Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Biosensors as an Alternative Tool to Conventional Methods in the Detection of Legionella
3.1. Bioreceptor Categories
- Nucleic acids
- Enzymes
- Antibodies
- Whole cell bioreceptors
- Biomimetic receptors
3.2. Types of Transducers
4. Optical Biosensors
4.1. Colorimetric
4.2. Photoluminescence
4.3. Chemiluminescence
4.4. Fluorescent Optical Biosensors
4.5. MCDA-LFB Assay
4.6. Surface Plasmon Resonance (SPR)
4.7. Photonic Technology
5. Electrochemical Bacterial Biosensors
5.1. Amperometric Biosensors
5.2. Voltammetric Biosensors
5.3. Impedance-Based Biosensors
6. Magnetic
7. Mass-Sensitive Measurements
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dagan, A.; Epstein, D.; Mahagheh, A.; Nashashibi, J.; Geffen, Y.; Neuberger, A.; Miller, A. Community-acquired versus nosocomial Legionella pneumonia: Factors associated with Legionella-related mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1419–1426. [Google Scholar] [CrossRef]
- Iliadi, V.; Staykova, J.; Iliadis, S.; Konstantinidou, I.; Sivykh, P.; Romanidou, G.; Vardikov, D.F.; Cassimos, D.; Konstantinidis, T.G. Legionella pneumophila: The Journey from the Environment to the Blood. J. Clin. Med. 2022, 11, 6126. [Google Scholar] [CrossRef] [PubMed]
- Coniglio, M.A.; Yassin, M.H. Clinical and Environmental Surveillance for the Prevention of Legionellosis. Microorganisms 2024, 12, 939. [Google Scholar] [CrossRef]
- Coniglio, M.A.; Ferrante, M.; Yassin, M.H. Preventing Healthcare-Associated Legionellosis: Results after 3 Years of Continuous Disinfection of Hot Water with Monochloramine and an Effective Water Safety Plan. Int. J. Environ. Res. Public Health 2018, 15, 1594. [Google Scholar] [CrossRef]
- Farina, C.; Cacciabue, E.; Averara, F.; Ferri, N.; Vailati, F.; Del Castillo, G.; Serafini, A.; Fermi, B.; Doniselli, N.; Pezzoli, F. Water Safety Plan, Monochloramine Disinfection and Extensive Environmental Sampling Effectively Control Legionella and Other Waterborne Pathogens in Nosocomial Settings: The Ten-Year Experience of an Italian Hospital. Microorganisms 2023, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, E.L.; Laganà, P.; Filice, S.; Scalese, S.; Libertino, S.; Corso, D.; Faro, G.; Coniglio, M.A. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assesment. Microorganisms 2021, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Filice, S.; Sciuto, E.L.; Scalese, S.; Faro, G.; Libertino, S.; Corso, D.; Timpanaro, R.M.; Laganà, P.; Coniglio, M.A. Innovative Antibiofilm Smart Surface against Legionella for Water Systems. Microorganisms 2022, 10, 870. [Google Scholar] [CrossRef]
- Fuochi, V.; Coniglio, M.A.; Laghi, L.; Rescifina, A.; Caruso, M.; Stivala, A.; Furneri, P.M. Metabolic Characterization of Supernatants Produced by Lactobacillus spp. with in vitro Anti-Legionella Activity. Front. Microbiol. 2019, 10, 1403. [Google Scholar] [CrossRef]
- Martinelli, M.; Calaresu, E.; Musumeci, R.; Giubbi, C.; Perdoni, F.; Frugoni, S.; Castriciano, S.; Scaturro, M.; Ricci, M.L.; Cocuzza, C.E. Evaluation of an Environmental Transport Medium for Legionella pneumophila Recovery. Int. J. Environ. Res. Public Health 2021, 18, 8551. [Google Scholar] [CrossRef]
- Bai, L.; Yang, W.; Li, Y. Clinical and Laboratory Diagnosis of Legionella Pneumonia. Diagnostics 2023, 13, 280. [Google Scholar] [CrossRef]
