Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Management and Quality Assessment
2.2. Experimental Design and Dietary Treatments
2.3. Animal Management
2.4. Faecal Scoring
2.5. Sample Collection
2.6. Feed and Faecal Analysis
2.7. Gut Morphological Analysis
2.8. Gene Expression in the Small Intestine
2.8.1. RNA Extraction and cDNA Synthesis
2.8.2. Quantitative Real-Time Polymerase Chain Reaction (QPCR)
2.9. Volatile Fatty Acid Analysis
2.10. Microbiological Analysis
2.10.1. Microbial DNA Extraction
2.10.2. Illumina Sequencing
2.10.3. Bioinformatics
2.11. Statistics
3. Results
3.1. Grain Quality
3.2. Growth Performance and Faecal Scores
3.3. Coefficient of Apparent Total Tract Digestibility
3.4. Small Intestinal Morphology
3.5. Gene Expression Analysis
3.6. Differential Bacterial Abundance Analysis
3.6.1. Bacterial Richness and Diversity
3.6.2. Differently Abundant Phlya
3.6.3. Differently Abundant Families
3.6.4. Differently Abundant Genera
3.7. Volatile Fatty Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NRC. Nutritional Requirements of Swine; National Academcic Press: Washington DC, USA, 2012. [Google Scholar]
- Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. The use of free amino acids allows formulating very low crude protein diets for piglets. J. Anim. Sci. 2014, 92, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Villodre Tudela, C.; Taciak, M.; Bindelle, J.; Pérez, J.F.; Zentek, J. Health relevance of intestinal protein fermentation in young pigs. Anim. Health Res. Rev. 2016, 17, 137–147. [Google Scholar] [CrossRef]
- O’Doherty, J.V.; Bouwhuis, M.A.; Sweeney, T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. Anim. Prod. Sci. 2017, 57, 2376. [Google Scholar] [CrossRef]
- Batson, K.L.; Calderón, H.I.; Tokach, M.D.; Woodworth, J.C.; Goodband, R.D.; Dritz, S.S.; DeRouchey, J.M. Effects of feeding diets containing low crude protein and coarse wheat bran as alternatives to zinc oxide in nursery pig diets. J. Anim. Sci. 2021, 99, skab090. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds: Feeding strategies without using in-feed antibiotics. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef]
- Williams, B.A.; Verstegen, M.W.A.; Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001, 14, 207. [Google Scholar] [CrossRef]
- Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 2012, 56, 184–196. [Google Scholar] [CrossRef]
- Gao, J.; Yin, J.; Xu, K.; Han, H.; Liu, Z.; Wang, C.; Li, T.; Yin, Y. Protein Level and Infantile Diarrhea in a Postweaning Piglet Model. Mediat. Inflamm. 2020, 2020, 1937387. [Google Scholar] [CrossRef]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli1. J. Anim. Sci. 2009, 87, 2833–2843. [Google Scholar] [CrossRef]
- Wellock, I.J.; Fortomaris, P.D.; Houdijk, J.G.M.; Kyriazakis, I. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs. Anim. Sci. 2006, 82, 327–335. [Google Scholar] [CrossRef]
- Yun, H.M.; Lei, X.J.; Cheong, J.Y.; Kang, J.S.; Kim, I.H. Effect of different levels of fiber and protein on growth performance and fecal characteristics in weaning pigs. Korean J. Agric. Sci. 2017, 44, 366–374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Cao, N.; Wang, L.; Tu, J.; Zeng, X.; Qiao, S. Dietary crude protein time-dependently modulates the bacterial community and metabolites and changes dietary nutrient efficiency in growing pigs. Anim. Nutr. 2024, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Suiryanrayna, M.V.A.N.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef]
- Rutenberg, R.; Bernstein, S.; Fallik, E.; Paster, N.; Poverenov, E. The improvement of propionic acid safety and use during the preservation of stored grains. Crop Prot. 2018, 110, 191–197. [Google Scholar] [CrossRef]
- Konieczka, P.; Józefiak, D.; Kinsner, M.; Smulikowska, S. Effects of high-moisture corn preserved with organic acids combined with rapeseed meal and peas on performance and gut microbiota activity of broiler chickens. Anim. Feed Sci. Technol. 2021, 280, 115063. [Google Scholar] [CrossRef]
- Maher, S.; Sweeney, T.; Kiernan, D.P.; Ryan, M.; Gath, V.; Vigors, S.; Connolly, K.R.; O’Doherty, J.V. Organic acid preservation of cereal grains improves grain quality, growth performance, and intestinal health of post-weaned pigs. Anim. Feed Sci. Technol. 2024, 316, 116078. [Google Scholar] [CrossRef]
