Ex Vivo Analysis of the Association of GFP-Expressing L. aethiopica and L. mexicana with Human Peripheral Blood-Derived (PBD) Leukocytes over 24 Hours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leishmania spp. Promastigotes Cultures
2.2. Isolation of Human Blood Cells via Red Blood Cell Lysis
2.3. Incubation of Leishmania Parasites with Human PBD Leukocytes
2.4. Antibody Staining
2.5. Flow Cytometry Analysis
2.6. Statistical Analyses
3. Results
3.1. Leishmania Interaction with Human B Lymphocytes (CD20+), Monocytes (CD14+), and Neutrophils (CD16b+ CD14−) over 24 h
3.2. Leishmania Interaction with Subpopulations of Human T Lymphocyte (CD4+) over 24 h
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamiru, H.F.; Mashalla, Y.J.; Mohammed, R.; Tshweneagae, G.T. Cutaneous leishmaniasis a neglected tropical disease: Community knowledge, attitude and practices in an endemic area, Northwest Ethiopia. BMC Infect. Dis. 2019, 19, 855–865. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 28 December 2023).
- Frézard, F.; Demicheli, C.; Da Silva, S.M.; Azevedo, E.G.; Ribeiro, R.R. Nanostructures for Improved Antimonial Therapy of Leishmaniasis; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 22; pp. 419–437. ISBN 9780323527279. [Google Scholar]
- Frédéric, F.; Aguiar, M.M.G.; Ferreira, L.A.M.; Ramos, G.S.; Santos, T.T.; Borges, G.S.M.; Vallejos, V.M.R.; De Morais, H.L.O. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2023, 15, 99. [Google Scholar] [CrossRef]
- Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and Tolerability of Miltefosine in the Treatment of Cutaneous Leishmaniasis. Clin. Infect. Dis. 2021, 73, e2457–e2562. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol. 2020, 57, 101664. [Google Scholar] [CrossRef]
- De Almeida, M.C.; Vilhena, V.; Barral, A.; Barral-Netto, M. Leishmanial Infection: Analysis of its First Steps. A Review. Mem. Inst. Oswaldo Cruz 2003, 98, 861–870. [Google Scholar] [CrossRef]
- Scorza, B.M.; Carvalho, E.M.; Wilson, M.E. Cutaneous manifestations of human and murine Leishmaniasis. Int. J. Mol. Sci. 2017, 18, 1296. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Domínguez, M.; Moreno, I.; López-Trascasa, M.; Toraño, A. Complement interaction with trypanosomatid promastigotes in normal human serum. J. Exp. Med. 2002, 195, 451–459. [Google Scholar] [CrossRef]
- Christensen, S.M.; Belew, A.T.; El-Sayed, N.M.; Tafuri, W.L.; Silveira, F.T.; Mosser, D.M. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl. Trop. Dis. 2019, 13, e0007152. [Google Scholar] [CrossRef]
- Ashwin, H.; Sadlova, J.; Vojtkova, B.; Becvar, T.; Lypaczewski, P.; Schwartz, E.; Greensted, E.; van Bocxlaer, K.; Pasin, M.; Lipinski, K.S.; et al. Characterization of a new Leishmania major strain for use in a controlled human infection model. Nat. Commun. 2021, 12, 215. [Google Scholar] [CrossRef]
- Sharma, A.; Apte, A.; Rajappa, M.; Vaz, M.; Vaswani, V.; Goenka, S.; Malhotra, S.; Sangoram, R.; Lakshminarayanan, S.; Jayaram, S.; et al. Perceptions about controlled human infection model (CHIM) studies among members of ethics committees of Indian medical institutions: A qualitative exploration. Wellcome Open Res. 2023, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro dos Anjos, L.; Rodrigues de Souza, V.M.; Machado, Y.A.A.; Partite, V.M.; Mohammed, A.; Lopes, G.D.; Studenik, C.; Alves, C.R.; Lubec, G.; Gonzalez, E.R.P.; et al. Evidence of Guanidines Potential against Leishmania (Viannia) braziliensis: Exploring In Vitro Effectiveness, Toxicities and of Innate Immunity Response Effects. Biomolecules 2024, 14, 26. [Google Scholar] [CrossRef]
- Valigurová, A.; Kolářová, I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, S.; Van Bockstal, L.; Caljon, G.; Maes, L. In-depth comparison of cell-based methodological approaches to determine drug susceptibility of visceral Leishmania isolates. PLoS Negl. Trop. Dis. 2019, 13, e0007885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domínguez, M.; Toraño, A. Immune adherence-mediated opsonophagocytosis: The mechanism of Leishmania infection. J. Exp. Med. 1999, 189, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Domínguez, M.; Cabañes, D.; Aizpurua, C.; Toraño, A. Kinetic Analysis of Ex Vivo human blood infection by leishmania. PLoS Negl. Trop. Dis. 2010, 4, e743. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.A.; Belew, A.T.; Navas, A.; Rosales-Chilama, M.; Murillo, J.; Dillon, L.A.L.; Alexander, T.A.; Martinez-Valencia, A.; El-Sayed, N.M. Early Leukocyte Responses in Ex-Vivo Models of Healing and Non-Healing Human Leishmania (Viannia) panamensis Infections. Front. Cell Infect. Microbiol. 2021, 11, 687607. [Google Scholar] [CrossRef]