- Donohue, M.J. Quantification of Legionella pneumophila by qPCR and culture in tap water with different concentrations of residual disinfectants and heterotrophic bacteria. Sci. Total Environ. 2021, 774, 145142. [Google Scholar] [CrossRef]
- Joly, P.; Falconnet, P.A.; André, J.; Weill, N.; Reyrolle, M.; Vandenesch, F.; Maurin, M.; Etienne, J.; Jarraud, S. Quantitative real-time Legionella PCR for environmental water samples: Data interpretation. Appl. Environ. Microbiol. 2006, 72, 2801–2808. [Google Scholar] [CrossRef]
- Sauget, M.; Richard, M.; Chassagne, S.; Hocquet, D.; Bertrand, X.; Jeanvoin, A. Validation of quantitative real-time polymerase chain reaction for detection of Legionella pneumophila in hospital water networks. J. Hosp. Infect. 2023, 138, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Mo, Z.Y.; Zhao, H.B.; Yan, H.; Shi, L. LAMP-based method for a rapid identification of Legionella spp. and Legionella pneumophila. Appl. Microbiol. Biotechnol. 2011, 92, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Coniglio, M.A.; Laganà, P.; Fasciana, T.; Arcoleo, G.; Arrigo, I.; Di Carlo, P.; Palermo, M.; Giammanco, A. Validation of a Loop-Mediated Isothermal Amplification-Based Kit for the Detection of Legionella pneumophila in Environmental Samples According to ISO/TS 12869:2012. Microorganisms 2024, 12, 961. [Google Scholar] [CrossRef] [PubMed]
- Soheili, M.; Nejadmoghaddam, M.R.; Babashamsi, M.; Ghasemi, J.; Jeddi Tehrani, M. Detection of Legionella pneumophila by PCR-ELISA method in industrial cooling tower water. Pak. J. Biol. Sci. 2007, 10, 4015–4021. [Google Scholar]
- Boczek, L.A.; Tang, M.; Formal, C.; Lytle, D.; Ryu, H. Comparison of two culture methods for the enumeration of Legionella pneumophila from potable water samples. J. Water Health 2021, 19, 468–477. [Google Scholar] [CrossRef]
- Walker, J.T.; McDermott, P.J. Confirming the Presence of Legionella pneumophila in Your Water System: A Review of Current Legionella Testing Methods. J. AOAC Int. 2021, 104, 1135–1147. [Google Scholar] [CrossRef]
- Girolamini, L.; Pascale, M.R.; Mazzotta, M.; Spiteri, S.; Marino, F.; Salaris, S.; Grottola, A.; Orsini, M.; Cristino, S. Combining Traditional and Molecular Techniques Supports the Discovery of a Novel Legionella Species During Environmental Surveillance in a Healthcare Facility. Front. Microbiol. 2022, 13, 900936. [Google Scholar] [CrossRef]
- Capuano, G.E.; Corso, D.; Farina, R.; Pezzotti Escobar, G.; Screpis, G.A.; Coniglio, M.A.; Libertino, S. Miniaturizable Chemiluminescence System for ATP Detection in Water. Sensors 2024, 24, 3921. [Google Scholar] [CrossRef]
- Capuano, G.E.; Farina, R.; Screpis, G.; Corso, D.; Coniglio, M.A.; Libertino, S. In-Situ Contaminant Detection by Portable and Potentially Real-Time Sensing Systems; IntechOpen: London, UK, 2024; Accepted for Publication. [Google Scholar]
- Mobed, A.; Hasanzadeh, M.; Agazadeh, M.; Mokhtarzadeh, A.; Rezaee, M.A.; Sadeghi, J. Bioassays: The best alternative for conventional methods in detection of Legionella pneumophila. Int. J. Biol. Macromol. 2019, 121, 1295–1307. [Google Scholar] [CrossRef]