- Connolly, K.R.; Sweeney, T.; O’Doherty, J.V. Sustainable Nutritional Strategies for Gut Health in Weaned Pigs: The Role of Reduced Dietary Crude Protein, Organic Acids and Butyrate Production. Animals 2024, 15, 66. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. Review article: The role of butyrate on colonic function: Review: Role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2007, 27, 104–119. [Google Scholar] [CrossRef]
- Tonel, I.; Pinho, M.; Lordelo, M.M.; Cunha, L.F.; Garres, P.; Freire, J.P.B. Effect of butyrate on gut development and intestinal mucosa morphology of piglets. Livest. Sci. 2010, 133, 222–224. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Zhang, W.; Nie, C. Impacts of sodium butyrate on intestinal mucosal barrier and intestinal microbial community in a weaned piglet model. Front. Microbiol. 2023, 13, 1041885. [Google Scholar] [CrossRef]
- Soleimany, F.; Jinap, S.; Abas, F. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 130, 1055–1060. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Bowland, J.P.; Aherne, F.X. Influence of method upon the determination of apparent digestibility in the pig. Can. J. Anim. Sci. 1977, 57, 131–135. [Google Scholar] [CrossRef]
- Connolly, K.R.; Sweeney, T.; Kiernan, D.P.; Round, A.; Ryan, M.T.; Gath, V.; Maher, S.; Vigors, S.; O’Doherty, J.V. The role of propionic acid as a feed additive and grain preservative on weanling pig performance and digestive health. Anim. Feed Sci. Technol. 2025, 321, 116237. [Google Scholar] [CrossRef]
- Clarke, L.C.; Sweeney, T.; Curley, E.; Gath, V.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J.V. Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim. Feed Sci. Technol. 2018, 238, 98–110. [Google Scholar] [CrossRef]
- Iwaki, K.; Nimura, N.; Hiraga, Y.; Kinoshita, T.; Takeda, K.; Ogura, H. Amino acid analysis by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1987, 407, 273–279. [Google Scholar] [CrossRef]
- AOAC: Official Methods of Analysis. 1990. Available online: https://archive.org/details/gov.law.aoac.methods.1.1990/page/n3/mode/2up (accessed on 16 March 2025).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Rattigan, R.; Sweeney, T.; Maher, S.; Thornton, K.; Rajauria, G.; O’Doherty, J.V. Laminarin-rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters and the large intestinal microbial composition of piglets during the critical post-weaning period. Br. J. Nutr. 2020, 123, 255–263. [Google Scholar] [CrossRef]
- Kiernan, D.P.; O’Doherty, J.V.; Connolly, K.R.; Ryan, M.; Sweeney, T. Exploring the differential expression of a set of key genes involved in the regulation and functioning of the stomach in the post-weaned pig. Vet. Sci. 2023, 10, 473. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef]
- Angly, F.E.; Dennis, P.G.; Skarshewski, A.; Vanwonterghem, I.; Hugenholtz, P.; Tyson, G.W. CopyRighter: A rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2014, 2, 11. [Google Scholar] [CrossRef]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.D.; Grunwald, G.K.; Zerbe, G.O.; Mikulich-Gilbertson, S.K.; Robertson, C.E.; Zemanick, E.T.; Harris, J.K. On the use of diversity measures in longitudinal sequencing studies of microbial communities. Front. Microbiol. 2018, 9, 1037. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H.; Kim, Y.Y. Effects of different levels of dietary crude protein on growth performance, blood profiles, diarrhea incidence, nutrient digestibility, and odor emission in weaning pigs. Anim. Biosci. 2023, 36, 1228–1240. [Google Scholar] [CrossRef]
- Lynegaard, J.C.; Kjeldsen, N.J.; Bache, J.K.; Weber, N.R.; Hansen, C.F.; Nielsen, J.P.; Amdi, C. Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhea treatments and average daily gain. Animal 2021, 15, 100075. [Google Scholar] [CrossRef]
- Jiang, S.; Quan, W.; Luo, J.; Lou, A.; Zhou, X.; Li, F.; Shen, Q.W. Low-protein diets supplemented with glycine improves pig growth performance and meat quality: An untargeted metabolomic analysis. Front. Vet. Sci. 2023, 10, 1170573. [Google Scholar] [CrossRef]