- Geraldo, M.M.; Costa, C.R.; Barbosa, F.M.C.; Vivanco, B.C.; Gonzaga, W.F.K.M.; Novaes e Brito, R.R.; Popi, A.F.u; Lopes, J.D.; Xander, P. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells. Parasite Immunol. 2016, 38, 365–376. [Google Scholar] [CrossRef]
- Patel, A.P.; Deacon, A.; Getti, G. Development and validation of four Leishmania species constitutively expressing GFP protein. A model for drug discovery and disease pathogenesis studies. Parasitology. 2013, 141, 501–510. [Google Scholar] [CrossRef]
- Laufs, H.; Müller, K.; Fleischer, J.; Reiling, N.; Jahnke, N.; Jensenius, J.C.; Solbach, W.; Laskay, T. Intracellular survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect. Immun. 2002, 70, 826–835. [Google Scholar] [CrossRef]
- Katiuska, P.; Oaklyne, B.; Fabienne, T. The Impact of Neutrophil Recruitment to the Skin on the Pathology Induced by Leishmania Infection. Front. Immunol. 2021, 12, 649348. [Google Scholar] [CrossRef]
- Serafim, T.D.; Dey, R.; Nakhasi, H.L.; Valenzuela, J.G.; Kamhawi, S. Unique Features of Vector-Transmitted Leishmaniasis and Their Relevance to Disease Transmission and Control. In The Arthropod Vector: Controller of Disease Transmission, 2; Academic Press: Cambridge, MA, USA, 2017; Chapter 6; pp. 91–114. [Google Scholar]
- Venugopal, G.; Bird, J.T.; Washam, C.L.; Roys, H.; Bowlin, A.; Byrum, S.D.; Weinkopff, T. In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Negl. Trop. Dis. 2022, 16, e0010518. [Google Scholar] [CrossRef] [PubMed]
- Novais, F.O.; Santiago, R.C.; Báfica, A.; Khouri, R.; Afonso, L.; Borges, V.M.; Brodskyn, C.; Barral-Netto, M.; Barral, A.; de Oliveira, C.I. Neutrophils and Macrophages Cooperate in Host Resistance against Leishmania braziliensis Infection. J. Immunol. 2009, 183, 8088–8098. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, D.; Demartino, S.; Ferrua, B.; Michiels, J.F.; Anjuère, F.; Fragaki, K.; Le Fichoux, Y.; Kubar, J. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection. BMC Microbiol. 2001, 1, 17. [Google Scholar] [CrossRef] [PubMed]
- Aga, E.; Katschinski, D.M.; van Zandbergen, G.; Laufs, H.; Hansen, B.; Müller, K.; Solbach, W.; Laskay, T. Inhibition of the Spontaneous Apoptosis of Neutrophil Granulocytes by the Intracellular Parasite Leishmania major. J. Immunol. 2002, 169, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Adem, E.; Cruz Cervera, E.; Yizengaw, E.; Takele, Y.; Shorter, S.; Cotton, J.A.; Getti, G.; Kropf, P. Distinct neutrophil effector functions in response to different isolates of Leishmania aethiopica. bioRxiv 2024. [Google Scholar] [CrossRef]
- Valério-Bolas, A.; Pereira, M.; Alexandre-Pires, G.; Santos-Mateus, D.; Rodrigues, A.; Rafael-Fernandes, M.; Gabriel, A.; Passero, F.; Santos-Gomes, G. Intracellular and extracellular effector activity of mouse neutrophils in response to cutaneous and visceral Leishmania parasites. Cell Immunol. 2019, 335, 76–84. [Google Scholar] [CrossRef]
- Ritter, U.; Frischknecht, F.; van Zandbergen, G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009, 25, 505–510. [Google Scholar] [CrossRef]
- Fadok, V.A.; Bratton, D.L.; Konowal, A.; Freed, P.W.; Westcott, J.Y.; Henson, P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Investig. 1998, 101, 890–898. [Google Scholar] [CrossRef]
- Freire-de-Lima, C.G.; Yi, Q.X.; Gardai, S.J.; Bratton, D.L.; Schiemann, W.P.; Henson, P.M. Apoptotic cells, through transforming growth factor-β, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 2006, 281, 38376–38384. [Google Scholar] [CrossRef]
- Voll, R.E.; Herrmann, M.; Roth, E.A.; Stach, C.; Kalden, J.R.; Girkontaite, I. Immunosuppressive effects of apoptotic cells [9]. Nature 1997, 390, 350–351. [Google Scholar] [PubMed]
