Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas Selection and Tick Collection Sites
2.2. Tick Collection and Species Identification
2.3. DNA/RNA Isolation
2.4. TBP Detection
2.5. TBP Identification and Genotyping
2.6. Statistical Analysis
3. Results
3.1. Tick Sampling
3.2. Pathogen Prevalence
3.3. Borrelia burgdorferi (Sensu Lato)
3.4. Borrelia miyamotoi
3.5. Anaplasmataceae
3.6. TBEV
3.7. Mixed Infections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chvostac, M.; Spitalska, E.; Vaclav, R.; Vaculova, T.; Minichova, L.; Derdakova, M. Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia. Int. J. Environ. Res. Public Health 2018, 15, 994. [Google Scholar] [CrossRef] [PubMed]
- Kjelland, V.; Paulsen, K.M.; Rollum, R.; Jenkins, A.; Stuen, S.; Soleng, A.; Edgar, K.S.; Lindstedt, H.H.; Vaino, K.; Gibory, M.; et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne Dis. 2018, 9, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Banovic, P.; Jakimovski, D.; Bogdan, I.; Simin, V.; Mijatovic, D.; Bosilkovski, M.; Mateska, S.; Diaz-Sanchez, A.A.; Foucault-Simonin, A.; Zajac, Z.; et al. Tick-borne diseases at the crossroads of the Middle East and central Europe. Infect. Dis. Now 2024, 54, 104959. [Google Scholar] [CrossRef]
- Kowalec, M.; Szewczyk, T.; Welc-Faleciak, R.; Sinski, E.; Karbowiak, G.; Bajer, A. Rickettsiales Occurrence and Co-occurrence in Ixodes ricinus Ticks in Natural and Urban Areas. Microb. Ecol. 2019, 77, 890–904. [Google Scholar] [CrossRef] [PubMed]
- de Cock, M.P.; Baede, V.O.; Esser, H.J.; Fonville, M.; de Vries, A.; de Boer, W.F.; Mehl, C.; Ulrich, R.G.; Schares, G.; Hakze-van der Honing, R.W.; et al. T(r)icky Environments: Higher Prevalence of Tick-Borne Zoonotic Pathogens in Rodents from Natural Areas Compared with Urban Areas. Vector Borne Zoonotic Dis. 2024, 24, 478–488. [Google Scholar] [CrossRef]
- Dale, A.G.; Frank, S.D. Urban plants and climate drive unique arthropod interactions with unpredictable consequences. Curr. Opin. Insect Sci. 2018, 29, 27–33. [Google Scholar] [CrossRef]
- Terviseamet. Nakkushaigustesse Haigestumine Eestis 2000–2020. Available online: https://www.terviseamet.ee/et/nakkushaigused-menuu/tervishoiutootajale/nakkushaigustesse-haigestumine (accessed on 15 April 2021).