- Marchetti, R.; Faeti, V.; Gallo, M.; Pindo, M.; Bochicchio, D.; Buttazzoni, L.; Della Casa, G. Protein Content in the Diet Influences Growth and Diarrhea in Weaning Piglets. Animals 2023, 13, 795. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.M.; Callan, J.J.; McCarthy, P.; O’Doherty, J.V. The interaction between lactose level and crude protein concentration on piglet post-weaning performance, nitrogen metabolism, selected faecal microbial populations and faecal volatile fatty acid concentrations. Anim. Feed Sci. Technol. 2007, 132, 267–282. [Google Scholar] [CrossRef]
- Wellington, M.O.; Hulshof, T.G.; Resink, J.W.; Ernst, K.; Balemans, A.; Page, G.I. The effect of supplementation of essential amino acid combinations in a low crude protein diet on growth performance in weanling pigs. Transl. Anim. Sci. 2023, 7, txad008. [Google Scholar] [CrossRef]
- Yue, L.Y.; Qiao, S.Y. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 2008, 115, 144–152. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, Y.; Zhang, Y.; Song, Y.; Zhang, X.; Lin, Y.; Che, L.; Xu, S.; Wu, D.; Xue, B.; et al. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Anim. Feed Sci. Technol. 2015, 208, 145–157. [Google Scholar] [CrossRef]
- Wei, X.; Bottoms, K.A.; Stein, H.H.; Blavi, L.; Bradley, C.L.; Bergstrom, J.; Knapp, J.; Story, R.; Maxwell, C.; Tsai, T.; et al. Dietary Organic Acids Modulate Gut Microbiota and Improve Growth Performance of Nursery Pigs. Microorganisms 2021, 9, 110. [Google Scholar] [CrossRef]
- Connolly, R.; Sweeney, T.; Maher, S. Organic acid and salt treatment of cereal at harvest improves growth performance in the post weaned pig. Anim.-Sci. Proc. 2022, 13, 204. [Google Scholar]
- Piva, A.; Morlacchini, M.; Casadei, G.; Gatta, P.P.; Biagi, G.; Prandini, A. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning. Ital. J. Anim. Sci. 2002, 1, 35–41. [Google Scholar] [CrossRef]
- Jiao, A.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, Y.; Luo, J.; Yan, H.; Wang, Q.; Wang, H.; et al. Sodium acetate, propionate, and butyrate reduce fat accumulation in mice via modulating appetite and relevant genes. Nutrition 2021, 87–88, 111198. [Google Scholar] [CrossRef] [PubMed]
- Thymann, T.; Sørensen, K.U.; Hedemann, M.S.; Elnif, J.; Jensen, B.B.; Banga-Mboko, H.; Leser, T.D.; Sangild, P.T. Antimicrobial treatment reduces intestinal microflora and improves protein digestive capacity without changes in villous structure in weanling pigs. Br. J. Nutr. 2007, 97, 1128–1137. [Google Scholar] [CrossRef]
- Pluske, J.R.; Williams, I.H.; Aherne, F.X. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 1996, 62, 131–144. [Google Scholar] [CrossRef]
- Dong, G.Z.; Pluske, J.R. The Low Feed Intake in Newly-weaned Pigs: Problems and Possible Solutions. Asian Australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim. Nutr. 2022, 8, 169–184. [Google Scholar] [CrossRef]
- Liu, B.; Wang, W.; Zhu, X.; Sun, X.; Xiao, J.; Li, D.; Cui, Y.; Wang, C.; Shi, Y. Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets. Front. Microbiol. 2018, 9, 2344. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, L.; Huangfu, M.; Li, H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed. Pharmacother. 2023, 165, 115276. [Google Scholar] [CrossRef]
- Nie, K. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front. Cell. Infect. Microbiol. 2021, 11, 757718. [Google Scholar]
- Wei, X.; Tsai, T.; Howe, S.; Zhao, J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Siddiqui, M.T.; Cresci, G.A. The Immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021, 14, 6025–6041. [Google Scholar] [CrossRef]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, R.; Sweeney, T.; Maher, S.; Ryan, M.T.; Thornton, K.; O’Doherty, J.V. Effects of reducing dietary crude protein concentration and supplementation with either laminarin or zinc oxide on the growth performance and intestinal health of newly weaned pigs. Anim. Feed Sci. Technol. 2020, 270, 114693. [Google Scholar] [CrossRef]
