Investigation of Healthcare-Acquired Infections and Antimicrobial Resistance in an Italian Hematology Department before and during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition Criteria for HAIs
2.2. Microbial Identification and Antibiotic Susceptibility
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Hospital-Acquired Infections and Microbiological Testing
3.3. Mean-Parametrized Conway–Maxwell (COM) Poisson Regression [32]
3.4. Microbiological Analysis of HAI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stone, P.W.; Braccia, D.; Larson, E. Systematic review of economic analyses of health care-associated infections. Am. J. Infect. Control 2005, 33, 501–509. [Google Scholar] [CrossRef]
- Fukuda, H.; Lee, J.; Imanaka, Y. Variations in analytical methodology for estimating costs of hospital-acquired infections: A systematic review. J. Hosp. Infect. 2011, 77, 93–105. [Google Scholar] [CrossRef]
- De Angelis, G.; Murthy, A.; Beyersmann, J.; Harbarth, S. Estimating the impact of healthcare-associated infections on length of stay and costs. Clin. Microbiol. Infect. 2010, 16, 1729–1735. [Google Scholar] [CrossRef]
- WHO. Global Report on Infection Prevention and Control: Executive Summary; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Stewart, S.; Robertson, C.; Pan, J.; Kennedy, S.; Haahr, L.; Manoukian, S.; Mason, H.; Kavanagh, K.; Graves, N.; Dancer, S. Impact of healthcare-associated infection on length of stay. J. Hosp. Infect. 2021, 114, 23–31. [Google Scholar] [CrossRef]
- Lü, Y.; Cai, M.H.; Cheng, J.; Zou, K.; Xiang, Q.; Wu, J.Y.; Wei, D.Q.; Zhou, Z.H.; Wang, H.; Wang, C. A multi-center nested case-control study on hospitalization costs and length of stay due to healthcare-associated infection. Antimicrob. Resist. Infect. Control 2018, 7, 99. [Google Scholar] [CrossRef]
- Manoukian, S.; Stewart, S.; Dancer, S.; Graves, N.; Mason, H.; McFarland, A.; Robertson, C.; Reilly, J. Estimating excess length of stay due to healthcare-associated infections: A systematic review and meta-analysis of statistical methodology. J. Hosp. Infect. 2018, 100, 222–235. [Google Scholar] [CrossRef]
- WHO. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Koch, A.M.; Nilsen, R.M.; Eriksen, H.M.; Cox, R.J.; Harthug, S. Mortality related to hospital-associated infections in a tertiary hospital; repeated cross-sectional studies between 2004–2011. Antimicrob. Resist. Infect. Control 2015, 4, 57. [Google Scholar] [CrossRef]
- Kritsotakis, E.I.; Kontopidou, F.; Astrinaki, E.; Roumbelaki, M.; Ioannidou, E.; Gikas, A. Prevalence, incidence burden, and clinical impact of healthcare-associated infections and antimicrobial resistance: A national prevalent cohort study in acute care hospitals in Greece. Infect. Drug Resist. 2017, 10, 317. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines on Core Components of Infection Prevention and Control Programmes at the National and Acute Health Care Facility Level. Available online: https://www.who.int/publications/i/item/9789241549929 (accessed on 5 May 2022).