- Conceicao-Silva, F.; Saraiva, E.M.; Guimaraes-Costa, A.B.; Froment, G.S.; Nascimento, M.T.C.; Soares, R.P.P.; Morgado, F.N. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl. Acad. Sci. USA 2009, 106, 6748–6753. [Google Scholar]
- Brodskyn, C.I.; Borges, V.M.; Barral, A.; Ribeiro-Gomes, F.L.; de Oliveira, C.I.; Dutra, A.N.; Clarêncio, J.; DosReis, G.A.; Cruz, H.; Afonso, L.; et al. Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. J. Leukoc. Biol. 2008, 84, 389–396. [Google Scholar]
- Brittingham, A.; Chen, G.; Mcgwire, B.S.; Chang, K.P.; Mosser, D.M. Interaction of Leishmania gp63 with cellular receptors for fibronectin. Infect. Immun. 1999, 67, 4477–4484. [Google Scholar] [CrossRef]
- Brittingham, A.; Mosser, D. Exploration of antileishmanial activity in heterocycles; results of their in vivo & in vitro bioevaluations. Parasitol. Today 1996, 12, 444–447. [Google Scholar]
- Mosser, D.M.; Edelson, P.J. Activation of the alternative complement pathway by Leishmania promastigotes: Parasite lysis and attachment to macrophages. J. Immunol. 1984, 132, 1501–1505. [Google Scholar] [CrossRef]
- Ueno, N.; Wilson, M.E. Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends Parasitol. 2012, 28, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Arcanjo, A.F.; LaRocque-de-Freitas, I.F.; Rocha, J.D.B.; Zamith, D.; Costa-da-Silva, A.C.; Nunes, M.P.; Mesquita-Santos, F.P.; Morrot, A.; Filardy, A.A.; Mariano, M.; et al. The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection. PLoS ONE 2015, 10, e0124888. [Google Scholar] [CrossRef]
- Adams, H.; Liebisch, P.; Schmid, P.; Dirnhofer, S.; Tzankov, A. Diagnostic utility of the B-cell lineage markers CD20, CD79a, PAX5, and CD19 in paraffin-embedded tissues from lymphoid neoplasms. Appl. Immunohistochem. Mol. Morphol. 2009, 17, 96–101. [Google Scholar] [CrossRef]
- Belkaid, Y.; Piccirillo, C.A.; Mendez, S.; Shevach, E.M.; Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002, 420, 502–507. [Google Scholar] [CrossRef]
- Martins, V.T.; Lage, D.P.; Duarte, M.C.; Carvalho, A.M.R.S.; Costa, L.E.; Mendes, T.A.O.; Vale, D.L.; Menezes-Souza, D.; Roatt, B.M.; Tavares, C.A.P.; et al. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cell Immunol. 2016, 313, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Maspi, N.; Abdoli, A.; Ghaffarifar, F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathog. Glob. Health 2016, 110, 247–260. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Magalhães, A.; Carvalho, L.P.; Bacellar, O.; Scott, P.; Carvalho, E.M. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis. BMC Infect. Dis. 2013, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Zaph, C.; Uzonna, J.; Beverley, S.B.; Scott, P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat. Med. 2004, 10, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranatunga, M.; Deacon, A.; Harbige, L.S.; Dyer, P.; Boateng, J.; Getti, G.T.M. Ex Vivo Analysis of the Association of GFP-Expressing L. aethiopica and L. mexicana with Human Peripheral Blood-Derived (PBD) Leukocytes over 24 Hours. Microorganisms 2024, 12, 1909. https://doi.org/10.3390/microorganisms12091909
Ranatunga M, Deacon A, Harbige LS, Dyer P, Boateng J, Getti GTM. Ex Vivo Analysis of the Association of GFP-Expressing L. aethiopica and L. mexicana with Human Peripheral Blood-Derived (PBD) Leukocytes over 24 Hours. Microorganisms. 2024; 12(9):1909. https://doi.org/10.3390/microorganisms12091909
Chicago/Turabian StyleRanatunga, Medhavi, Andrew Deacon, Laurence S. Harbige, Paul Dyer, Joshua Boateng, and Giulia T. M. Getti. 2024. "Ex Vivo Analysis of the Association of GFP-Expressing L. aethiopica and L. mexicana with Human Peripheral Blood-Derived (PBD) Leukocytes over 24 Hours" Microorganisms 12, no. 9: 1909. https://doi.org/10.3390/microorganisms12091909
APA StyleRanatunga, M., Deacon, A., Harbige, L. S., Dyer, P., Boateng, J., & Getti, G. T. M. (2024). Ex Vivo Analysis of the Association of GFP-Expressing L. aethiopica and L. mexicana with Human Peripheral Blood-Derived (PBD) Leukocytes over 24 Hours. Microorganisms, 12(9), 1909. https://doi.org/10.3390/microorganisms12091909