- Terviseamet. Communicable Disease Statistics in Estonia; National Health Board: Estonia, Tallinn, 2020; p. 195. [Google Scholar]
- Geller, J.; Nazarova, L.; Katargina, O.; Golovljova, I. Borrelia burgdorferi sensu lato prevalence in tick populations in Estonia. Parasit. Vectors 2013, 6, 202. [Google Scholar] [CrossRef]
- Geller, J.; Nazarova, L.; Katargina, O.; Jarvekulg, L.; Fomenko, N.; Golovljova, I. Detection and genetic characterization of relapsing fever spirochete Borrelia miyamotoi in Estonian ticks. PLoS ONE 2012, 7, e51914. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Geller, J.; Katargina, O.; Varv, K.; Lundkvist, A.; Golovljova, I. Detection of Candidatus Neoehrlichia mikurensis and Ehrlichia muris in Estonian ticks. Ticks Tick. Borne Dis. 2017, 8, 13–17. [Google Scholar] [CrossRef]
- Katargina, O.; Geller, J.; Alekseev, A.; Dubinina, H.; Efremova, G.; Mishaeva, N.; Vasilenko, V.; Kuznetsova, T.; Jarvekulg, L.; Vene, S.; et al. Identification of Anaplasma phagocytophilum in tick populations in Estonia, the European part of Russia and Belarus. Clin. Microbiol. Infect. 2012, 18, 40–46. [Google Scholar] [CrossRef]
- Katargina, O.; Geller, J.; Ivanova, A.; Varv, K.; Tefanova, V.; Vene, S.; Lundkvist, A.; Golovljova, I. Detection and identification of Rickettsia species in Ixodes tick populations from Estonia. Ticks Tick. Borne Dis. 2015, 6, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Katargina, O.; Geller, J.; Vasilenko, V.; Kuznetsova, T.; Jarvekulg, L.; Vene, S.; Lundkvist, A.; Golovljova, I. Detection and characterization of Babesia species in Ixodes ticks in Estonia. Vector Borne Zoonotic Dis. 2011, 11, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Katargina, O.; Russakova, S.; Geller, J.; Kondrusik, M.; Zajkowska, J.; Zygutiene, M.; Bormane, A.; Trofimova, J.; Golovljova, I. Detection and characterization of tick-borne encephalitis virus in Baltic countries and eastern Poland. PLoS ONE 2013, 8, e61374. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.n.; Mihalca, A.D.; Petney, T.N. Ticks of Europe and North Africa: A Guide to Species Identification; Springer Nature: Berlin, Germany, 2017; Volume 1. [Google Scholar] [CrossRef]
- Caporale, D.A.; Rich, S.M.; Spielman, A.; Telford, S.R., 3rd; Kocher, T.D. Discriminating between Ixodes ticks by means of mitochondrial DNA sequences. Mol. Phylogenet. Evol. 1995, 4, 361–365. [Google Scholar] [CrossRef]
- Rogovskyy, A.S.; Nebogatkin, I.V.; Scoles, G.A. Ixodid ticks in the megapolis of Kyiv, Ukraine. Ticks Tick. Borne Dis. 2017, 8, 99–102. [Google Scholar] [CrossRef]
- Schwaiger, M.; Cassinotti, P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003, 27, 136–145. [Google Scholar] [CrossRef]
- Fomenko, N.V.; Livanova, N.N.; Borgoiakov, V.; Kozlova, I.V.; Shulaikina, I.V.; Pukhovskaia, N.M.; Tokarevich, K.N.; Livanov, S.G.; Doroshchenko, E.K.; Ivanov, L.I. Detection of Borrelia miyamotoi in ticks Ixodes persulcatus from Russia. Parazitologiia 2010, 44, 201–211. [Google Scholar] [PubMed]
- Rar, V.A.; Fomenko, N.V.; Dobrotvorsky, A.K.; Livanova, N.N.; Rudakova, S.A.; Fedorov, E.G.; Astanin, V.B.; Morozova, O.V. Tickborne pathogen detection, Western Siberia, Russia. Emerg. Infect. Dis. 2005, 11, 1708–1715. [Google Scholar] [CrossRef]