- Moreira, T.G.; Cox, L.M.; Da Silva, P.; Mangani, D.; De Oliveira, M.G.; Escobar, G.; Lanser, T.B.; Murphy, L.; Lobo, E.L.C.; Milstein, O.; et al. Dietary protein modulates intestinal dendritic cells to establish mucosal homeostasis. Mucosal Immunol. 2024, 17, 911–922. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Karasova, D.; Crhanova, M.; Babak, V.; Jerabek, M.; Brzobohaty, L.; Matesova, Z.; Rychlik, I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea—A field study. Res. Vet. Sci. 2021, 135, 59–65. [Google Scholar] [CrossRef]
- Unno, T.; Kim, J.; Guevarra, R.B.; Nguyen, S.G. Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota. J. Microbiol. Biotechnol. 2015, 25, 431–438. [Google Scholar] [CrossRef]
- Angelakis, E.; Bachar, D.; Yasir, M.; Musso, D.; Djossou, F.; Gaborit, B.; Brah, S.; Diallo, A.; Ndombe, G.M.; Mediannikov, O.; et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect. 2019, 27, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Wu, Z.; Ye, Y.; Peng, L.; Wu, J.; Ruan, D.; Qiu, Y.; Ding, R.; Wang, X.; Zheng, E.; et al. Metagenomic Characterization of Intestinal Regions in Pigs With Contrasting Feed Efficiency. Front. Microbiol. 2020, 11, 32. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef]
- Canani, R.B. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 17, 1519. [Google Scholar] [CrossRef]
- Flis, M.; Sobotka, W.; Antoszkiewicz, Z. Fiber substrates in the nutrition of weaned piglets—A review. Ann. Anim. Sci. 2017, 17, 627–644. [Google Scholar] [CrossRef]
- Langfeld, L.Q.; Du, K.; Bereswill, S.; Heimesaat, M.M. A review of the antimicrobial and immune-modulatory properties of the gut microbiota-derived short chain fatty acid propionate—What is new? Eur. J. Microbiol. Immunol. 2021, 11, 50–56. [Google Scholar] [CrossRef]
- Crosby, W.B.; Woolums, A.R. Pasteurellaceae: Avibacterium, Bibersteinia, Mannheimia, and Pasteurella. In Veterinary Microbiology, 1st ed.; McVey, D.S., Kennedy, M., Chengappa, M.M., Wilkes, R., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 108–117. ISBN 978-1-119-65075-1. [Google Scholar]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Vasquez, R.; Oh, J.K.; Song, J.H.; Kang, D.-K. Gut microbiome-produced metabolites in pigs: A review on their biological functions and the influence of probiotics. J. Anim. Sci. Technol. 2022, 64, 671–695. [Google Scholar] [CrossRef] [PubMed]
Cereal Crop Type | Wheat | Barley | ||
---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved |
Analysis post storage (g/kg) | ||||
DM | 873.5 | 840.5 | 873.5 | 848.5 |
Ash | 16.0 | 16.0 | 19.5 | 19.0 |
GE (MJ/kg) | 15.9 | 15.3 | 16.1 | 15.6 |
Crude protein | 89.0 | 84.5 | 103.5 | 87.5 |
Crude fibre | 25.5 | 23.5 | 57.5 | 52.0 |
Starch | 626.5 | 608.5 | 530.0 | 504.0 |
Fat | 14.0 | 14.5 | 15.5 | 14.0 |
TMC (cfu/g) | 37,000 | 3800 | 27,000 | 2400 |
Mycotoxin levels (μg/kg) a | ||||
Deoxynivalenol | <75 | <75 | <75 | <75 |
T-2 toxin | <4.00 | <4.00 | 7.0 | <4.00 |
HT-2 toxin | <4.00 | <4.00 | 30.1 | 8.7 |
Zearalenone | <10 | <10 | <10 | <10 |
Ochratoxin A | 3.8 | <1.00 | 1.75 | <1.00 |
Dietary Treatments * | ||||||||
---|---|---|---|---|---|---|---|---|
Stage 1 Diets | Stage 2 Diets | |||||||
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved |
Butyric Acid Supplementation | No | No | Yes | Yes | No | No | Yes | Yes |
Ingredients (g/kg) | ||||||||
Wheat | 308.0 | 308.0 | 305.0 | 305.0 | 386.0 | 386.0 | 383.0 | 383.0 |
Barley | 150.0 | 150.0 | 150.0 | 150.0 | 150.0 | 150.0 | 150.0 | 150.0 |
Maize | 170.0 | 170.0 | 170.0 | 170.0 | 144.5 | 144.5 | 144.5 | 144.5 |
Full fat soya | 140.0 | 140.0 | 140.0 | 140.0 | 119.0 | 119.0 | 119.0 | 119.0 |
Soya bean meal | 70.0 | 70.0 | 70.0 | 70.0 | 59.5 | 59.5 | 59.5 | 59.5 |
Soya bean concentrate | 60.0 | 60.0 | 60.0 | 60.0 | 51.0 | 51.0 | 51.0 | 51.0 |
Whey powder | 50.0 | 50.0 | 50.0 | 50.0 | 42.5 | 42.5 | 42.5 | 42.5 |
Soya oil | 30.0 | 30.0 | 30.0 | 30.0 | 25.5 | 25.5 | 25.5 | 25.5 |
Salt | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Mono calcium phosphate | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 |
Calcium carbonate | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
L-Lysine HCl, 78.8% | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 |
DL-Methionine | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