- Kirschner, A.K.T. Review Determination of viable legionellae in engineered water systems: Do we find what we are looking for? Water Res. 2016, 93, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Ngashangva, L.; Hemdan, B.A.; El-Liethy, M.A.; Bachu, V.; Minteer, S.D.; Goswami, P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. Micromachines 2022, 13, 1083. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.N.; Arezoo, S.; Hassanpour, S.; Shadjou, N.; Mokhtarzadeh, A.; Mohammadi, J. Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids. Enzym. Microb. Technol. 2017, 105, 64–76. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Razmi, N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int. J. Biol. Macromol. 2018, 108, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Bedrina, B.; Macián, S.; Solís, I.; Fernàndez-Lafuente, R.; Baldrich, E.; Rodrìguez, G. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: Comparative and collaborative trials. BMC Microbiol. 2013, 13, 88. [Google Scholar] [CrossRef]
- Nuthong, B.; Wilailuckana, C.; Tavichakorntrakool, R.; Boonsiri, P.; Daduang, S.; Bunyaraksyotin, G.; Suphan, O.; Daduang, J. One step for Legionella pneumophila detection in environmental samples by DNA-gold nanoparticle probe. J. Appl. Microbiol. 2018, 125, 1534–1540. [Google Scholar] [CrossRef]
- Párraga-Niño, N.; Quero, S.; Ventós-Alfonso, A.; Uria, N.; Castillo-Fernandez, O.; Ezenarro, J.J.; Muñoz, F.-X.; Garcia-Nuñez, M.; Sabrià, M. New system for the detection of Legionella pneumophila in water samples. Talanta 2018, 189, 324–331. [Google Scholar] [CrossRef]
- Islam, M.A.; Hassen, W.M.; Ishika, I.; Tayabali, A.F.; Dubowski, J.J. Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy. Biosensors 2022, 12, 105. [Google Scholar] [CrossRef]
- Islam, M.A.; Hassen, W.M.; Tayabali, A.F.; Dubowski, J.J. Short Ligand, Cysteine-Modified Warnericin RK Antimicrobial Peptides Favor Highly Sensitive Detection of Legionella pneumophila. ACS Omega 2021, 6, 1299–1308. [Google Scholar] [CrossRef]
- Aziziyan, M.R.; Hassen, W.M.; Morris, D.; Frost, E.H.; Dubowski, J.J. Photonic biosensor based on photocorrosion of GaAs/AlGaAs quantum heterostructures for detection of Legionella pneumophila. Biointerphases 2016, 11, 019301. [Google Scholar] [CrossRef]
- Yoon, C.H.; Cho, J.H.; Oh, H.I.; Kim, M.J.; Lee, C.W.; Choi, J.W.; Paek, S.H. Development of a membrane strip immunosensor utilizing ruthenium as an electro-chemiluminescent signal generator. Biosens. Bioelectron. 2003, 19, 289–296. [Google Scholar] [CrossRef]
- Kober, C.; Niessner, R.; Seidel, M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosens. Bioelectron. 2018, 100, 49–55. [Google Scholar] [CrossRef]
- Martynenko, I.V.; Kusić, D.; Weigert, F.; Stafford, S.; Donnelly, F.C.; Evstigneev, R.; Gromova, Y.; Baranov, A.V.; Rühle, B.; Kunte, H.-J.; et al. Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe3O4 Nanoparticles and AIS/ZnS Quantum Dots. Anal. Chem. 2019, 91, 12661–12669. [Google Scholar] [CrossRef]
- Wu, T.Y.; Su, Y.Y.; Shu, W.H.; Mercado, A.T.; Wang, S.K.; Hsu, L.Y.; Tsai, Y.F.; Chen, C.Y. A novel sensitive pathogen detection system based on Microbead Quantum Dot System. Biosens. Bioelectron. 2016, 78, 37–44. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Brassard, D.; Tabrizian, M.; Veres, T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip 2015, 15, 1609–1618. [Google Scholar] [CrossRef]
- Rothenbroker, M.; McConnell, E.M.; Gu, J.; Urbanus, M.L.; Samani, S.E.; Ensminger, A.W.; Filipe, C.D.M.; Li, Y. Selection and Characterization of an RNA-Cleaving DNAzyme Activated by Legionella pneumophila. Angew. Chem. Int. Ed. Engl. 2021, 60, 4782–4788. [Google Scholar] [CrossRef]
- Eisenreichova, A.; Humpolickova, J.; Różycki, B.; Boura, E.; Koukalova, A. Effects of biophysical membrane properties on recognition of phosphatidylserine, or phosphatidylinositol 4-phosphate by lipid biosensors LactC2, or P4M. Biochimie 2023, 215, 42–49. [Google Scholar] [CrossRef]
