Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Bacterial Strains
2.2. Preparation of the Blueberry Bagasse Ingredient
2.3. Preparation of Frozen Fermented Dairy Snacks
2.4. Proximate Analysis
2.5. Physicochemical Characterization
2.6. Determination of Total Bioactive Compounds and Antioxidant Capacity
2.6.1. Methanolic Extracts Preparation
2.6.2. Total Phenolics and Monomeric Anthocyanins
2.6.3. Antioxidant Activity
2.7. Microbiological Viability
2.8. Simulated Gastrointestinal Conditions
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Physicochemical Parameters
Formulations 2 | |||||
---|---|---|---|---|---|
LA5 | LA5-BERRY | LGG | LGG-BERRY | ||
Day 0 | L* | 73.44 ± 0.05 Aa | 60.31 ± 0.07 Ab | 73.39 ± 0.10 Aa | 60.68 ± 0.21 Ab |
a* | 11.15 ± 0.02 Cb | 12.24 ± 0.04 Ca | 10.75 ± 0.09 Cb | 10.33 ± 0.09 Cc | |
b* | −5.74 ± 0.02 ABb | −1.06 ± 0.03 Aa | −6.05 ± 0.06 Ab | −0.98 ± 0.05 Aa | |
Day 1 | L* | 62.10 ± 0.69 Ba | 50.24 ± 0.33 Bb | 58.35 ± 0.53 Ba | 48.53 ± 0.33 Bb |
a* | 13.75 ± 0.17 Bb | 15.69 ± 0.20 Aa | 14.49 ± 0.08 Bb | 12.68 ± 0.01 Ac | |
b* | −6.48 ± 0.11 Bb | −2.03 ± 0.03 Ca | −5.98 ± 0.07 Ab | −1.84 ± 0.01 Ba | |
Day 30 | L* | 58.77 ± 0.17 Ca | 40.55 ± 0.09 Cc | 57.80 ± 0.14 Ca | 47.35 ± 0.05 Cb |
a* | 14.77 ± 0.42 Aa | 15.41 ± 0.06 Ba | 14.74 ± 0.06 Aa | 10.89 ± 0.03 Bb | |
b* | −4.05 ± 0.07 Ab | −1.48 ± 0.04 Ba | −5.98 ± 0.04 Ab | −0.73 ± 0.02 ABa |
3.3. Evaluation of Total Bioactive Compounds and Antioxidant Capacity Before and After Digestion
3.4. Microbiological Viability During Storage at −20 °C
3.5. Microbiological Resistance to Simulated Gastrointestinal Conditions
3.6. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khvostenko, K.; Muñoz-Pina, S.; Heredia, A.; García-Hernández, J.; Argüelles, Á.; Hernández, M.; Andrés, A. Perspective Ways to Provide Kids with Protein-Rich Snacks for Preventing Overweight: From Scientific Studies to Consumers. Food Rev. Int. 2024, 40, 1395–1412. [Google Scholar] [CrossRef]
- Boukid, F.; Klerks, M.; Pellegrini, N.; Fogliano, V.; Sanchez-Siles, L.; Roman, S.; Vittadini, E. Current and Emerging Trends in Cereal Snack Bars: Implications for New Product Development. Int. J. Food Sci. Nutr. 2022, 73, 610–629. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, D. Dairy Snackification—The Future Trend. SSRN J. 2021. [Google Scholar] [CrossRef]
- Chuck-Hernandez, C.; García-Cayuela, T.; Méndez-Merino, E. Dairy-Based Snacks. In Snack Foods; CRC Press: Boca Raton, FL, USA, 2022; pp. 417–448. ISBN 978-1-00-312906-6. [Google Scholar]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Gaba, K.; Anand, S. Incorporation of Probiotics and Other Functional Ingredients in Dairy Fat-Rich Products: Benefits, Challenges, and Opportunities. Dairy 2023, 4, 630–649. [Google Scholar] [CrossRef]
- Calinoiu, L.F.; Vodnar, D.; Precup, G. A Review: The Probiotic Bacteria Viability under Different Conditions. Bull. UASVM Food Sci. Technol. 2016, 73, 55. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of Drying Processes on Anthocyanin Profiles, Total Phenolic Compounds and Antioxidant Activities of Blueberry (Vaccinium corymbosum). LWT 2020, 120, 108931. [Google Scholar] [CrossRef]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Benito, M.J.; Ruíz-Moyano, S.; Martín, A.; Córdoba, M.d.G.; Merchán, A.V.; Casquete, R. Improving the Viability and Metabolism of Intestinal Probiotic Bacteria Using Fibre Obtained from Vegetable By-Products. Foods 2021, 10, 2113. [Google Scholar] [CrossRef]