- Värv, K.; Rumvolt, R.; Remm, J.; Katargina, O.; Geller, J.; Jaik, K. The impact of ecological factors on the abundance of ticks and prevalence of tick-borne pathogens in endemic and non-endemic locations in Estonia. Parasit. Vectors 2020. [Google Scholar]
- Kowalec, M.; Szewczyk, T.; Welc-Faleciak, R.; Sinski, E.; Karbowiak, G.; Bajer, A. Ticks and the city—Are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit. Vectors 2017, 10, 573. [Google Scholar] [CrossRef]
- Igolkina, Y.P.; Rar, V.A.; Yakimenko, V.V.; Malkova, M.G.; Tancev, A.K.; Tikunov, A.Y.; Epikhina, T.I.; Tikunova, N.V. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: Identification of a new Candidatus Rickettsia species. Infect. Genet. Evol. 2015, 34, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Lejal, E.; Marsot, M.; Chalvet-Monfray, K.; Cosson, J.F.; Moutailler, S.; Vayssier-Taussat, M.; Pollet, T. A three-years assessment of Ixodes ricinus-borne pathogens in a French peri-urban forest. Parasit. Vectors 2019, 12, 551. [Google Scholar] [CrossRef]
- Remesar, S.; Matute, R.; Diaz, P.; Martinez-Calabuig, N.; Prieto, A.; Diaz-Cao, J.M.; Lopez-Lorenzo, G.; Fernandez, G.; Lopez, C.; Panadero, R.; et al. Tick-borne pathogens in ticks from urban and suburban areas of north-western Spain: Importance of Ixodes frontalis harbouring zoonotic pathogens. Med. Vet. Entomol. 2023, 37, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Janzen, T.; Choudhury, F.; Hammer, M.; Petersson, M.; Dinnetz, P. Ticks—Public health risks in urban green spaces. BMC Public Health 2024, 24, 1031. [Google Scholar] [CrossRef]
- Sawczyn-Domanska, A.; Zwolinski, J.; Kloc, A.; Wojcik-Fatla, A. Prevalence of Borrelia, Neoehrlichia mikurensis and Babesia in ticks collected from vegetation in eastern Poland. Exp. Appl. Acarol. 2023, 90, 409–428. [Google Scholar] [CrossRef]
- Strnad, M.; Honig, V.; Ruzek, D.; Grubhoffer, L.; Rego, R.O.M. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl. Environ. Microbiol. 2017, 83, e00609-17. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, C.P.; Heutschi, D.; Lenz, N.; Tischhauser, W.; Peter, O.; Rais, O.; Beuret, C.M.; Leib, S.L.; Bankoul, S.; Ackermann-Gaumann, R. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit. Vectors 2017, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Sormunen, J.J.; Kulha, N.; Klemola, T.; Makela, S.; Vesilahti, E.M.; Vesterinen, E.J. Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health 2020, 67, 823–839. [Google Scholar] [CrossRef]
- Hanincova, K.; Taragelova, V.; Koci, J.; Schafer, S.M.; Hails, R.; Ullmann, A.J.; Piesman, J.; Labuda, M.; Kurtenbach, K. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 2003, 69, 2825–2830. [Google Scholar] [CrossRef]
- Hansford, K.M.; Wheeler, B.W.; Tschirren, B.; Medlock, J.M. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022, 69, 153–166. [Google Scholar] [CrossRef]