- Islam, M.A.; Hassen, W.M.; Tayabali, A.F.; Dubowski, J.J. Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochem. Eng. J. 2020, 154, 107435. [Google Scholar] [CrossRef]
- Delgado-Viscogliosi, P.; Simonart, T.; Parent, V.; Marchand, G.; Dobbelaere, M.; Pierlot, E.; Pierzo, V.; Menard-Szczebara, F.; Gaudard-Ferveur, E.; Delabre, K.; et al. Rapid method for enumeration of viable Legionella pneumophila and other Legionella spp. in water. Appl. Environ. Microbiol. 2005, 71, 4086–4096. [Google Scholar] [CrossRef]
- Honda, Y.; Ichikawa, R.; Choi, Y.J.; Murakami, K.; Takahashi, K.; Noda, T.; Sawada, K.; Ishii, H.; Machida, K.; Ito, H.; et al. Detection system for Legionella bacteria using photogate-type optical sensor. J. Appl. Phys. 2022, 61, SD1010. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Tokunaga, Y.; Goto, S.; Fujii, Y.; Banno, F.; Edagawa, A. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system. Sci. Rep. 2017, 7, 3092. [Google Scholar] [CrossRef] [PubMed]
- Alhogail, S.; Chinnappan, R.; Alrifai, M.; Suaifan, G.A.R.Y.; Bikker, F.J.; Kaman, W.E.; Weber, K.; Cialla-May, D.; Popp, J.; Alfageeh, M.B.; et al. Simple and rapid peptide nanoprobe biosensor for the detection of Legionellaceae. Analyst 2021, 146, 3568–3577. [Google Scholar] [CrossRef]
- Chawich, J.; Hassen, W.M.; Singh, A.; Marquez, D.T.; DeRosa, M.C.; Dubowski, J.J. Polymer Brushes on GaAs and GaAs/AlGaAs Nanoheterostructures: A Promising Platform for Attractive Detection of Legionella pneumophila. ACS Omega 2022, 7, 33349–33357. [Google Scholar] [CrossRef]
- Curtin, K.; Wang, J.; Fike, B.J.; Binkley, B.; Li, P. A 3D printed microfluidic device for scalable multiplexed CRISPR-cas12a biosensing. Biomed. Microdevices 2023, 25, 34. [Google Scholar] [CrossRef]
- Daneshvar, M.I.; Peralta, J.M.; Casay, G.A.; Narayanan, N.; Evans, L., 3rd; Patonay, G.; Strekowski, L. Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor. J. Immunol. Methods 1999, 226, 119–128. [Google Scholar] [CrossRef]
- Lee, H.M.; Choi, D.W.; Kim, S.; Lee, A.; Kim, M.; JinRoh, Y.; Ho Jo, Y.; YeonCho, H.; Lee, H.J.; Lee, S.R.; et al. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sens. 2022, 7, 131–141. [Google Scholar] [CrossRef]
- Saad, M.; Chinerman, D.; Tabrizian, M.; Faucher, S.P. Identification of two aptamers binding to Legionella pneumophila with high affinity and specificity. Sci. Rep. 2020, 10, 9145. [Google Scholar] [CrossRef]
- Jiang, L.; Gu, R.; Li, X.; Song, M.; Huang, X.; Mu, D. Multiple Cross Displacement Amplification Coupled with Lateral Flow Biosensor (MCDA-LFB) for rapid detection of Legionella pneumophila. BMC Microbiol. 2022, 22, 20. [Google Scholar] [CrossRef]
- Oh, B.K.; Kim, Y.K.; Lee, W.; Bae, Y.M.; Lee, W.H.; Choi, J.W. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens. Bioelectron. 2003, 18, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.K.; Lee, W.; Chun, B.S.; Bae, Y.M.; Lee, W.H.; Choi, J.W. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 2005, 20, 1847–1850. [Google Scholar] [CrossRef]
- Lin, H.Y.; Tsao, Y.C.; Tsai, W.H.; Yang, Y.W.; Yan, T.R.; Sheu, B.C. Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sens. Actuators A Phys. 2007, 138, 299–305. [Google Scholar] [CrossRef]