- Ahmad, I.; Khalique, A.; Junaid, M.; Shahid, M.Q.; Imran, M.; Rashid, A.A. Effect of Polyphenol from Apple Peel Extract on the Survival of Probiotics in Yoghurt Ice Cream. Int. J. Food Sci. Tech. 2020, 55, 2580–2588. [Google Scholar] [CrossRef]
- Goktas, H. Enrichment of Antioxidant Activity of Ice Cream Samples with Addition of Rowanberry (Sorbus aucuparia L.) Pulp and Production of Functional Probiotic Ice Cream with Using L. rhamnosus. Int. J. Food Sci. Tech. 2023, 58, 5962–5971. [Google Scholar] [CrossRef]
- Hurtado-Romero, A.; Garcia-Amezquita, L.E.; Carrillo-Nieves, D.; Montilla, A.; Villamiel, M.; Requena, T.; García-Cayuela, T. Characterization of Berry By-Products as Fermentable Substrates: Proximate and Phenolic Composition, Antimicrobial Activity, and Probiotic Growth Dynamics. LWT 2024, 204, 116468. [Google Scholar] [CrossRef]
- Tagliani, C.; Perez, C.; Curutchet, A.; Arcia, P.; Cozzano, S. Blueberry Pomace, Valorization of an Industry by-Product Source of Fibre with Antioxidant Capacity. Food Sci. Technol. 2019, 39, 644–651. [Google Scholar] [CrossRef]
- Hurtado-Romero, A.; Zepeda-Hernández, A.; Uribe-Velázquez, T.; Rosales-De La Cruz, M.F.; Raygoza-Murguía, L.V.; Garcia-Amezquita, L.E.; García-Cayuela, T. Utilization of Blueberry-Based Ingredients for Formulating a Synbiotic Petit Suisse Cheese: Physicochemical, Microbiological, Sensory, and Functional Characterization during Cold Storage. LWT 2023, 183, 114955. [Google Scholar] [CrossRef]
- Hurtado-Romero, A.; Del Toro-Barbosa, M.; Gradilla-Hernández, M.S.; Garcia-Amezquita, L.E.; García-Cayuela, T. Probiotic Properties, Prebiotic Fermentability, and GABA-Producing Capacity of Microorganisms Isolated from Mexican Milk Kefir Grains: A Clustering Evaluation for Functional Dairy Food Applications. Foods 2021, 10, 2275. [Google Scholar] [CrossRef]
- Akalın, A.S.; Kesenkas, H.; Dinkci, N.; Unal, G.; Ozer, E.; Kınık, O. Enrichment of Probiotic Ice Cream with Different Dietary Fibers: Structural Characteristics and Culture Viability. J. Dairy Sci. 2018, 101, 37–46. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and Quantification of Individual Betalain and Phenolic Compounds in Mexican and Spanish Prickly Pear (Opuntia ficus-indica L. Mill) Tissues: A Comparative Study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990. [Google Scholar] [CrossRef]
- Wrolstad, R.; Acree, T.; Decker, E.; Penner, M.; Reid, D.; Schwartz, S.; Shoemaker, C.; Smith, D.; Sporns, P. Handbook of Food Analytical Chemistry. 2: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; Wiley-Interscience: Hoboken, NJ, USA, 2005; ISBN 978-0-471-71817-8. [Google Scholar]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999; ISBN 978-1-00-304072-9. [Google Scholar]
- Geraldi, M.V.; Betim Cazarin, C.B.; Dias-Audibert, F.L.; Pereira, G.A.; Carvalho, G.G.; Kabuki, D.Y.; Catharino, R.R.; Pastore, G.M.; Behrens, J.H.; Cristianini, M.; et al. Influence of High Isostatic Pressure and Thermal Pasteurization on Chemical Composition, Color, Antioxidant Properties and Sensory Evaluation of Jabuticaba Juice. LWT 2021, 139, 110548. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Gomes Da Cruz, A.; Deliza, R. Sensory Evaluation: Sensory Rating and Scoring Methods. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 744–749. ISBN 978-0-12-384953-3. [Google Scholar]