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Zingg, W.; Huttner, B.D.; Sax, H.; Pittet, D. Assessing the burden of healthcare-associated infections through prevalence studies: What is the best method? Infect. Control Hosp. Epidemiol. 2014, 35, 674–684. [Google Scholar] [CrossRef]
- Gravel, D.; Matlow, A.; Ofner-Agostini, M.; Loeb, M.; Johnston, L.; Bryce, E.; Sample, M.L.; Roth, V.R.; Goldman, C.; Taylor, G. A point prevalence survey of health care–associated infections in pediatric populations in major Canadian acute care hospitals. Am. J. Infect. Control 2007, 35, 157–162. [Google Scholar] [CrossRef]
- Kepenekli, E.; Soysal, A.; Yalindag-Ozturk, N.; Ozgur, O.; Ozcan, I.; Devrim, I.; Akar, S.; Bakir, M.; Group, T.P.-H.S. A national point-prevalence survey of pediatric intensive care unit-acquired, healthcare-associated infections in Turkey. Jpn. J. Infect. Dis. 2014, 68, 381–386. [Google Scholar] [CrossRef]
- Saleem, Z.; Godman, B.; Hassali, M.A.; Hashmi, F.K.; Azhar, F.; Rehman, I.U. Point prevalence surveys of health-care-associated infections: A systematic review. Pathog. Glob. Health 2019, 113, 191–205. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control; Suetens, C.; Hopkins, S.; Kolman, J.; Högberg, L.D. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012; Publications Office of the European Union: Stockholm, Sweden, 2013. [Google Scholar]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Annual Epidemiological Report 2012. Reporting on 2010 Surveillance Data and 2011 Epidemic Intelligence Data; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2013. [Google Scholar]
- European Centre for Disease Prevention and Control. Annual Epidemiological Report on Communicable Diseases in Europe 2008; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2008. [Google Scholar]
- Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 transmission, current treatment, and future therapeutic strategies. Mol. Pharm. 2021, 18, 754–771. [Google Scholar] [CrossRef]
- Wong, S.; Kwong, R.-S.; Wu, T.; Chan, J.; Chu, M.; Lee, S.; Wong, H.; Lung, D. Risk of nosocomial transmission of coronavirus disease 2019: An experience in a general ward setting in Hong Kong. J. Hosp. Infect. 2020, 105, 119–127. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19) Pandemic–World Health Organization; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Governo Italiano Presidenza del Consiglio dei Ministri. Coronavirus, le Misure Adottate dal Governo. Available online: https://www.sitiarcheologici.palazzochigi.it/www.governo.it/febbraio%202021/it/coronavirus-misure-del-governo.html (accessed on 5 May 2022).