- De Lorenzis, E.; Manera, M.G.; Montagna, G.; Cimaglia, F.; Chiesa, M.; Poltronieri, P.; Santino, A.; Rella, R. SPR based immunosensor for detection of Legionella pneumophila in water samples. Opt. Commun. 2013, 294, 420–426. [Google Scholar]
- Filion-Côté, S.; Roche, P.J.R.; Foudeh, A.M.; Tabrizian, M.; Kirk, A.G. Design and analysis of a spectro-angular surface plasmon resonance biosensor operating in the visible spectrum. Rev. Sci. Instrum. 2014, 85, 093107. [Google Scholar] [CrossRef] [PubMed]
- Foudeh, A.M.; Daoud, J.T.; Faucher, S.P.; Veres, T.; Tabrizian, M. Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosens. Bioelectron. 2014, 52, 129–135. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Trigui, H.; Mendis, N.; Faucher, S.P.; Veres, T.; Tabrizian, M. Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal. Bioanal. Chem. 2015, 407, 5541–5545. [Google Scholar] [CrossRef]
- Melaine, F.; Saad, M.; Faucher, S.; Tabrizian, M. Selective and High Dynamic Range Assay Format for Multiplex Detection of Pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs Using Surface Plasmon Resonance Imaging. Anal. Chem. 2017, 89, 7802–7807. [Google Scholar] [CrossRef]
- Meneghello, A.; Sonato, A.; Ruffato, G.; Zacco, G.; Romanato, F. A novel high sensitive surface plasmon resonance Legionella pneumophila sensing platform. Sens. Actuators B Chem. 2017, 250, 351–355. [Google Scholar] [CrossRef]
- Karimiravesh, R.; Mohabat Mobarez, A.; Behmanesh, M.; Nikkhah, M.; Talebi Bezmin Abadi, A.; Esmaeilli, S. Design of an optical nano biosensor for detection of Legionella pneumophila in water samples. Iran. J. Microbiol. 2022, 14, 802–812. [Google Scholar] [PubMed]
- You, Y.; Lim, S.; Gunasekaran, S. Streptavidin-Coated Au Nanoparticles Coupled with Biotinylated Antibody-Based Bifunctional Linkers as Plasmon-Enhanced Immunobiosensors. ACS Appl. Nano Mater. 2020, 3, 1900–1909. [Google Scholar] [CrossRef]
- Li, N.; Cheng, X.R.; Brahmendra, A.; Prashar, A.; Endo, T.; Guyard, C.; Terebiznik, M.; Kerman, K. Photoniccrystals on copolymer film for bacteriadetection. Biosens. Bioelectron. 2013, 41, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.; Salazar, P.; Jiménez, C.; Lecuona, M.; Ramos, M.J.; Ode, J.; Alcoba, J.; Roche, R.; Villalonga, R.; Campuzano, S.; et al. Rapid Legionella pneumophila determination based on a disposable core-shell Fe3O4@poly(dopamine) magnetic nanoparticles immunoplatform. Anal. Chim. Acta 2015, 887, 51–58. [Google Scholar] [CrossRef]
- Miranda-Castro, R.; Sánchez-Salcedo, R.; Suárez-Álvarez, B.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Thioaromatic DNA monolayers for target-amplification-free electrochemical sensing of environmental pathogenic bacteria. Bionsens. Bioelectron. 2017, 92, 162–170. [Google Scholar] [CrossRef]
- Ezenarro, J.J.; Párraga-Niño, N.; Sabrià, M.; Del Campo, F.J.; Muñoz-Pascual, F.-X.; Mas, J.; Uria, N. Rapid Detection of Legionella pneumophila in Drinking Water, Based on Filter Immunoassay and Chronoamperometric Measurement. Biosensors 2020, 10, 102. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M.; Shadjou, N.; Hassanpour, S.; Saadati, A.; Agazadeh, M. Immobilization of ssDNA on the surface of silver nanoparticles-graphene quantum dots modified by gold nanoparticles towards biosensing of microorganism. Microchem. J. 2019, 152, 104286. [Google Scholar] [CrossRef]
- Park, J.; You, X.; Jang, Y.; Nam, Y.; Kim, M.J.; Min, N.K.; Pak, J.J. ZnO nanorod matrix based electrochemical immunosensors for sensitivity enhanced detection of Legionella pneumophila. Sens. Actuators B Chem. 2014, 200, 173–180. [Google Scholar] [CrossRef]