- Kurtenbach, K.; De Michelis, S.; Sewell, H.S.; Etti, S.; Schafer, S.M.; Hails, R.; Collares-Pereira, M.; Santos-Reis, M.; Hanincova, K.; Labuda, M.; et al. Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Appl. Environ. Microbiol. 2001, 67, 4926–4929. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Jaenson, T.G.T.; Olsen, B.; Waldenstrom, J.; Lindgren, P.E. Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: A seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit. Vectors 2020, 13, 607. [Google Scholar] [CrossRef] [PubMed]
- Heylen, D.; Lasters, R.; Adriaensen, F.; Fonville, M.; Sprong, H.; Matthysen, E. Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. Sci. Total Environ. 2019, 670, 941–949. [Google Scholar] [CrossRef]
- Becker, N.S.; Margos, G.; Blum, H.; Krebs, S.; Graf, A.; Lane, R.S.; Castillo-Ramirez, S.; Sing, A.; Fingerle, V. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genom. 2016, 17, 734. [Google Scholar] [CrossRef]
- Millins, C.; Dickinson, E.R.; Isakovic, P.; Gilbert, L.; Wojciechowska, A.; Paterson, V.; Tao, F.; Jahn, M.; Kilbride, E.; Birtles, R.; et al. Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasit. Vectors 2018, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae Part 2: Borrelia Relapsing Fever Group and Unclassified Borrelia. Biology 2021, 10, 1117. [Google Scholar] [CrossRef]
- Vaculova, T.; Derdakova, M.; Spitalska, E.; Vaclav, R.; Chvostac, M.; Rusnakova Taragelova, V. Simultaneous Occurrence of Borrelia miyamotoi, Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus Ticks in Urban Foci in Bratislava, Slovakia. Acta Parasitol. 2019, 64, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Ciebiera, O.; Grochowalska, R.; Lopinska, A.; Zduniak, P.; Strzala, T.; Jerzak, L. Ticks and spirochetes of the genus Borrelia in urban areas of Central-Western Poland. Exp. Appl. Acarol. 2024, 93, 421–437. [Google Scholar] [CrossRef]
- Reis, C.; Cote, M.; Paul, R.E.; Bonnet, S. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis. 2011, 11, 907–916. [Google Scholar] [CrossRef]
- Maaz, D.; Krucken, J.; Blumke, J.; Richter, D.; McKay-Demeler, J.; Matuschka, F.R.; Hartmann, S.; von Samson-Himmelstjerna, G. Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLoS ONE 2018, 13, e0199385. [Google Scholar] [CrossRef]
- Borsan, S.D.; Ionica, A.M.; Galon, C.; Toma-Naic, A.; Pestean, C.; Sandor, A.D.; Moutailler, S.; Mihalca, A.D. High Diversity, Prevalence, and Co-infection Rates of Tick-Borne Pathogens in Ticks and Wildlife Hosts in an Urban Area in Romania. Front. Microbiol. 2021, 12, 645002. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.B.; Andersen, N.S.; Wolfel, S.; Chen, M.; Paarup, H.M.; Olesen, C.R.; Fournier, P.E.; Jensen, P.M.; Skarphedinsson, S. Rickettsiosis in Denmark: A nation-wide survey. Ticks Tick. Borne Dis. 2023, 14, 102236. [Google Scholar] [CrossRef] [PubMed]
- Levytska, V.A.; Mushinsky, A.B.; Zubrikova, D.; Blanarova, L.; Dlugosz, E.; Vichova, B.; Slivinska, K.A.; Gajewski, Z.; Gizinski, S.; Liu, S.; et al. Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick. Borne Dis. 2021, 12, 101586. [Google Scholar] [CrossRef]