- European Centre for Disease Prevention and Control. Personal Protective Equipment (PPE) Needs in Healthcare Settings for the Care of Patients with Suspected or Confirmed Novel Coronavirus (2019-nCoV); European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- WHO. Advice on the Use of Masks in the Context of COVID-19: Interim Guidance, 5 June 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Quattrocolo, F.; D’Ambrosio, A.; Corcione, S.; Stillo, M.; Blanco, V.; Gualano, M.; Villa, G.; Voglino, G.; Clemente, S.; Camussi, E. Studio di Prevalenza Italiano Sulle Infezioni Correlate All’Assistenza e Sull’uso di Antibiotici Negli Ospedali per Acuti-Protocollo ECDC; Dipartimento Scienze Della Salute Pubblica e Pediatriche, Università di Torino: Turin, Italy, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institure. Performance Standards for Antimicrobial Susceptibility Testing, M100, 33rd ed.; Clinical and Laboratory Standards Institure: Malvern, PA, USA, 2023. [Google Scholar]
- Huang, A. Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. Stat. Model. 2017, 17, 359–380. [Google Scholar] [CrossRef]
- Di Tella, M.; Romeo, A.; Benfante, A.; Castelli, L. Mental health of healthcare workers during the COVID-19 pandemic in Italy. J. Eval. Clin. Pract. 2020, 26, 1583–1587. [Google Scholar] [CrossRef] [PubMed]
- Tham, N.; Fazio, T.; Johnson, D.; Skandarajah, A.; Hayes, I.P. Hospital Acquired Infections in Surgical Patients: Impact of COVID-19-Related Infection Prevention Measures. World J. Surg. 2022, 46, 1249–1258. [Google Scholar] [CrossRef]
- Mohammadi, A.; Khatami, F.; Azimbeik, Z.; Khajavi, A.; Aloosh, M.; Aghamir, S.M.K. Hospital-acquired infections in a tertiary hospital in Iran before and during the COVID-19 pandemic. Wien. Med. Wochenschr. 2022, 172, 220–226. [Google Scholar] [CrossRef]
- Lo, S.H.; Lin, C.Y.; Hung, C.T.; He, J.J.; Lu, P.L. The impact of universal face masking and enhanced hand hygiene for COVID-19 disease prevention on the incidence of hospital-acquired infections in a Taiwanese hospital. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 104, 15–18. [Google Scholar] [CrossRef]
- Hollenbeak, C.S.; Schilling, A.L. The attributable cost of catheter-associated urinary tract infections in the United States: A systematic review. Am. J. Infect. Control 2018, 46, 751–757. [Google Scholar] [CrossRef]
- Scott, R.D., 2nd; Culler, S.D.; Rask, K.J. Understanding the Economic Impact of Health Care-Associated Infections: A Cost Perspective Analysis. J. Infus. Nurs. Off. Publ. Infus. Nurses Soc. 2019, 42, 61–69. [Google Scholar] [CrossRef]
- Butt, A.A.; Kartha, A.B.; Masoodi, N.A.; Azad, A.M.; Asaad, N.A.; Alhomsi, M.U.; Saleh, H.A.H.; Bertollini, R.; Abou-Samra, A.B. Hospital admission rates, length of stay, and in-hospital mortality for common acute care conditions in COVID-19 vs. pre-COVID-19 era. Public Health 2020, 189, 6–11. [Google Scholar] [CrossRef]
- Petrone, F.; Giribono, A.M.; Massini, L.; Pietrangelo, L.; Magnifico, I.; Bracale, U.M.; Di Marco, R.; Bracale, R.; Petronio Petronio, G. Retrospective Observational Study on Microbial Contamination of Ulcerative Foot Lesions in Diabetic Patients. Microbiol. Res. 2021, 12, 793–811. [Google Scholar] [CrossRef]