- Olabarria, G.; Eletxigerra, U.; Rodriguez, I.; Bilbao, A.; Berganza, J.; Merino, S. Highly sensitive and fast Legionella spp. in situ detection based on a loop mediated isothermal amplification technique combined to an electrochemical transduction system. Talanta 2020, 217, 121061. [Google Scholar] [CrossRef]
- Laribi, A.; Allegra, S.; Souiri, M.; Mzoughi, R.; Othmane, A.; Girardot, F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020, 215, 120904. [Google Scholar] [CrossRef]
- Rai, V.; Deng, J.; Toh, C.-S. Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp. Talanta 2012, 98, 112–117. [Google Scholar] [CrossRef]
- Rai, V.; Nyine, Y.T.; Hapuarachchi, H.C.; Yap, H.M.; Ng, L.C.; Toh, C.S. Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosens. Bioelectron. 2012, 32, 133–140. [Google Scholar] [CrossRef]
- Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. PCR-coupledelectrochemical sensing of Legionella pneumophila. Biosens. Bioelectron. 2009, 24, 2390–2396. [Google Scholar] [CrossRef]
- Miranda-Castro, R.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.; Tuñón-Blanco, P. Stem-Loop DNA Probes for the Voltammetric Determination of Legionella pneumophila on Disposable Screen-Printed Gold Electrodes. Electroanalysis 2008, 21, 267–273. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M.; Babaie, P.; Aghazadeh, M.; Mokhtarzadeh, A.; Ahangarzadeh Rezaee, M. Cetyltrimethyl ammonium bromide modified gold nanostructure supported by chitosan as a novel scaffold for immobilization of DNA and ultra-sensitive bioassay of Legionella pneumophila. Microchem. J. 2019, 149, 103961. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M.; Hassanpour, S.; Saadati, A.; Agazadeh, M.; Mokhtarzadeh, A. An innovative nucleic acid- based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: A novel genosensor. Microchem. J. 2019, 148, 708–716. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M.; Babaie, P.; Agazadeh, M.; Mokhtarzadeh, A.; Ahangarzadeh Rezaee, M. DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: A new platform for diagnosis of legionellosis. Int. J. Biol. Macromol. 2019, 128, 692–699. [Google Scholar] [CrossRef]
- Park, E.J.; Lee, J.-Y.; Kim, J.H.; Lee, C.J.; Kim, H.S.; Min, N.K. Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta 2010, 82, 904–911. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, E.J.; Kim, J.H.; Kim, S.G.; Lee, C.J.; Kim, M.J.; Min, N.K. O2 plasma patterning of p-type MWCNT and its application to immunosensor. Thin Solid. Films 2010, 518, 6646–6649. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jin, J.H.; Kim, J.H.; Kim, M.J.; Lee, C.J.; Min, N.K. Plasma-Activated Carbon Nanotube-Based High Sensitivity Immunosensors for Monitoring Legionella pneumophila by Direct Detection of Maltose Binding Protein Peptidoglycan-Associated Lipoprotein (MBP-PAL). Biotechnol. Bioeng. 2012, 109, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.-Y.; Jin, J.-H.; Park, C.W.; Lee, C.J.; Min, N.K. A fully microfabricated carbon nanotube three-electrode system on glass substrate for miniaturized electrochemical biosensors. Biomed. Microdevices 2012, 14, 613–624. [Google Scholar] [CrossRef]
- Lei, K.F.; Leung, P.H.M. Microelectrode array biosensor for the detection of Legionella pneumophila. Microelectron. Eng. 2012, 91, 174–177. [Google Scholar] [CrossRef]