- Silaghi, C.; Gilles, J.; Hohle, M.; Pradel, I.; Just, F.T.; Fingerle, V.; Kuchenhoff, H.; Pfister, K. Prevalence of spotted fever group rickettsiae in Ixodes ricinus (Acari: Ixodidae) in southern Germany. J. Med. Entomol. 2008, 45, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.; Hamel, D.; Thiel, C.; Pfister, K.; Pfeffer, M. Spotted fever group rickettsiae in ticks, Germany. Emerg. Infect. Dis. 2011, 17, 890–892. [Google Scholar] [CrossRef] [PubMed]
- Spitalska, E.; Boldis, V.; Derdakova, M.; Selyemova, D.; Rusnakova Taragelova, V. Rickettsial infection in Ixodes ricinus ticks in urban and natural habitats of Slovakia. Ticks Tick. Borne Dis. 2014, 5, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Venclikova, K.; Rudolf, I.; Mendel, J.; Betasova, L.; Hubalek, Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne Dis. 2014, 5, 135–138. [Google Scholar] [CrossRef]
- Welc-Faleciak, R.; Kowalec, M.; Karbowiak, G.; Bajer, A.; Behnke, J.M.; Sinski, E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit. Vectors 2014, 7, 121. [Google Scholar] [CrossRef]
- Andersson, M.; Bartkova, S.; Lindestad, O.; Raberg, L. Co-infection with ’Candidatus Neoehrlichia Mikurensis’ and Borrelia afzelii in Ixodes ricinus ticks in southern Sweden. Vector Borne Zoonotic Dis. 2013, 13, 438–442. [Google Scholar] [CrossRef]
- Glatz, M.; Mullegger, R.R.; Maurer, F.; Fingerle, V.; Achermann, Y.; Wilske, B.; Bloemberg, G.V. Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks Tick. Borne Dis. 2014, 5, 139–144. [Google Scholar] [CrossRef]
- Richter, D.; Matuschka, F.R. “Candidatus Neoehrlichia mikurensis,” Anaplasma phagocytophilum, and lyme disease spirochetes in questing european vector ticks and in feeding ticks removed from people. J. Clin. Microbiol. 2012, 50, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Szczotko, M.; Kubiak, K.; Michalski, M.M.; Moerbeck, L.; Antunes, S.; Domingos, A.; Dmitryjuk, M. Neoehrlichia mikurensis-A New Emerging Tick-Borne Pathogen in North-Eastern Poland? Pathogens 2023, 12, 307. [Google Scholar] [CrossRef] [PubMed]
- Jahfari, S.; Ruyts, S.C.; Frazer-Mendelewska, E.; Jaarsma, R.; Verheyen, K.; Sprong, H. Melting pot of tick-borne zoonoses: The European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit. Vectors 2017, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.; Woll, D.; Mahling, M.; Pfister, K.; Pfeffer, M. Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany. Parasit. Vectors 2012, 5, 285. [Google Scholar] [CrossRef] [PubMed]
- Grochowska, A.; Dunaj, J.; Pancewicz, S.; Czupryna, P.; Majewski, P.; Wondim, M.; Tryniszewska, E.; Moniuszko-Malinowska, A. Detection of Borrelia burgdorferi s.l., Anaplasma phagocytophilum and Babesia spp. in Dermacentor reticulatus ticks found within the city of Bialystok, Poland-first data. Exp. Appl. Acarol. 2021, 85, 63–73. [Google Scholar] [CrossRef]
- Grochowska, A.; Dunaj-Malyszko, J.; Pancewicz, S.; Czupryna, P.; Milewski, R.; Majewski, P.; Moniuszko-Malinowska, A. Prevalence of Tick-Borne Pathogens in Questing Ixodes ricinus and Dermacentor reticulatus Ticks Collected from Recreational Areas in Northeastern Poland with Analysis of Environmental Factors. Pathogens 2022, 11, 468. [Google Scholar] [CrossRef]
- Lindquist, L.; Vapalahti, O. Tick-borne encephalitis. Lancet 2008, 371, 1861–1871. [Google Scholar] [CrossRef]