- Deiana, G.; Arghittu, A.; Gentili, D.; Dettori, M.; Palmieri, A.; Masia, M.D.; Azara, A.; Castiglia, P. Impact of the COVID-19 Pandemic on the Prevalence of HAIs and the Use of Antibiotics in an Italian University Hospital. Healthcare 2022, 10, 1597. [Google Scholar] [CrossRef]
- Cornejo-Juárez, P.; Volkow-Fernández, P.; Vázquez-Marín, C.L.; Álvarez-Romero, N.; García-Pineda, B.; Chavez-Chavez, T.; Vilar-Compte, D. Impact of coronavirus disease 2019 (COVID-19) pandemic in hospital-acquired infections and bacterial resistance at an oncology hospital. Antimicrob. Steward. Healthc. Epidemiol. ASHE 2023, 3, e70. [Google Scholar] [CrossRef]
- Ismaeil, R.; Nahas, A.R.F.; Kamarudin, N.B.; Abubakar, U.; Mat-Nor, M.B.; Mohamed, M.H.N. Evaluation of the impact of COVID-19 pandemic on hospital-acquired infections in a tertiary hospital in Malaysia. BMC Infect. Dis. 2023, 23, 779. [Google Scholar] [CrossRef]
- Khoshbakht, R.; Kabiri, M.; Neshani, A.; Khaksari, M.N.; Sadrzadeh, S.M.; Mousavi, S.M.; Ghazvini, K.; Ghavidel, M. Assessment of antibiotic resistance changes during the Covid-19 pandemic in northeast of Iran during 2020-2022: An epidemiological study. Antimicrob Resist. Infect. Control 2022, 11, 121. [Google Scholar] [CrossRef]
- Langford, B.J.; Soucy, J.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2023, 29, 302–309. [Google Scholar] [CrossRef]
2019 N (%) | 2021 N (%) | Change % | p-Value | |
---|---|---|---|---|
Total | 174 | 159 | ||
GENDER | ||||
Man | 88 (50.6) | 84 (52.8) | 0.742 | |
Woman | 86 (49.4) | 75 (47.2) | ||
AGE | 0.532 | |||
Mean ± D.S. | 65.4 ± 13.6 | 65.6 ± 15.0 | ||
Median | 68.0 | 70.0 | ||
Minimum | 20 | 18 | ||
Maximum | 92 | 92 | ||
HOSPITALIZATION DAYS | 0.195 | |||
Mean ± D.S. | 29.5 ± 28.7 | 23.2 ± 17.6 | ||
Median | 21.0 | 18.0 | ||
Minimum | 2 | 2 | ||
Maximum | 191 | 90 | ||
ADMISSION DIAGNOSIS | ||||
Oncohematological diseases | 106 (60.9) | 87 (54.7) | 0.268 | |
Reticulosarcoma lymph nodes multiple sites | 22 (12.6) | 5 (3.1) | 0.002 | |
Hematological diseases (non-oncological) | 20 (11.5) | 27 (17) | 0.160 | |
Cardiac diseases | 1 (0.6) | 1 (0.6) | 1.000 | |
Respiratory diseases | 2 (1.1) | 1 (0.6) | 1.000 | |
Infections | 31 (17.8) | 32 (22) | 0.409 | |
Renal diseases | 3 (1.7) | 2 (1.3) | 1.000 | |
Other | 11 (6.3) | 6 (3.8) | 0.328 | |
EMOCULTURE, n (%) | 123 (70.7) | 157 (99.4) | +28.7 | <0.001 |
Positive | 22 (17.9) | 37 (23.6) | 0.302 | |
PHARYNGEAL SAMPLING, n (%) | 171 (98.3) | 158 (99.4) | 0.624 | |
Positive | 49 (28.7) | 50 (31.6) | 0.631 | |
NASAL SAMPLING, n (%) | 171 (98.3) | 158 (99.4) | 0.624 | |
Positive | 29 (17.0) | 31 (19.6) | 0.569 | |
RECTAL SAMPLING, n (%) | 171 (98.3) | 158 (99.4) | 0.624 | |
Positive | 54 (31.6) | 35 (22.3) | 0.063 | |
URINOCULTURE, n (%) | 69 (39.7) | 54 (34.0) | 0.303 | |
Positive | 18 (26.1) | 9 (16.7) | 0.274 | |
SPUTUM SAMPLING, n (%) | 7 (4.0) | 2 (1.3) | 0.178 | |
Positive | 3 (42.9) | 1 (50.0) | 1.000 | |
COPROCULTURE, n (%) | 34 (19.5) | 11 (6.9) | −12.6 | 0.001 |
Positive | 0 | 0 | - |
2019 N = 174 | 2021 N = 159 | Change % | p-Value | |
---|---|---|---|---|