- Poláková, K.; Bobková, A.; Demianová, A.; Bobko, M.; Lidiková, J.; Jurčaga, L.; Belej, Ľ.; Mesárošová, A.; Korčok, M.; Tóth, T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023, 12, 2675. [Google Scholar] [CrossRef] [PubMed]
- Rudke, C.R.M.; Camelo-Silva, C.; Rudke, A.R.; Prudencio, E.S.; De Andrade, C.J. Trends in Dairy Products: New Ingredients and Ultrasound-Based Processing. Food Bioprocess. Technol. 2024, 17, 811–827. [Google Scholar] [CrossRef]
- Pradeepika, C.; Shoji, M.; Sreekumar, J.; Krishnakumar, T.; Sajeev, M.S.; Chandra, C.V.; Gowda, K.H.; Pati, K. Probiotic and Anthocyanin Rich Purple Sweet Potato Frozen Yogurt. J. Root Crops Indian Soc. Root Crops 2024, 49, 2023. [Google Scholar]
- Adil, S.; Jana, A.H.; Mehta, B.M.; Bihola, A.; Singh, A.; Rajani, B. Value Addition to Dietetic Frozen Yoghurt through Use of Fruit Peel Solids. Sci. Rep. 2024, 14, 18743. [Google Scholar] [CrossRef]
- Asres, A.M.; Woldemariam, H.W.; Gemechu, F.G. Physicochemical and Sensory Properties of Ice Cream Prepared Using Sweet Lupin and Soymilk as Alternatives to Cow Milk. Int. J. Food Prop. 2022, 25, 278–287. [Google Scholar] [CrossRef]
- Moolwong, J.; Klinthong, W.; Chuacharoen, T. Physicochemical Properties, Antioxidant Capacity, and Consumer Acceptability of Ice Cream Incorporated with Avocado (Persea americana Mill.) Pulp. Pol. J. Food Nutr. Sci. 2023, 289–296. [Google Scholar] [CrossRef]
- Mohebbi, M.; Parseh, S.; Razi, S.M. Formulation Engineering of Low-Sweet Aerated Vanilla Dessert Based on the Interaction of Texture, Color and Flavor. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4855594 (accessed on 26 November 2024).
- Tejeda-Miramontes, J.P.; González-Frías, S.E.; Padlon-Manjarrez, S.; García-Cayuela, T.; Tejada-Ortigoza, V.; Garcia-Amezquita, L.E. Obtaining a Fiber-Rich Ingredient from Blueberry Pomace through Convective Drying: Process Modeling and Its Impact on Techno-Functional and Bioactive Properties. LWT 2024, 210, 116862. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Thai, S.; Sinrod, A.J.G.; Chiou, B.; McHugh, T. Functionality of Freeze-dried Berry Powder on Frozen Dairy Desserts. J. Food Process Preserv. 2019, 43, e14076. [Google Scholar] [CrossRef]
- Genovese, A.; Balivo, A.; Salvati, A.; Sacchi, R. Functional Ice Cream Health Benefits and Sensory Implications. Food Res. Int. 2022, 161, 111858. [Google Scholar] [CrossRef]
- Kavaz Yuksel, A. The Effects of Blackthorn (Prunus spinosa L.) Addition on Certain Quality Characteristics of Ice Cream. J. Food Qual. 2015, 38, 413–421. [Google Scholar] [CrossRef]
- Barros, E.L.D.S.; Silva, C.C.; Canella, M.H.M.; Verruck, S.; Prestes, A.A.; Vargas, M.O.; Maran, B.M.; Esmerino, E.A.; Silva, R.; Balthazar, C.F.; et al. Effect of Replacement of Milk by Block Freeze Concentrated Whey in Physicochemical and Rheological Properties of Ice Cream. Food Sci. Technol. 2022, 42, e12521. [Google Scholar] [CrossRef]
- Shamshad, A.; Iahtisham-Ul-Haq; Butt, M.S.; Nayik, G.A.; Al Obaid, S.; Ansari, M.J.; Karabagias, I.K.; Sarwar, N.; Ramniwas, S. Effect of Storage on Physicochemical Attributes of Ice Cream Enriched with Microencapsulated Anthocyanins from Black Carrot. Food Sci. Nutr. 2023, 11, 3976–3988. [Google Scholar] [CrossRef] [PubMed]