- Makenov, M.; Karan, L.; Shashina, N.; Akhmetshina, M.; Zhurenkova, O.; Kholodilov, I.; Karganova, G.; Smirnova, N.; Grigoreva, Y.; Yankovskaya, Y.; et al. First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and their rodent hosts in Moscow, Russia. Ticks Tick. Borne Dis. 2019, 10, 101265. [Google Scholar] [CrossRef]
- Suss, J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis 2011, 2, 2–15. [Google Scholar] [CrossRef]
- Lommano, E.; Bertaiola, L.; Dupasquier, C.; Gern, L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl. Environ. Microbiol. 2012, 78, 4606–4612. [Google Scholar] [CrossRef]
Site No. | Name | Description | Latitude/Longitude | m2 Flagged | Total Ticks (M/F/N) * | IA | DOT (95%CI) DOA/DON ** | Larvae *** |
---|---|---|---|---|---|---|---|---|
1 | Pirita river valley | riverside with rich herbal lower vegetation and bushes | 59.4574, 24.9023 | 450 | 18 (1/1/16) | 6.0 | 4.0 (2.5–6.2); 0.4/3.6 | − |
2 | Pirita forested park | large urban mixed forest, with hills and swamp areas and rich litter | 59.4604, 24.8593 | 1250 | 122 (7/8/107); | 40.7 | 9.8 (8.1–11.4); 1.2/8.6 | + |
3 | Kadrioru | large urban park with mainly broadleaved trees | 59.4415, 24.7982 | 300 | 6 (1/1/4); | 2.0 | 2.0 (0.9–4.2); 0.7/1.3 | − |
4 | Ilmarise health trails | large natural-like urban mixed forest with swamps | 59.3659, 24.6666 | 1400 | 37 (5/2/30); | 12.3 | 2.6/(1.8–3.5); 0.5/2.1 | + |
5 | Hirve/Toompark | central city park, some bushes with a litter | 59.4336, 24.7374 | 600 | 0 (0/0/0); −/− | − | − | |
6 | von Glehni park | a park in the large urban mixed forest | 59.3925, 24.6577 | 300 | 0 (0/0/0); −/− | − | − | |
7 | Stroomi | urban broadleaved natural-like forest at the seaside | 59.4372, 24.6921 | 1200 | 38 (6/5/27); | 12.7 | 3.2 (2.3–4.3); 0.9/2.3 | + |
8 | Estonian Open Air Museum | broadleaved- and mixed-type urban semi-forested area at the seaside | 59.4323, 24.6395 | 1200 | 226 (18/33/175); | 75.3 | 18.8 (16.7–21.1); 4.3/14.6 | ++ |
9 | Sütiste forested park | urban mixed-type forest | 59.3944, 24.6899 | 800 | 31 (3/3/25); | 15.5 | 3.9 (2.5–5.2); 0.8/3.1 | − |
10 | Nõmme-Mustamäe | urban mixed type forested area | 59.38952, 24.6745 | 600 | 30 (3/1/26); | 15.0 | 5.0 (3.5–7.0); 0.7/4.3 | − |
11 | Järve health trails | semi-forested area, mainly with pine trees and an herbal lower layer | 59.3997, 24.7299 | 600 | 0 (0/0/0); −/− | − | − | |
12 | Tallinn Zoo | natural-like broadleaved forested areas with a rich lower layer | 59.4208, 24.6616 | 1500 | 234 (30/39/165); | 78.0 | 15.6 (13.9–17.5); 4.6/11.0 | +++ |
13 | Sanatooriumi park | semi-forested area, mainly with pine trees and an herbal or mossy lower layer | 59.3762, 24.6638 | 600 | 0 (0/0/0); −/− | − | − | |
14 | Männiku | mixed and coniferous forest with a mainly herbal or mossy lower layer | 59.3273, 24.6797 | 400 | 73 (5/5/63); | 36.5 | 18.3 (14.8–22.3); 2.5/15.8 | − |
Overall | 11,200 | 815 (79/98/638) |
Borrelia | Rickettsiales | TBEV %; CI, 95% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site No. * | Site Name * | Total No. of Ticks | TBPs % (No.); CI, 95% *** | DIN TBP ¥ | BBSL, % (No.); CI, 95% | BA, % (No.) | BG, % (No) | BV, % (No) | Bmiy % (No.); CI, 95% | Rh % (No.); CI, 95% | An. ph, % (No.); CI, 95% | N. mik, % (No.); CI, 95% | |