L-Threonine | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 |
Tryptophan | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Valine | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Butyric acid | 0 | 0 | 3.0 | 3.0 | 0 | 0 | 3.0 | 3.0 |
Dietary Treatments * | ||||||||
---|---|---|---|---|---|---|---|---|
Stage 1 Diets | Stage 2 Diets | |||||||
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved |
Butyric Acid Supplementation | No | No | Yes | Yes | No | No | Yes | Yes |
Ingredients (g/kg) | ||||||||
DM | 896.00 | 882.50 | 896.00 | 884.00 | 892.50 | 888.00 | 891.00 | 877.00 |
Ash | 32.00 | 33.50 | 35.00 | 35.50 | 33.50 | 32.00 | 30.00 | 32.00 |
GE (MJ/kg) | 16.65 | 16.2 | 17.04 | 16.75 | 16.68 | 16.47 | 16.98 | 16.20 |
Crude fat | 58.50 | 57.00 | 59.50 | 58.00 | 54.00 | 53.00 | 52.50 | 50.00 |
Crude protein | 185.00 | 182.50 | 194.00 | 191.50 | 172.50 | 175.00 | 177.50 | 177.50 |
Crude fibre | 25.00 | 23.50 | 25.50 | 22.00 | 25.50 | 22.00 | 27.50 | 25.00 |
NDF | 107.00 | 98.00 | 104.50 | 99.00 | 106.50 | 95.00 | 112.00 | 102.50 |
ADF | 31.00 | 28.50 | 30.00 | 28.00 | 30.50 | 27.00 | 33.50 | 31.50 |
Starch | 354.00 | 350.00 | 349.00 | 348.00 | 383.50 | 375.50 | 392.50 | 380.50 |
Lysine | 15.57 | 15.55 | 15.56 | 15.58 | 14.24 | 14.25 | 14.27 | 14.24 |
Threonine | 10.71 | 10.70 | 10.68 | 10.71 | 9.99 | 9.96 | 9.96 | 9.98 |
Methionine and cysteine | 10.03 | 10.01 | 10.00 | 10.03 | 9.55 | 9.53 | 9.52 | 9.56 |
Leucine | 17.49 | 17.45 | 17.47 | 14.45 | 14.27 | 14.30 | 14.25 | 14.26 |
Isoleucine | 9.53 | 9.56 | 9.55 | 9.52 | 8.72 | 8.76 | 8.70 | 8.73 |
Arginine | 12.05 | 12.06 | 12.06 | 12.07 | 11.10 | 11.07 | 11.11 | 11.07 |
Histidine | 5.18 | 5.20 | 5.18 | 5.22 | 4.79 | 4.78 | 4.77 | 4.80 |
Phenylalanine | 9.73 | 9.76 | 9.72 | 9.74 | 9.02 | 9.04 | 9.02 | 9.01 |
Tyrosine | 6.56 | 6.54 | 6.58 | 6.56 | 6.09 | 6.07 | 6.07 | 6.09 |
Alanine | 9.33 | 9.36 | 9.31 | 9.35 | 8.53 | 8.55 | 8.57 | 8.56 |
Aspartic | 19.75 | 19.78 | 19.77 | 19.75 | 17.74 | 17.77 | 17.72 | 17.76 |
Glutaminc | 41.92 | 41.90 | 41.89 | 41.93 | 40.05 | 40.01 | 40.00 | 40.03 |
Glycine | 7.81 | 7.78 | 7.84 | 7.82 | 7.33 | 7.30 | 7.35 | 7.31 |
Serine | 9.93 | 9.96 | 9.91 | 9.92 | 9.23 | 9.23 | 9.25 | 9.24 |
Proline | 14.32 | 14.34 | 14.35 | 19.32 | 13.75 | 13.78 | 13.77 | 13.80 |
Tryptophan | 2.73 | 2.74 | 2.71 | 2.74 | 2.62 | 2.60 | 2.64 | 2.62 |
Valine | 10.62 | 10.66 | 10.66 | 10.63 | 7.83 | 7.80 | 7.84 | 7.81 |
TMC (cfu/g) | 4800 | 3300 | 14,000 | 4000 | 5600 | 4000 | 5200 | 4700 |
Mycotoxin levels (mg/kg) a | ||||||||
Deoxynivalenol | <75 | <75 | <75 | <75 | <75 | <75 | <75 | <75 |
T-2 toxin | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 |
HT-2 toxin | 14.10 | 11.30 | 14.60 | 12.10 | <10.70 | <10.60 | 9.62 | 10.70 |
Zearalenone | 30.00 | 27.00 | 26.00 | 22.00 | 23.00 | 25.00 | 25.00 | 18.00 |
Ochratoxin | 2.39 | <1.00 | <1.00 | <1.00 | <1.60 | <1.00 | 1.46 | 1.43 |
Target Gene | Gene Name | Accession No. | Forward Primer (5′-3′) Reverse Primer (5′-3′) |
---|---|---|---|
Nutrient transporters | |||
FABP2 | Fatty Acid Binding Protein 2 | NM_001031780.1 | F: CAGCCTCGCAGACGGAACTGAA R: GTGTTCTGGGCTGTGCTCCAAGA |
SLC2A1 | Solute Carrier family 2 Member 1 | XM_003482115.1 | F: TGCTCATCAACCGCAATGA R: GTTCCGCGCAGCTTCTTC |
SLC15A1 | Solute Carrier Family 15 Member 1 | NM_214347.1 | F: GGATAGCCTGTACCCCAAGCT R: CATCCTCCACGTGCTTCTTGA |
Inflammatory markers | |||
IL1A | Interleukin 1A | NM_214029.1 | F: CAGCCAACGGGAAGATTCTG R: ATGGCTTCCAGGTCGTCAT |
IL1B | Interleukin 1B | NM_001005149.1 | F: TTGAATTCGAGTCTGCCCTGT R: CCCAGGAAGACGGGCTTT |
IL6 | Interleukin 6 | NM_214399.1 | F: GACAAAGCCACCACCCCTAA R:CTCGTTCTGTGACTGCAGCTTATC |
CXCL8 | C-X-C motif chemokine ligand 8 | NM_213867.1 | F: TGCACTTACTCTTGCCAGAACTG R: CAAACTGGCTGTTGCCTTCTT |
IL10 | Interleukin 10 | NM_214041.1 | F: GCCTTCGGCCCAGTGAA R: AGAGACCCGGTCAGCAACAA |
IL17 | Interleukin 17 | NM_001005729.1 | F: CCCTGTCACTGCTGCTTCTG R: TCATGATTCCCGCCTTCAC |
IL22 | Interleukin 22 | XM_001926156.1 | F: GATGAGAGAGCGCTGCTACCTGG R: GAAGGACGCCACCTCCTGCATGT |
TNF | Tumour Necrosis Factor | NM_214022.1 | F: TGGCCCCTTGAGCATCA R: CGGGCTTATCTGAGGTTTGAGA |
FOXP3 | Forkhead box P3 | NM_001128438.1 | F: GTGGTGCAGTCTCTGGAACAAC R: AGGTGGGCCTGCATAGCA |
