y.; Li, X.; Xiao, Z.; Tang, Z.; Wang, Z. Ultrasound-Assisted Extraction of Paeonol from Moutan Cortex: Purification and Component Identification of Extract. Molecules 2024, 29, 622. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, W.; Yang, J.; Feng, S.; Qin, Y.; Xiao, Y.; Chen, H.; Liu, Y.; Chen, H.; Bu, T.; et al. Ultrasound-assisted extraction of Cordyceps cicadae polyphenols: Optimization, LC-MS characterization, antioxidant and DNA damage protection activity evaluation. Arab. J. Chem. 2022, 15, 103953. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, H.; Chen, S.; Sui, X.; Zhang, Q.; Li, Y. Optimization of aqueous enzymatic ultrasonic-assisted extraction of oil from paeonia seeds. Shipin Gongye Keji 2016, 37, 247–251. [Google Scholar]
- Jaimez-Ordaz, J.; Contreras-Lopez, E.; Hernandez-Sanchez, T.; Gonzalez-Olivares, L.G.; Anorve-Morga, J.; Ramirez-Godinez, J. Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design. Molecules 2021, 26, 1042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yi, X.; Jia, S.-S.; Liu, C.-Y.; Han, Z.-W.; Han, B.-X.; Jiang, G.-C.; Ding, Z.-F.; Wang, R.-L.; Lv, G.-P. Optimization of Three Extraction Methods and Their Effect on the Structure and Antioxidant Activity of Polysaccharides in Dendrobium huoshanense. Molecules 2023, 28, 8019. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Ohuchi, T.; Yoshida, K.; Shibata, Y.; Sugawara, F.; Arai, T. Protective properties of neoechinulin a against SIN-1-induced neuronal cell death. J. Biochem. 2004, 136, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Dewapriya, P.; Li, Y.-X.; Himaya, S.W.A.; Pangestuti, R.; Kim, S.-K. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity. Neurotoxicology 2013, 35, 30–40. [Google Scholar] [CrossRef] [PubMed]
No. | δC a | δH b (J in Hz) | HMBC (H → C) |
---|---|---|---|
1-NH | - | 8.15, s | C-2, C-3, C-3a, C-7a |
2 | 143.1, qC | - | - |
3 | 106.1, qC | - | - |
3a | 126.8, qC | - | - |
4 | 117.2, CH | 7.41, br. s | C-3, C-3a, C-6, C-7a, C-21 |
5 | 134.1, qC | - | - |
6 | 123.1, CH | 6.79, br. s | C-4, C-7a, C-21, C-26 |
7 | 123.5, qC | - | - |
7a | 132.6, qC | - | - |
8 | 69.4, CH | 5.46, dd (9.2, 1.0) | C-2, C-3, C-3a, C-9, C-10 |
8-OH | - | 4.95, d (1.0) | C-3, C-8, C-9 |
9 | 56.0, CH | 4.66, br. d (9.2) | C-3, C-8, C-9, C-13 |
10 | 170.1, qC | - | - |
11-NH | - | 5.34, overlap | C-9, C-10, C-12, C-13 |
12 | 50.6, CH | 4.13, br. q (6.9) | C-13, C-20 |
13 | 167.0, qC | - | - |
14-NH | - | 6.14, overlap | C-9, C-13 |
15 | 38.7, qC | - | - |
16 | 145.6, CH | 6.12, dd (17.4, 10.6) | C-2, C-15, C-18, C-19 |
17 | 112.6, CH2 | 5.21, dd (17.4, 0.7) | C-15, C-16 |
5.15, dd (10.6, 0.7) | |||
18 | 28.1, CH3 | 1.52, s | C-2, C-15, C-16, C-19 |
19 | 28.3, CH3 | 1.50, s | C-2, C-15, C-16, C-18 |
20 | 19.3, CH3 | 1.51, d (6.9) | C-12, C-13 |
21 | 34.7, CH2 | 3.37, d (7.1) | C-4, C-5, C-6, C-22, C-23 |