1 | Pirita river valley | 18 | 27.8% (5); 12.5–50.9% | 0.9 | 0.0% (0) | 0.0% (0) | 0.0% (0) | 0.0% (0) | 0.0% (0) | 22.2% (4); 8.5–45.8% | 0.0% (0) | 0.0% (0) | 5.6% (1); 1–25.8% |
2 | Pirita forested park | 122 | 31.1% (38); 23.6–39.8% | 2.7 | 11.5% (14); 6.7–18.3% | 4.9% (6) | 4.9% (6) | 1.6% (2) | 0.0% (0) | 18.0% (22); 42.2–72.2% | 1.6% (2); 0.4–5.8% | 3.3% (4); 1.3–8.1% | 0.0% (0); |
3 | Kadrioru | 6 | 16.7% (1); 3.0–56.4% | 0.3 | 16.7% (1); 3.0–56.4% | 0.0% (0) | 16.7% (1) | 0.0% (0) | 0.0% (0); | 0.0% (0); | 0.0% (0) | 0.0% (0) | 0.0% (0); |
4 | Ilmarise health trails | 37 | 24.3% (9); 13.4–40.1% | 0.4 | 8.1% (3); 2.8–21.3% | 0.0% (0) | 2.7% (1) | 2.7% (1) | 0.0% (0); 0.0–9.4% | 16.2% (6); 7.6–31.1% | 0.0% (0) | 0.0% (0) | 2.7% (1); 0.5–13.8% |
7 | Stroomi | 38 | 18.4% (7); 9.2–33.4% | 0.5 | 13.2% (5); 5.8–27.3% | 10.5% (4) | 0.0% (0) | 2.6% (1) | 0.0% (0); 0.0–9.2% | 7.9% (3); 2.8–20.8% | 0.0% (0) | 0.0% (0) | 0.0% (0); |
8 | Estonian Open Air Museum | 226 | 43.8% (99); 37.5–50.3% | 6.3 | 25.2% (57); 20.0–31.3% | 24.8% (56); | 0.4% (1) | 0.0% (0) | 4.4% (10); 2.4–8.0% | 13.7% (31) 9.8–18.8% | 0.5% (1); 0.0–2.5% | 7.5% (17); 4.8–11.7% | 0.4% (1) 0.1–2.5% |
9 | Sütiste forested park | 31 | 19.4% (6); 9.2–36.3% | 0.8 | 16.1% (5); 7.1–32.6% | 9.7% (3) | 0.0% (0) | 6.5% (2) | 0.0% (0); 0.0–11.0% | 3.2% (1); 0.6–16.2% | 0.0% (0) | 0.0% (0) | 0.0% (0); |
10 | Nõmme-Mustamäe | 30 | 3.3% (1); 0.6–16.7% | 0.2 | 3.3% (1); 0.6–16.7% | 0.0% (0) | 0.0% (0) | 3.3% (1) | 0.0% (0); 0.0–11.4% | 0.0% (0); 0.0–11.4% | 0.0% (0) | 0.0% (0) | 0.0% (0); |
12 | Tallinn Zoo | 234 | 41.5%(97); 35.3–47.9% | 5.3 | 22.2% (52); 17.4–28.0% | 20.9% (49) | 0.9% (2) | 0.0% (0) | 3.9% (9); 2.0–7.2% | 15.0% (35); 11.0–20.1% | 0.4% (1); 0.1%–2.4% | 10.2% (24); 7.0–14.8% | 0.0% (0); |
14 | Männiku | 73 | 19.2% (14); 11.8–29.7% | 2.8 | 5.5% (4); 1.8–13.3% | 4.1% (3) | 0.0% (0) | 0.0% (0) | 2.7% (2); 0.8–9.5% | 11.0% (8); 5.7–20.2% | 0.0% (0) | 0.0% (0) | 1.4% (1); 0.2–7.4% |
TOTAL | 815 | 34.0% (277); 30.8–37.3% | 2.4 | 17.4% (142); 15.0–20.2% | 14.8% (121); 85.2% † | 1.3% (11); 7.7% † | 0.9% (7); 4.9% † | 2.6% (21); 1.7–3.9% | 13.5% (110); 11.3–16.0% | 0.5% (4); 0.2–1.3% | 5.5% (45); 4.2–7.3% | 0.5%(4); 0.2–1.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vikentjeva, M.; Geller, J.; Bragina, O. Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms 2024, 12, 1918. https://doi.org/10.3390/microorganisms12091918
Vikentjeva M, Geller J, Bragina O. Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms. 2024; 12(9):1918. https://doi.org/10.3390/microorganisms12091918
Chicago/Turabian StyleVikentjeva, Maria, Julia Geller, and Olga Bragina. 2024. "Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases" Microorganisms 12, no. 9: 1918. https://doi.org/10.3390/microorganisms12091918
APA StyleVikentjeva, M., Geller, J., & Bragina, O. (2024). Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms, 12(9), 1918. https://doi.org/10.3390/microorganisms12091918