- Souiri, M.; Blel, N.; Sboui, D.; Mhamdi, L.; Epalle, T.; Mzoughi, R.; Riffard, S.; Othmane, A. AFM, CLSM and EIS characterization of the immobilization of antibodies on indium-tin oxide electrode and their capture of Legionella pneumophila. Talanta 2014, 118, 224–230. [Google Scholar] [CrossRef]
- Sboui, D.; Souiri, M.; Reynaud, S.; Palle, S.; Ismail, M.B.; Epalle, T.; Mzoughi, R.; Girardot, F.; Allegra, S.; Riffard, S.; et al. Characterisation of electrochemical immunosensor for detection of viable not-culturable forms of Legionellla pneumophila in water samples. Chem. Pap. 2015, 69, 1402–1410. [Google Scholar] [CrossRef]
- Muhsin, S.A.; Al-Amidie, M.; Shen, Z.; Mlaji, Z.; Liu, J.; Abdullah, A.; El-Dweik, M.; Zhang, S.; Almasri, M. A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens. Biosens. Bioelectron. 2022, 203, 113993. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Brahmendra, A.; Veloso, A.J.; Prashar, A.; Cheng, X.R.; Hung, V.W.S.; Guyard, C.; Terebiznik, M.; Kerman, K. Disposable Immunochips for the Detection of Legionella pneumophila Using Electrochemical Impedance Spectroscopy. Anal. Chem. 2012, 84, 3485–3488. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Li, S.; Terebiznik, M.; Guyard, C.; Kerman, K. Biosensors for the Detection of Interaction between Legionella pneumophila Collagen-Like Protein and Glycosaminoglycans. Sensors 2018, 18, 2668. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, C.; Zheng, Z.; Weng, S.; Chen, Q.; Liu, Q.; Lin, X. A signal-off double probes electrochemical DNA sensor for the simultaneous detection of Legionella and Legionella pneumophila. J. Electroanal. Chem. 2017, 788, 23–28. [Google Scholar] [CrossRef]
- Nikitin, P.I.; Vetoshko, P.M.; Ksenevich, T.I. New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater. 2007, 311, 445–449. [Google Scholar] [CrossRef]
- Cebrián, F.; Montero, J.C.; Fernández, P.J. New approach to environmental investigation of an explosive legionnaires’ disease outbreak in Spain: Early identification of potential risk sources by rapid Legionella spp. immunosensing technique. BMC Infect. Dis. 2018, 18, 696. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Agostini, M.; Lunardelli, F.; Lamanna, L.; Miranda, A.; Bazzichi, A.; Luminare, A.G.; Cervelli, F.; Gambineri, F.; Totaro, M.; et al. Surface acoustic wave-based lab-on-a-chip for the fast detection of Legionella pneumophila in water. Sens. Actuators B Chem. 2023, 379, 133299. [Google Scholar] [CrossRef]
- Howe, E.; Harding, G. A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosens. Bioelectron. 2000, 15, 641–649. [Google Scholar] [CrossRef]
- Deusenbery, C.; Wang, Y.; Shukla, A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect. Dis. 2021, 7, 695–720. [Google Scholar] [CrossRef]
- Farina, R.; Scalese, S.; Corso, D.; Capuano, G.E.; Screpis, G.A.; Coniglio, M.A.; Condorelli, G.G.; Libertino, S. Chronoamperometric Ammonium Ion Detection in Water via Conductive Polymers and Gold Nanoparticles. Molecules 2024, 29, 3028. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Farina, R.; D’Arrigo, G.; Alberti, A.; Scalese, S.; Capuano, G.E.; Corso, D.; Screpis, G.A.; Coniglio, M.A.; Condorelli, G.G.; Libertino, S. Copper Micro-Flowers for Electrocatalytic Sensing of Nitrate Ions in Water. Sensors 2024, 24, 4501. [Google Scholar] [CrossRef]
- Scott, K. Electrochemical principles and characterization of bioelectrochemical systems. In Microbial Electrochemical and Fuel Cells; Scott, K., Yu, E.H., Eds.; Woodhead Publishing: Boston, MA, USA, 2016; pp. 29–66. [Google Scholar]