Tight junctions | |||
TJP1 | Tight Junction Protein 1 | XM_021098827.1 | F: TGAGAGCCAACCATGTCTTGAA R: CTCAGACCCGGCTCTCTGTCT |
CLDN1 | Claudin 1 | NM 001244539.1 | F: CTGGGAGGTGCCCTACTTTG R: TGGATAGGGCCTTGGTGTTG |
Toll like receptors | |||
TLR4 | Toll-like Receptor 4 | NM_001293317.1 | F: TGCATGGAGCTGAATTTCTACAA R: GATAAATCCAGCACCTGCAGTTC |
Mucins | |||
MUC2 | Mucin 2 | AK231524 | F: CAACGGCCTCTCCTTCTCTGT R: GCCACACTGGCCCTTTGT |
Reference genes | |||
H3F3A | Histone H3.3 | NM_213930.1 | F: CATGGCTCGTACAAAGCAGA R: ACCAGGCCTGTAACGATGAG |
YWHAZ | Tyrosine 3-Monooxygenase/tryptophan 5-monooxygenase Activation Protein Zeta | NM_001315726.1 | F: GGACATCGGATACCCAAGGA R: AAGTTGGAAGGCCGGTTAATTT |
ACTB | Actin Beta | XM_001927228.1 | F:GGACATCGGATACCCAAGGA R:AAGTTGGAAGGCCGGTTAATTT |
Treatment * | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Butyric | Grain × Butyric |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Day 0–15 | ||||||||
ADFI (g/d) | 451 | 450 | 419 | 414 | 15.86 | 0.823 | 0.030 | 0.913 |
ADG (g/d) | 262 | 366 | 337 | 354 | 20.34 | 0.603 | 0.354 | 0.773 |
FCR (kg/kg) | 1.31 | 1.25 | 1.29 | 1.21 | 0.057 | 0.208 | 0.538 | 0.921 |
BW (kg) | 12.83 | 12.90 | 12.46 | 12.71 | 0.305 | 0.603 | 0.354 | 0.773 |
FS | 2.18 | 2.19 | 2.17 | 2.16 | 0.029 | 0.981 | 0.356 | 0.681 |
Day 15–35 | ||||||||
ADFI (g/d) | 862 ab | 933 b | 879 ab | 834 a | 26.51 | 0.611 | 0.116 | 0.028 |
ADG (g/d) | 551 | 630 | 561 | 553 | 27.04 | 0.176 | 0.210 | 0.107 |
FCR | 1.65 | 1.50 | 1.62 | 1.54 | 0.076 | 0.123 | 0.970 | 0.605 |
BW (kg) | 22.74 | 24.24 | 22.55 | 22.67 | 0.678 | 0.228 | 0.189 | 0.301 |
Day 0–35 | ||||||||
ADFI (g/d) | 675 | 714 | 670 | 643 | 21.77 | 0.759 | 0.047 | 0.100 |
ADG (g/d) | 465 | 515 | 459 | 463 | 20.36 | 0.179 | 0.147 | 0.242 |
FCR | 1.49 | 1.40 | 1.49 | 1.39 | 0.047 | 0.040 | 0.992 | 0.918 |
Treatment * | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Grain | Butyric | Grain × Butyric | |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
DM | 0.845 | 0.852 | 0.847 | 0.865 | 0.0040 | 0.005 | 0.063 | 0.181 |
OM | 86.30 | 86.88 | 86.47 | 88.00 | 0.383 | 0.008 | 0.095 | 0.216 |
Ash | 57.70 ab | 59.87 b | 56.72 a | 63.71 c | 1.091 | <0.010 | 0.186 | 0.031 |
N | 78.41 | 80.89 | 79.96 | 82.23 | 0.710 | 0.002 | 0.045 | 0.878 |
GE | 83.68 | 84.57 | 84.26 | 85.77 | 0.422 | 0.007 | 0.039 | 0.455 |
Treatment * | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Grain | Butyric | Grain × Butyric | |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Duodenum | ||||||||
VH μm | 271.79 | 303.53 | 244.60 | 308.73 | 20.257 | 0.023 | 0.587 | 0.440 |
CD μm | 124.66 | 134.99 | 88.94 | 114.58 | 9.435 | 0.063 | 0.006 | 0.433 |
VH:CD | 2.29 | 2.28 | 2.93 | 2.81 | 0.267 | 0.802 | 0.034 | 0.844 |
Jejunum | ||||||||
VH μm | 307.42 a | 303.48 ab | 250.46 a | 366.93 b | 24.592 | 0.028 | 0.895 | 0.024 |
CD μm | 135.23 | 106.17 | 101.81 | 121.26 | 13.119 | 0.712 | 0.486 | 0.081 |
VH:CD | 2.46 | 2.88 | 2.61 | 3.11 | 0.261 | 0.082 | 0.472 | 0.892 |
Ileum | ||||||||
VH μm | 294.51 | 297.82 | 285.33 | 299.50 | 17.489 | 0.615 | 0.830 | 0.763 |
CD μm | 102.70 | 93.09 | 98.73 | 103.09 | 7.536 | 0.725 | 0.689 | 0.372 |
VH:CD | 2.90 | 3.32 | 2.93 | 3.05 | 0.242 | 0.266 | 0.622 | 0.549 |
Treatment * | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Grain | Butyric | Grain × Butyric | |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Duodenum | ||||||||
IL1A | 1.58 | 0.93 | 0.96 | 1.50 | 0.272 | 0.829 | 0.932 | 0.029 |
MUC2 | 1.04 ab | 0.88 a | 0.94 a | 1.26 b | 0.125 | 0.517 | 0.256 | 0.050 |
Jejunum | ||||||||
SLC2A1 | 1.00 a | 0.99 a | 0.94 a | 1.36 b | 0.097 | 0.040 | 0.125 | 0.036 |
CXCL8 | 1.13 | 0.87 | 1.38 | 0.91 | 0.180 | 0.042 | 0.418 | 0.556 |
TJP1 | 0.93 | 1.03 | 0.94 | 1.04 | 0.040 | 0.025 | 0.866 | 0.939 |
Ileum | ||||||||
TLR4 | 1.22 a | 0.90 ab | 0.78 b | 1.24 a | 0.131 | 0.580 | 0.688 | 0.006 |
Phylum | Treatments * | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Butyric | Grain × Butyric |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Ileum | ||||||||
Firmicutes | 80.46 a | 91.20 ab | 98.77 b | 82.67 ab | 4.271 | 0.582 | 0.270 | 0.005 |