HAI, n (%) | 67 (38.5) | 60 (37.7) | 0.910 | |
GENDER, n (%) | 0.052 | |||
Man | 41 (61.2) | 26 (43.3) | ||
Woman | 26 (38.8) | 34 (56.6) | ||
AGE (%) | 0.992 | |||
Mean ± D.S. | 65.90 ± 11.3 | 65.92 ± 13.3 | ||
Median | 69.0 | 67.0 | ||
Minimum | 41 | 27 | ||
Maximum | 87 | 90 | ||
HOSPITALIZATION DAYS (%) | 0.020 | |||
Mean ± D.S. | 46.5 ± 30.7 | 35.7 ± 19.1 | ||
Median | 41.0 | 32.5 | ||
Minimum | 4 | 5 | ||
Maximum | 181 | 90 | ||
EMOCULTURE, n (%) | 56 (83.6) | 60 (100.0) | +16.4 | 0.001 |
Positive | 16 (28.6) | 25 (41.7) | 0.100 | |
PHARYNGEAL SAMPLING, n (%) | 65 (97.0) | 60 (100.0) | 0.498 | |
Positive | 31 (47.7) | 27 (45.0) | 0.487 | |
NASAL SAMPLING, n (%) | 64 (95.5) | 60 (100.0) | 0.246 | |
Positive | 13 (20.3) | 8 (13.3) | 0.345 | |
RECTAL SAMPLING, n (%) | 65 (97.0) | 60 (100.0) | 0.498 | |
Positive | 29 (44.6) | 23 (38.3) | 0.586 | |
URINOCULTURE, n (%) | 43 (64.2) | 26 (43.3) | −20.9 | 0.021 |
Positive | 14 (32.6) | 8 (30.8) | 1.000 | |
SPUTUM SAMPLING, n (%) | 3 (4.5) | 1 (1.7) | 0.621 | |
Positive | 3 (100.0) | 1 (100.0) | - |
2019 | Coefficient (Coef) | Standard Error (SE) | p-Value |
---|---|---|---|
Hospitalization days | 0.012 | 0.005 | 0.011 |
Age | 0.0007 | 0.0137 | 0.958 |
Gender | −0.1628 | 0.3170 | 0.6075 |
Intercept | 1.085 | 0.179 | 1.412 × 10−9 |
2021 | |||
Hospitalization days | 0.008 | 0.007 | 0.291 |
Age | 0.008 | 0.011 | 0.457 |
Gender | −0.2115 | 0.2835 | 0.456 |
Intercept | 0.9238 | 0.193 | 1.737 × 10−6 |
Positive Samples | Change % | p-Value | ||
---|---|---|---|---|
2019 | 2021 | |||
EMOCULTURE | ||||
Escherichia coli | 4 (25.0) | 2 (6.6) | 0.187 | |
Staphylococcus hominis | 1 (6.3) | 6 (20.0) | 0.215 | |
Srteptococcus epidermidis | 2 (12.5) | 6 (20.0) | 0.448 | |
Staphylococcus haemolyticus | 1 (6.3) | 4 (13.3) | 0.632 | |
Candida albicans | 0 (0.0) | 1 (3.3) | 1.000 | |
Candida glabrata | 0 (0.0) | 1 (3.3) | 1.000 | |
Listeria monocytogenes | 0 (0.0) | 1 (3.3) | 1.000 | |
Klebsiella pneumoniae | 0 (0.0) | 1 (3.3) | 1.000 | |
Enterobacter cloacae | 1 (6.3) | 0 (0.0) | 0.390 | |
Enterococcus faecium | 3 (18.8) | 1 (3.3) | 0.281 | |
Staphylococcus caprae | 0 (0.0) | 1 (3.3) | 1.000 | |
Streptococcus agalactiae | 0 (0.0) | 1 (3.3) | 1.000 | |
Staphylococcus aureus | 1 (5.0) | 1 (3.3) | 1.000 | |
Acinetobacter baumannii | 1 (6.3) | 0 (0.0) | 0.390 | |
Aeromonas veronii biovar veronii | 1 (6.3) | 0 (0.0) | 0.390 | |
Klebsiella variicola | 1 (6.3) | 0 (0.0) | 0.390 | |
Enterococcus faecalis | 0 (0.0) | 1 (3.3) | 1.000 | |
Streptococcus gallolyticus | 0 (0.0) | 1 (3.3) | 1.000 | |
Enterococcus casseliflavus | 0 (0.0) | 1 (3.3) | 1.000 | |
Candida tropicalis | 0 (0.0) | 1 (3.3) | 1.000 | |
Total number of microorganisms, N (%) | 16 (100) | 30 (100) | 0.083 | |
PHARYNGEAL SAMPLING | ||||
Klebsiella pneumoniae | 1 (2.9) | 3 (8.3) | 0.329 | |
Escherichia coli | 0 (0.0) | 2 (5.5) | 0.212 | |
Candida albicans | 1 (2.9) | 7 (19.4) | +16.5 | 0.020 |
Candida glabrata | 2 (5.9) | 3 (8.3) | 0.656 | |
Citrobacter koseri | 0 (0.0) | 1 (2.8) | 0.466 | |