- Camire, M.E.; Dougherty, M.P.; Teh, Y. Frozen Wild Blueberry-Tofu-Soymilk Desserts. J. Food Sci. 2006, 71, S119–S123. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Du, X.; Myracle, A.D. Fermentation Alters the Bioaccessible Phenolic Compounds and Increases the Alpha-Glucosidase Inhibitory Effects of Aronia Juice in a Dairy Matrix Following in Vitro Digestion. Food Funct. 2018, 9, 2998–3007. [Google Scholar] [CrossRef]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2022, 12, 48. [Google Scholar] [CrossRef]
- Ryu, D.; Koh, E. Stability Assessment of Anthocyanins from Black Soybean, Grape, and Purple Sweet Potato under in Vitro Gastrointestinal Digestion. Food Sci. Biotechnol. 2022, 31, 1053–1062. [Google Scholar] [CrossRef]
- Oliveira, A.; Pintado, M. Stability of Polyphenols and Carotenoids in Strawberry and Peach Yoghurt throughout in Vitro Gastrointestinal Digestion. Food Funct. 2015, 6, 1611–1619. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.-C.; Wei, B.; Yu, H.-Y.; Thakur, K.; Wang, C.-Y.; Wei, Z.-J. Evaluation of Phenolics Biotransformation and Health Promoting Properties of Blueberry Juice Following Lactic Acid Bacteria Fermentation. Food Sci. Technol. 2023, 43, e104522. [Google Scholar] [CrossRef]
- Tian, Z.-X.; Li, Y.-F.; Long, M.-X.; Liang, Q.; Chen, X.; Huang, D.-M.; Ran, Y.-Q. Effects of Six Different Microbial Strains on Polyphenol Profiles, Antioxidant Activity, and Bioaccessibility of Blueberry Pomace with Solid-State Fermentation. Front. Nutr. 2023, 10, 1282438. [Google Scholar] [CrossRef]
- Şentürk, G.; Akın, N.; Konak Göktepe, Ç.; Denktaş, B. The Effects of Blueberry (Vaccinium corymbosum L.) and Jujube Fruit (Ziziphus jujube) on Physicochemical, Functional, and Sensorial Properties, and Probiotic (Lactobacillus acidophilus DSM 20079) Viability of Probiotic Ice Cream. Food Sci. Nutr. 2024, 12, 2747–2759. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.C.; Martins, E.M.F.; Paula, D.D.A.; Leite Júnior, B.R.D.C.; Silva, R.R.D.; Franco, F.S.L.C.; Martins, M.L.; Oliveira, G.H.H.D. Viability and Resistance of Lacticaseibacillus rhamnosus GG to Passion Fruit Beverages with Whey Protein Isolate. Braz. J. Food Technol. 2023, 26, e2022051. [Google Scholar] [CrossRef]
- Kemsawasd, V.; Chaikham, P. Effects of Frozen Storage on Viability of Probiotics and Antioxidant Capacities of Synbiotic Riceberry and Sesame-Riceberry Milk Ice Creams. Curr. Res. Nutr. Food Sci. 2020, 8, 107–121. [Google Scholar] [CrossRef]
- Pavlatou, C.; Nikolaou, A.; Prapa, I.; Tegopoulos, K.; Plesssas, S.; Grigoriou, M.E.; Bezirtzoglou, E.; Kourkoutas, Y. Effect of Immobilized Pediococcus acidilactici ORE5 Cells on Pistachio Nuts on the Functional Regulation of the Novel Katiki Domokou-Type Cheese Microbiome. Appl. Sci. 2023, 13, 8047. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, W.; Liu, X.; Shen, W.; Gu, R.; Tang, C. The Antioxidant Activity and Protection of Probiotic Bacteria in the In Vitro Gastrointestinal Digestion of a Blueberry Juice and Whey Protein Fermentation System. Fermentation 2023, 9, 335. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic Viability in Yoghurt: A Review of Influential Factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Cadena, R.S.; Cruz, A.G.; Faria, J.A.F.; Bolini, H.M.A. Reduced Fat and Sugar Vanilla Ice Creams: Sensory Profiling and External Preference Mapping. J. Dairy Sci. 2012, 95, 4842–4850. [Google Scholar] [CrossRef]
- Tarakçı, Z.; Durak, M. Investigation of the Chemical, Textural and Sensory Properties of Some Fruit Puree Added Ice Cream. J. Nutr. Fasting Health 2020, 8, 294–301. [Google Scholar] [CrossRef]