Proteobacteria | 19.54 a | 1.61 b | 0.87 b | 12.35 c | 1.977 | 0.783 | 0.082 | <0.001 |
Colon | ||||||||
Firmicutes | 76.98 | 70.84 | 74.17 | 77.90 | 3.121 | 0.680 | 0.485 | 0.117 |
Bacteroidetes | 8.53 a | 17.63 b | 11.34 a | 10.72 a | 1.484 | 0.004 | 0.323 | 0.001 |
Actinobacteria | 5.50 | 3.65 | 5.28 | 2.32 | 0.829 | 0.002 | 0.188 | 0.271 |
Tenericutes | 0.48 | 1.71 | 0.47 | 2.34 | 0.541 | 0.001 | 0.716 | 0.684 |
Proteobacteria | 2.97 | 1.35 | 0.07 | 0.51 | 0.610 | 0.409 | 0.004 | 0.070 |
Spirochaetes | 1.59 | 0.49 | 5.33 | 1.36 | 0.816 | 0.001 | 0.002 | 0.783 |
Family | Treatments * | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Butyric | Grain × Butyric |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Ileum | ||||||||
Lactobacillaceae | 79.18 | 77.07 | 81.49 | 73.90 | 4.450 | 0.242 | 0.899 | 0.499 |
Clostridiaceae | 4.77 a | 6.15 a | 12.29 b | 1.77 c | 1.431 | 0.002 | 0.509 | <0.001 |
Streptococcaceae | 0.39 a | 8.43 b | 4.99 b | 6.72 b | 1.298 | <0.001 | 0.008 | 0.002 |
Pasteurellaceae | 0.39 a | 1.16 a | 0.45 a | 9.32 b | 1.365 | 0.001 | 0.047 | 0.079 |
Colon | ||||||||
Lactobacillaceae | 8.46 | 6.94 | 8.52 | 9.72 | 1.100 | 0.790 | 0.171 | 0.189 |
Lachnospiraceae | 12.28 | 10.76 | 13.65 | 11.49 | 1.320 | 0.156 | 0.417 | 0.847 |
Erysipelotrichaceae | 0.35 | 0.66 | 0.54 | 0.57 | 0.287 | 0.488 | 0.773 | 0.564 |
Eubacteriaceae | 3.07 | 3.44 | 3.67 | 3.76 | 0.701 | 0.726 | 0.496 | 0.828 |
Ruminococcaceae | 37.23 | 34.12 | 33.64 | 38.81 | 2.203 | 0.641 | 0.816 | 0.061 |
Clostridiaceae | 2.59 | 3.59 | 4.46 | 2.88 | 0.746 | 0.786 | 0.431 | 0.067 |
Propionibacteriaceae | 5.27 | 3.36 | 5.40 | 1.69 | 0.822 | <0.001 | 0.106 | 0.084 |
Streptococcaceae | 0.14 | 0.67 | 0.92 | 0.07 | 0.363 | 0.562 | 0.831 | 0.125 |
Oscillospiraceae | 2.06 | 2.15 | 2.87 | 2.01 | 0.599 | 0.520 | 0.598 | 0.417 |
Sphingobacteriaceae | 0.09 | 0.10 | 0.25 | 0.09 | 0.176 | 0.692 | 0.687 | 0.606 |
Spiroplasmataceae | 0.45 | 1.20 | 0.23 | 0.99 | 0.414 | 0.026 | 0.414 | 0.656 |
Rikenellaceae | 1.22 a | 4.51 b | 2.58 ab | 1.23 a | 0.751 | 0.297 | 0.307 | <0.001 |
Hungateiclostridiaceae | 2.21 | 3.22 | 1.26 | 2.41 | 0.634 | 0.048 | 0.097 | 0.580 |
Muribaculaceae | 0.32 | 0.45 | 0.26 | 0.26 | 0.236 | 0.781 | 0.573 | 0.801 |
Acidaminococcaceae | 0.59 | 0.65 | 0.44 | 0.83 | 0.322 | 0.449 | 0.961 | 0.571 |
Veillonellaceae | 0.19 | 0.78 | 0.21 | 0.18 | 0.313 | 0.396 | 0.354 | 0.315 |
Prevotellaceae | 7.11 a | 13.40 b | 8.77 a | 9.33 ab | 1.294 | 0.006 | 0.520 | 0.021 |
Christensenellaceae | 2.16 | 1.09 | 1.37 | 1.60 | 0.556 | 0.381 | 0.893 | 0.167 |
Spirochaetaceae | 1.66 | 0.50 | 3.86 | 1.39 | 0.743 | 0.003 | 0.010 | 0.797 |
Coriobacteriacea | 0.45 | 0.16 | 0.13 | 0.29 | 0.238 | 0.870 | 0.682 | 0.254 |
Eubacteriaceae | 3.07 | 3.44 | 3.67 | 3.76 | 0.701 | 0.726 | 0.496 | 0.828 |
Anaeroplasmataceae | 0.05 | 0.11 | 0.27 | 0.02 | 0.184 | 0.618 | 0.933 | 0.321 |
Genus | Treatments * | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Butyric | Grain × Butyric |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Ileum | ||||||||
Lactobacillus | 66.01 a | 77.75 ab | 82.21 b | 74.88 ab | 3.943 | 0.499 | 0.091 | 0.022 |
Clostridium | 4.82 a | 6.24 a | 12.37 b | 2.05 a | 1.436 | 0.002 | 0.698 | <0.001 |
Streptococcus | 0.39 a | 8.51 b | 5.01 b | 7.79 b | 1.305 | <0.001 | 0.005 | 0.003 |
Colon | ||||||||
Lactobacillus | 8.75 | 7.01 | 8.67 | 9.71 | 1.102 | 0.658 | 0.205 | 0.180 |
Collinsella | 0.46 | 0.16 | 0.13 | 0.29 | 0.240 | 0.869 | 0.672 | 0.250 |
Catenibacterium | 0.08 | 0.13 | 0.11 | 0.03 | 0.129 | 0.802 | 0.692 | 0.551 |
Gemmiger | 7.09 ab | 5.27 a | 5.54 ab | 9.27 b | 1.077 | 0.440 | 0.264 | 0.007 |
Ruminococcus | 2.14 | 1.21 | 2.23 | 0.65 | 0.564 | 0.010 | 0.380 | 0.319 |
Faecalibacterium | 24.44 | 24.63 | 21.95 | 26.12 | 1.807 | 0.218 | 0.737 | 0.257 |
Butyricicoccus | 1.03 | 0.81 | 1.36 | 1.40 | 0.418 | 0.752 | 0.227 | 0.694 |
Holdemanella | 0.20 | 0.25 | 0.25 | 0.19 | 0.187 | 0.974 | 0.967 | 0.757 |
Clostridium | 1.65 | 2.69 | 3.12 | 1.74 | 0.625 | 0.845 | 0.690 | 0.139 |
Streptococcus | 0.14 | 0.66 | 0.92 | 0.07 | 0.362 | 0.559 | 0.827 | 0.225 |
Oscillibacter | 2.13 | 2.16 | 2.91 | 2.81 | 0.603 | 0.958 | 0.215 | 0.920 |
Spiroplasma | 0.46 | 1.21 | 0.23 | 1.00 | 0.416 | 0.025 | 0.405 | 0.645 |