Staphylococcus haemolyticus | 9 (26.5) | 7 (19.4) | 1.000 | |
Staphylococcus aureus | 7 (20.6) | 0 (0.0) | 0.057 | |
Candida tropicalis | 0 (0.0) | 2 (5.5) | 0.212 | |
Enterobacter cloacae | 1 (2.9) | 1 (2.8) | 1.000 | |
Enterococcus faecalis | 7 (20.6) | 0 (0.0) | −20.6 | 0.012 |
Streptococcus pneumoniae | 1 (2.9) | 0 (0.0) | 1.000 | |
Enterococcus faecium | 1 (2.9) | 2 (5.5) | 0.593 | |
Pseudomonas aeruginosa | 1 (2.9) | 3 (8.3) | 0.329 | |
Candida norvegensis | 1 (2.9) | 0 (0.0) | 1.000 | |
Enterobacter asburiae | 0 (0.0) | 1 (2.8) | 0.466 | |
Stenotrophomonas maltophilia | 0 (0.0) | 2 (5.5) | 0.212 | |
Serratia marcescens | 1 (2.9) | 0 (0.0) | 1.000 | |
Staphylococcus lugdunensis | 1 (2.9) | 0 (0.0) | 1.000 | |
Candida krusei | 0 (0.0) | 1 (2.8) | 0.466 | |
Enterobacter kobei | 0 (0.0) | 1 (2.8) | 0.466 | |
Pseudomonas cactophila | 0 (0.0) | 1 (2.8) | 0.466 | |
Total number of microorganisms, N (%) | 34 | 36 | 0.287 | |
NASAL SAMPLING | ||||
Staphylococcus aureus | 8 (57.1) | 3 (42.8) | 0.387 | |
Staphylococcus haemolyticus | 0 (0.0) | 2 (28.6) | 0.133 | |
Candida glabrata | 0 (0.0) | 1 (14.3) | 0.381 | |
Enterobacter cloacae | 1 (7.1) | 0 (0.0) | 1.000 | |
Escherichia coli | 1 (7.1) | 0 (0.0) | 1.000 | |
Staphylococcus lugdunensis | 0 (0.0) | 1 (14.3) | 0.381 | |
Klebsiella pneumoniae | 1 (7.1) | 0 (0.0) | 1.000 | |
Stenotrophomonas maltophilia | 1 (7.1) | 0 (0.0) | 1.000 | |
Staphylococcus pseudintermedius | 1 (7.1) | 0 (0.0) | 1.000 | |
Serratia marcescens | 1 (7.1) | 0 (0.0) | 1.000 | |
Total number of microorganisms, N (%) | 14 | 7 | 0.436 | |
RECTAL SAMPLING, N (%) | ||||
Escherichia coli | 27 (90.0) | 14 (53.8) | −36.2 | 0.019 |
Klebsiella pneumoniae | 3 (10.0) | 10 (38.5) | +28.5 | 0.009 |
Pseudomonas aeruginosa | 0 (0.0) | 1 (3.8) | 0.434 | |
Citrobacter freundii | 0 (0.0) | 1 (3.8) | 0.434 | |
Total number of microorganisms, N (%) | 30 | 26 | 0.686 | |
URINOCOLTURE, N (%) | ||||
Enterococcus faecalis | 0 (0.0) | 3 (37.5) | +37.5 | 0.036 |
Candida albicans | 0 (0.0) | 1 (12.5) | 0.364 | |
Escherichia coli | 9 (64.3) | 0 (0.0) | −64.3 | 0.006 |
Klebsiellapneumoniae | 0 (0.0) | 1 (12.5) | 0.364 | |
Klebsiellaoxytoca | 0 (0.0) | 1 (12.5) | 0.364 | |
Acinetobacter baumanii | 1 (7.1) | 0 (0.0) | 1.000 | |
Pseudomonas aeruginosa | 2 (14.3) | 0 (0.0) | 0.515 | |
Enterococcuscloacae | 1 (7.1) | 0 (0.0) | 1.000 | |
Enterococcusfaecium | 1 (7.1) | 0 (0.0) | 1.000 | |
Staphylococcusaureus | 0 (0.0) | 1 (12.5) | 0.364 | |
Citrobscter freundii | 0 (0.0) | 1 (12.5) | 0.364 | |
Total number of microorganisms, N (%) | 14 | 8 | 0.898 | |
SPUTUM SAMPLING, N (%) | ||||
Staphylococcus haemoliticus | 1 (33.3) | 1 (100.0) | 1.000 | |
Acinetobacter baumanii | 1 (33.3) | 0 (0.0) | 1.000 | |
Candida albicans | 1 (33.3) | 0 (0.0) | 1.000 | |
Total number of microorganisms, N (%) | 3 | 1 | 0.200 |
2019 N (%) | 2021 N (%) | Change % | p-Value | |
---|---|---|---|---|
Staphylococcus haemolyticus | 11 (100) | 14 (100) | ||
Vancomycin | ||||