- Furst, A.L.; Francis, M.B. Impedance-Based Detection of Bacteria. Chem. Rev. 2019, 119, 700–726. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Kolhatkar, A.G.; Zenasni, O.; Xu, S.; Lee, T.R. Biosensing Using Magnetic Particle Detection Techniques. Sensors 2017, 17, 2300. [Google Scholar] [CrossRef]
Transducers | Subtypes | References |
---|---|---|
Optical | Colorimetric | Bedrina et al., 2013 [30], Nuthong et al., 2018 [31], Párraga-Niño et al., 2018 [32] |
Photoluminescence | Islam et al., 2022 [33], Islam et al., 2021 [34], Azyzian et al., 2016 [35] | |
Chemiluminescence | Yoon et al., 2003 [36], Kober et al., 2018 [37] | |
Fluorescence | Martynenko et al., 2019 [38], Wu et al., 2016 [39], Foudeh et al., 2015 [40], Rothenbroker et al., 2021 [41], Eisenreichova et al., 2023 [42], Islam et al., 2020 [43], Delgado-Viscogliosi et al., 2005 [44], Honda et al., 2022 [45], Yamaguchi et al., 2017 [46], Alhogail et al., 2021 [47], Chawich et al., 2022 [48], Curtin et al., 2023 [49], Daneshvar et al., 1999 [50], Lee et al., 2022 [51], Saad et al., 2020 [52] | |
MCDA-LFB assay | Jiang et al., 2022 [53] | |
Surface plasmon resonance | Oh et al., 2003 [54], Oh et al., 2005 [55], Lin et al., 2007 [56], De Lorenzis et al., 2013 [57], Filion-Côté et al., 2014 [58], Foudeh et al., 2014 [59], Foudeh et al., 2015 [60], Melaine et al., 2017 [61], Meneghello et al., 2017 [62], Karimiravesh et al., 2022 [63], You et al., 2020 [64] | |
Photonics | Li et al., 2013 [65] | |
Electrochemical | Amperometric | Martin et al., 2015 [66], Miranda-Castro et al., 2017 [67], Ezenarro et al., 2020 [68], Mobed et al., 2019 [69] |
Voltammetric | Park et al., 2014 [70], Olabarria et al., 2020 [71], Laribi et al., 2020 [72], Rai et al., 2012 [73], Rai et al., 2012 [74], Miranda-Castro et al., 2009 [75], Miranda-Castro et al., 2008 [76], Mobed et al., 2019 [77], Mobed et al., 2019 [78], Mobed et al., 2019 [79], Park et al., 2010 [80], Lee et al., 2010 [81], Lee et al., 2012 [82], Kim et al., 2012 [83] | |
Impedimetric | Lei et al., 2012 [84], Souiri et al., 2014 [85], Sboui et al., 2015 [86], Muhsin et al., 2022 [87], Li et al., 2012 [88], Su et al., 2018 [89], Li et al., 2017 [90] | |
Magnetic | Nikitin et al., 2007 [91], Cebriàn et al., 2018 [92] | |
mass-sensitive measurements | Surface acoustic wave | Gagliardi et al., 2023 [93], Howe et al., 2000 [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Screpis, G.A.; Aleo, A.; Privitera, N.; Capuano, G.E.; Farina, R.; Corso, D.; Libertino, S.; Coniglio, M.A. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024, 12, 1855. https://doi.org/10.3390/microorganisms12091855
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms. 2024; 12(9):1855. https://doi.org/10.3390/microorganisms12091855
Chicago/Turabian StyleScrepis, Giuseppe Andrea, Andrea Aleo, Natalia Privitera, Giuseppe Emanuele Capuano, Roberta Farina, Domenico Corso, Sebania Libertino, and Maria Anna Coniglio. 2024. "Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review" Microorganisms 12, no. 9: 1855. https://doi.org/10.3390/microorganisms12091855
APA StyleScrepis, G. A., Aleo, A., Privitera, N., Capuano, G. E., Farina, R., Corso, D., Libertino, S., & Coniglio, M. A. (2024). Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms, 12(9), 1855. https://doi.org/10.3390/microorganisms12091855