Propionibacterium | 5.58 | 3.36 | 4.37 | 1.68 | 0.835 | 0.001 | 0.023 | 0.279 |
Anaerocella | 1.22 a | 3.19 b | 2.58 ab | 1.23 a | 0.631 | 0.689 | 0.705 | 0.004 |
Pseudobutyrivibrio | 0.46 | 0.71 | 0.38 | 0.44 | 0.297 | 0.580 | 0.535 | 0.776 |
Eubacterium | 3.16 | 3.45 | 3.69 | 3.76 | 0.702 | 0.788 | 0.535 | 0.858 |
Dorea | 2.09 | 1.10 | 3.53 | 1.46 | 0.665 | 0.010 | 0.156 | 0.657 |
Anaerobacterium | 1.72 | 2.60 | 1.18 | 2.09 | 0.571 | 0.076 | 0.271 | 0.765 |
Prevotella | 6.30 | 7.70 | 5.73 | 6.15 | 0.981 | 0.341 | 0.265 | 0.645 |
Phascolarctobacterium | 0.58 | 0.65 | 0.45 | 0.46 | 0.305 | 0.906 | 0.558 | 0.922 |
Roseburia | 1.72 | 4.38 | 2.95 | 3.61 | 0.740 | 0.012 | 0.419 | 0.094 |
Fournierella | 0.58 | 1.48 | 1.10 | 0.69 | 0.430 | 0.546 | 0.875 | 0.079 |
Megasphaera | 0.13 | 0.49 | 0.58 | 0.18 | 0.269 | 0.930 | 0.745 | 0.101 |
Agathobacter | 1.11 | 1.34 | 0.25 | 1.56 | 0.441 | 0.031 | 0.140 | 0.075 |
Alloprevotella | 0.76 a | 3.67 b | 2.63 b | 2.94 b | 0.724 | 0.004 | 0.071 | 0.012 |
Blautia | 3.13 | 1.09 | 1.68 | 0.25 | 0.626 | 0.002 | 0.021 | 0.328 |
Prevotellamassilia | 0.47 | 0.30 | 0.08 | 0.27 | 0.241 | 0.652 | 0.273 | 0.322 |
Kineothrix | 1.06 | 0.30 | 0.20 | 0.67 | 0.390 | 0.959 | 0.467 | 0.143 |
Christensenella | 2.14 | 1.09 | 1.37 | 1.60 | 0.554 | 0.386 | 0.910 | 0.173 |
Pseudoflavonifractor | 1.77 a | 0.68 ab | 0.43 b | 1.11 ab | 0.503 | 0.982 | 0.268 | 0.029 |
Solitalea | 0.09 | 0.11 | 0.25 | 0.09 | 0.176 | 0.703 | 0.699 | 0.593 |
Paramuribaculum | 0.07 | 0.06 | 0.14 | 0.05 | 0.134 | 0.662 | 0.849 | 0.740 |
Methanobrevibacter | 1.04 | 0.63 | 0.59 | 0.83 | 0.386 | 0.839 | 0.729 | 0.326 |
Asteroleplasma | 0.05 | 0.11 | 0.27 | 0.02 | 0.185 | 0.618 | 0.930 | 0.318 |
Treponema | 1.48 | 0.46 | 3.72 | 0.99 | 0.729 | 0.002 | 0.026 | 0.845 |
Treatment * | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Butyric | Grain × Butyric |
Butyric Acid Supplementation | No | No | Yes | Yes | ||||
Caecum (mol/g) | ||||||||
Acetate | 0.505 | 0.450 | 0.429 | 0.429 | 0.0175 | 0.112 | 0.007 | 0.1101 |
Propionate | 0.280 | 0.265 | 0.328 | 0.321 | 0.0138 | 0.399 | <0.001 | 0.749 |
Butyrate | 0.161 | 0.202 | 0.184 | 0.200 | 0.0126 | 0.024 | 0.397 | 0.308 |
Valerate | 0.032 | 0.039 | 0.030 | 0.027 | 0.0037 | 0.593 | 0.056 | 0.177 |
Isobutyrate | 0.010 a | 0.021 b | 0.016 ab | 0.012 a | 0.0025 | 0.198 | 0.449 | 0.007 |
Isovalerate | 0.011 a | 0.024 b | 0.013 a | 0.011 a | 0.0024 | 0.078 | 0.059 | 0.008 |
BCFA | 0.046 | 0.059 | 0.062 | 0.047 | 0.0066 | 0.923 | 0.735 | 0.131 |
Total | 142.05 | 153.38 | 141.05 | 181.44 | 10.255 | 0.013 | 0.177 | 0.148 |
Colon (mol/g) | ||||||||
Acetate | 0.512 | 0.499 | 0.434 | 0.421 | 0.0124 | 0.330 | <0.001 | 0.988 |
Propionate | 0.281 | 0.298 | 0.334 | 0.326 | 0.0108 | 0.667 | <0.001 | 0.249 |
Butyrate | 0.145 | 0.146 | 0.184 | 0.192 | 0.0098 | 0.644 | <0.001 | 0.746 |
Valerate | 0.032 | 0.032 | 0.027 | 0.028 | 0.0040 | 0.817 | 0.293 | 0.914 |
Isobutyrate | 0.015 ab | 0.012 b | 0.011 b | 0.018 a | 0.0021 | 0.341 | 0.550 | 0.033 |
Isovalerate | 0.017 | 0.012 | 0.010 | 0.014 | 0.0024 | 0.958 | 0.378 | 0.076 |
BCFA | 0.063 a | 0.052 a | 0.058 a | 0.083 b | 0.0065 | 0.263 | 0.057 | 0.010 |
Total | 162.47 | 196.79 | 194.71 | 185.50 | 10.927 | 0.261 | 0.346 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connolly, K.R.; Sweeney, T.; Ryan, M.T.; Vigors, S.; O’Doherty, J.V. Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet. Microorganisms 2025, 13, 689. https://doi.org/10.3390/microorganisms13030689
Connolly KR, Sweeney T, Ryan MT, Vigors S, O’Doherty JV. Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet. Microorganisms. 2025; 13(3):689. https://doi.org/10.3390/microorganisms13030689
Chicago/Turabian StyleConnolly, Kathryn Ruth, Torres Sweeney, Marion T. Ryan, Stafford Vigors, and John V. O’Doherty. 2025. "Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet" Microorganisms 13, no. 3: 689. https://doi.org/10.3390/microorganisms13030689
APA StyleConnolly, K. R., Sweeney, T., Ryan, M. T., Vigors, S., & O’Doherty, J. V. (2025). Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet. Microorganisms, 13(3), 689. https://doi.org/10.3390/microorganisms13030689