S | 4 (36.4) | 12 (85.7) | −49.3 | 0.016 |
R | 7 (63.6) | 2 (14.3) | ||
Teicoplanin | ||||
S | 3 (27.3) | 11 (78.6) | −51.3 | 0.015 |
R | 8 (72.7) | 3(21.4) | ||
Linezolid | ||||
S | 9 (81.8) | 0 (0.0) | +81.8 | <0.001 |
R | 2 (18.2) | 14 (100.0) | ||
Escherichia coli | 41 (100) | 18 (100) | ||
Ampicillin | ||||
S | 0 (0.0) | 5 (27.8) | −48.0 | 0.001 |
I | 4 (9.8) | 0 (0.0) | ||
R | 37 (74.0) | 13 (26.0) | ||
Cefuroxime | ||||
S | 18 (43.9) | 8 (44.4) | −22.8 | 0.005 |
I | 0 | 4 (22.2) | ||
R | 23 (56.1) | 6 (33.3) | ||
Ertapenem | ||||
S | 20 (48.8) | 1 (5.6) | +45.6 | 0.004 |
I | 1 (2.4) | 0 (0.0) | ||
R | 20 (48.8) | 17 (94.4) | ||
Imipenem | ||||
S | 25 (61.0) | 10 (55.6) | +24.9 | 0.040 |
I | 8 (19.5) | 0 (0.0) | ||
R | 8 (19.5) | 8 (44.4) | ||
Meropenem | ||||
S | 21 (53.8) | 4 (22.2) | +9.0 | 0.017 |
I | 2 (5.1) | 5 (27.8) | ||
R | 16 (41.0) | 9 (50.0) | ||
Trimethoprim/Sulfamethoxazole | ||||
S | 17 (41.5) | 14 (77.8) | −36.3 | 0.012 |
R | 24 (58.5) | 4 (22.2) | ||
Enterococcus faecalis | 7 (100) | 4 (100) | ||
Ampicillin | ||||
S | 1 (14.3) | 4 (100.0) | −85.7 | 0.015 |
R | 6 (85.7) | 0 (0.0) | ||
Candida glabrata | 2 (100) | 5 (100) | ||
Caspofungin | ||||
S | 1 (50.0) | 0 (0.0) | +100 | 0.030 |
I | 1 (50.0) | 0 (0.0) | ||
R | 0 (0.0) | 5 (100.0) | ||
Voriconazole | ||||
S | 0 (0.0) | 5 (100.0) | −100 | 0.048 |
I | 2 (100.0) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrone, F.; Gizzi, C.; Andriani, A.; Martini, V.; Sala, R.; Abballe, A.; Capoccetta, L.; Spicciato, A.; Cutuli, M.A.; Guarnieri, A.; et al. Investigation of Healthcare-Acquired Infections and Antimicrobial Resistance in an Italian Hematology Department before and during the COVID-19 Pandemic. Microorganisms 2024, 12, 1296. https://doi.org/10.3390/microorganisms12071296
Petrone F, Gizzi C, Andriani A, Martini V, Sala R, Abballe A, Capoccetta L, Spicciato A, Cutuli MA, Guarnieri A, et al. Investigation of Healthcare-Acquired Infections and Antimicrobial Resistance in an Italian Hematology Department before and during the COVID-19 Pandemic. Microorganisms. 2024; 12(7):1296. https://doi.org/10.3390/microorganisms12071296
Chicago/Turabian StylePetrone, Federica, Carmine Gizzi, Alessandro Andriani, Vincenza Martini, Roberta Sala, Angela Abballe, Lucia Capoccetta, Angela Spicciato, Marco Alfio Cutuli, Antonio Guarnieri, and et al. 2024. "Investigation of Healthcare-Acquired Infections and Antimicrobial Resistance in an Italian Hematology Department before and during the COVID-19 Pandemic" Microorganisms 12, no. 7: 1296. https://doi.org/10.3390/microorganisms12071296
APA StylePetrone, F., Gizzi, C., Andriani, A., Martini, V., Sala, R., Abballe, A., Capoccetta, L., Spicciato, A., Cutuli, M. A., Guarnieri, A., Venditti, N., Di Marco, R., & Petronio Petronio, G. (2024). Investigation of Healthcare-Acquired Infections and Antimicrobial Resistance in an Italian Hematology Department before and during the COVID-19 Pandemic. Microorganisms, 12(7), 1296. https://doi.org/10.3390/microorganisms12071296