- Nascimento, E.D.A.; Melo, E.D.A.; Lima, V.L.A.G.D. Ice Cream with Functional Potential Added Grape Agro-Industrial Waste. J. Culin. Sci. Technol. 2018, 16, 128–148. [Google Scholar] [CrossRef]
Formulations | ||||
---|---|---|---|---|
LA5 | LA5-BERRY | LGG | LGG-BERRY | |
Microorganisms (%) 1 | ||||
Streptococcus thermophilus BIOTEC003 | 2 | 2 | 2 | 2 |
Lactobacillus acidophilus LA5 | 1 | 1 | - | - |
Lactocaseibacillus rhamnosus GG | - | - | 1 | 1 |
Ingredients (%) 2 | ||||
Powdered milk | 2.5 | 2.5 | 2.5 | 2.5 |
Sucralose | 1 | 1 | 1 | 1 |
Blueberry bagasse powder | - | 2 | - | 2 |
Artificial blueberry coloring | 0.3 | - | 0.3 | - |
Artificial blueberry flavoring | 0.3 | - | 0.3 | - |
Parameter 1 | Formulations 2 | |||
---|---|---|---|---|
LA5 | LA5-BERRY | LGG | LGG-BERRY | |
Moisture (g/100 g fresh weight) | 69.02 ± 2.28 a | 68.18 ± 7.62 a | 68.80 ± 2.42 a | 68.38 ± 1.45 a |
Protein | 19.34 ± 2.33 a | 18.14 ± 0.27 a | 20.39 ± 0.82 a | 17.25 ± 0.87 a |
Ash | 4.88 ± 1.19 a | 3.44 ± 0.60 a | 4.79 ± 1.32 a | 3.52 ± 0.30 a |
Fat | 8.59 ± 0.70 a | 9.50 ± 0.68 a | 8.13 ± 0.60 a | 9.47 ± 1.08 a |
Digestible carbohydrates | 65.14 ± 2.59 a | 63.15 ± 0.41 a | 64.77 ± 4.38 a | 63.88 ± 1.46 a |
HMWDF | 2.05 ± 0.01 b | 5.77 ± 0.02 a | 1.92 ± 0.45 b | 5.88 ± 0.01 a |
HMWSDF | 1.44 ± 0.03 a | 1.64 ± 0.00 a | 1.12 ± 0.45 a | 1.77 ± 0.22 a |
IDF | 0.62 ± 0.01 b | 4.13 ± 0.02 a | 0.80 ± 0.01 b | 4.11 ± 0.22 a |
TPC | TAC | ABTS | DPPH | |
---|---|---|---|---|
(mg GAE/g d.w.) | (µg C3G/g d.w.) | (mg Trolox/g d.w.) | (mg Trolox/g d.w.) | |
Before digestion | ||||
LA5 | 1.04 ± 0.08 b | - | 1.11 ± 0.12 b | 1.96 ± 0.04 a |
LA5-BERRY | 1.74 ± 0.03 a | 42.92 ± 0.88 a | 4.09 ± 0.12 a | 1.83 ± 0.16 a |
LGG | 0.95 ± 0.08 b | - | 0.90 ± 0.01 b | 1.90 ± 0.26 a |
LGG-BERRY | 1.85 ± 0.09 a | 46.57 ± 1.31 a | 4.14 ± 0.18 a | 1.92 ± 0.10 a |
After digestion | ||||
LA5 | 5.19 ± 0.17 c* | - | 14.80 ± 0.70 b* | 22.87 ± 1.07 a* |
LA5-BERRY | 8.74 ± 0.23 a* | 14.66 ± 2.16 a* | 20.05 ± 0.22 a* | 23.97 ± 1.63 a* |
LGG | 4.98 ± 0.33 c* | - | 13.66 ± 0.32 b* | 24.56 ± 1.36 a* |
LGG-BERRY | 7.62 ± 0.11 b* | 15.11 ± 0.10 a* | 19.84 ± 0.37 a* | 24.69 ± 1.21 a* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado-Romero, A.; Zepeda-Hernández, A.; Cárdenas-Rangel, J.; Aguilar-Márquez, R.; Garcia-Amezquita, L.E.; Carrillo-Nieves, D.; García-Cayuela, T. Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability. Microorganisms 2025, 13, 86. https://doi.org/10.3390/microorganisms13010086
Hurtado-Romero A, Zepeda-Hernández A, Cárdenas-Rangel J, Aguilar-Márquez R, Garcia-Amezquita LE, Carrillo-Nieves D, García-Cayuela T. Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability. Microorganisms. 2025; 13(1):86. https://doi.org/10.3390/microorganisms13010086
Chicago/Turabian StyleHurtado-Romero, Alejandra, Andrea Zepeda-Hernández, Javier Cárdenas-Rangel, Ricardo Aguilar-Márquez, Luis Eduardo Garcia-Amezquita, Danay Carrillo-Nieves, and Tomás García-Cayuela. 2025. "Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability" Microorganisms 13, no. 1: 86. https://doi.org/10.3390/microorganisms13010086
APA StyleHurtado-Romero, A., Zepeda-Hernández, A., Cárdenas-Rangel, J., Aguilar-Márquez, R., Garcia-Amezquita, L. E., Carrillo-Nieves, D., & García-Cayuela, T. (2025). Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability. Microorganisms, 13(1), 86. https://doi.org/10.3390/microorganisms13010086