22 | 124.6, CH | 5.34, overlap | C-21, C-24, C-25 |
23 | 131.4, qC | - | - |
24 | 17.9, CH3 | 1.73, overlap | C-22, C-23, C-25 |
25 | 25.8, CH3 | 1.72, overlap | C-22, C-23, C-24 |
26 | 31.5, CH2 | 3.53, d (7.4) | C-6, C-7a, C-28 |
27 | 123.0, CH | 5.43, br. t (7.4) | C-26, C-29, C-30 |
28 | 132.9, qC | - | - |
29 | 17.9, CH3 | 1.88, s | C-27, C-28, C-30 |
30 | 25.7, CH3 | 1.82, s | C-27, C-28, C-29 |
Compound | IC50 Value for DPPH Radicals (mg/mL) | Total Reducing Power (mmol/L) |
---|---|---|
8-hydroxyechinulin | 0.587 | 0.29 |
echinulin | 1.628 | 0.17 |
neoechinulin A | 0.219 | 4.25 |
Factors | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Methanol volume fraction (%) | 60 | 70 | 80 |
Solid–liquid ratio (mL/g) | 15 | 20 | 25 |
Soaking temperature (°C) | 40 | 50 | 60 |
Run | A | B | C | Extraction Yield (mg/g) |
---|---|---|---|---|
1 | 80 | 15 | 50 | 1.297 |
2 | 60 | 20 | 60 | 1.218 |
3 | 80 | 20 | 60 | 1.253 |
4 | 70 | 25 | 60 | 1.425 |
5 | 80 | 20 | 40 | 1.397 |
6 | 70 | 20 | 50 | 1.449 |
7 | 70 | 15 | 40 | 1.325 |
8 | 70 | 20 | 50 | 1.473 |
9 | 80 | 25 | 50 | 1.440 |
10 | 70 | 15 | 60 | 1.304 |
11 | 60 | 15 | 50 | 1.236 |
12 | 70 | 20 | 50 | 1.443 |
13 | 70 | 20 | 50 | 1.389 |
14 | 60 | 20 | 40 | 1.146 |
15 | 60 | 25 | 50 | 1.211 |
16 | 70 | 20 | 50 | 1.487 |
17 | 70 | 25 | 40 | 1.415 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.17 | 9 | 0.019 | 18.72 | 0.0004 | Significant |
A | 0.041 | 1 | 0.041 | 40.28 | 0.0004 | *** |
B | 0.014 | 1 | 0.014 | 13.15 | 0.0084 | ** |
C | 0.0008675 | 1 | 0.0008675 | 0.84 | 0.3887 | |
AB | 0.007048 | 1 | 0.007048 | 6.86 | 0.0344 | * |
AC | 0.012 | 1 | 0.012 | 11.35 | 0.0119 | * |
BC | 0.0002399 | 1 | 0.0002399 | 0.23 | 0.6437 | |
A2 | 0.075 | 1 | 0.075 | 72.62 | <0.0001 | *** |
B2 | 0.00156 | 1 | 0.00156 | 1.52 | 0.2576 | |
C2 | 0.016 | 1 | 0.016 | 15.59 | 0.0055 | ** |
Residual | 0.007191 | 7 | 0.001027 | |||
Lack-of-fit | 0.001568 | 3 | 0.0005227 | 0.37 | 0.7788 | Not significant |
Pure error | 0.005624 | 4 | 0.001406 | |||
Cor total | 0.18 | 16 | ||||
R2 | 0.9601 | R2Adj | 0.9088 | |||
C.V. % | 2.38 | Pred R-Squared | 0.8121 | Adeq Precision | 12.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, X.; Gu, Q.; Yu, X. Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A. Microorganisms 2024, 12, 864. https://doi.org/10.3390/microorganisms12050864
Li S, Liu X, Gu Q, Yu X. Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A. Microorganisms. 2024; 12(5):864. https://doi.org/10.3390/microorganisms12050864
Chicago/Turabian StyleLi, Shuyao, Xiaobo Liu, Qiuya Gu, and Xiaobin Yu. 2024. "Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A" Microorganisms 12, no. 5: 864. https://doi.org/10.3390/microorganisms12050864
APA StyleLi, S., Liu, X., Gu, Q., & Yu, X. (2024). Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A. Microorganisms, 12(5), 864. https://doi.org/10.3390/microorganisms12050864