Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation
Abstract
:1. Introduction
2. Mangroves: General Characteristics
2.1. Diversity of Fungi in Mangrove Sediments
2.2. Role of Fungi in Decomposing Organic Matter and Nutrient Cycling
2.3. Impacts of Human-Induced Climate Change
2.4. The Effect of Climate Change on the Proliferation of Fungal Diseases
2.5. Chemical Pollutants in Mangroves
2.6. The Role of Plants, Microbes, and Fungi in Remediation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pupin, B.; Nahas, E. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil. J. Appl. Microbiol. 2014, 1164, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.R.P. (Ed.) Manguezais: Educar para Proteger; FEMAR: SEMADS: Rio de Janeiro, Brazil, 2001. Available online: https://www.mma.gov.br/estruturas/sqa_pnla/_arquivos/manguezais.pdf (accessed on 25 July 2020).
- Rodrigues, S.A. O Manguezal e Sua Fauna; Departamento de Ecologia Geral—Instituto de Biociências da Universidade de São Paulo-USP: São Paulo, Brazil, 1995; Available online: http://noticias.cebimar.usp.br/pt/artigos/76-o-manguezal-e-a-sua-fauna (accessed on 25 July 2020).
- Ghizelini, A.M.; Macrae, A. Orient. Diversidade e Potencial Biotecnológico de Fungos Isolados de Sedimentos de Manguezais do Rio de Janeiro, Brasil. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Decania do Centro de Ciências da Saúde, Programa de Pós-Graduação em Biotecnologia Vegetal, Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Ghosh, A.; Dey, N.; Bera, A.; Tiwari, A.B.; Sathyaniranjan, K.B.; Chakrabarti, K.; Chattopadhyay, D. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst. 2010, 61, 1. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Bernardino, A.F.; Ferreira, T.O.; Giovannoni, L.R.; Gomes, L.E.; Romero, D.J.; Jimenez, L.C.Z.; Ruiz, F. Carbon stocks of mangroves and salt marshes of the Amazon region, Brazil. Biol. Lett. 2018, 14, 20180208. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis and response to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Ghizelini, A.M.; Martins, K.G.; Gießelmann, U.C.; Santoro, E.; Pasqualette, L.; Mendonça-Hagler, L.C.S.; Rosado, A.S.; Macrae, A. Fungal communities in oil contaminated mangrove sediments—Who is in the mud? Mar. Pollut. Bull. 2019, 139, 181–188. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.A.; Segundo, W.O.P.F.; de Souza, E.S.; Peres, E.G.; Koolen, H.H.; de Souza, J.V. Ascomycota as a source of natural colorants. Braz. J. Microbiol. 2022, 53, 1199–1220. [Google Scholar] [CrossRef] [PubMed]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.S.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 293, 331–349. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ellison, J. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In Climate Change and The Great Barrier Reef: A Vulnerability Assessment; Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville, Australia, 2007; pp. 237–269. [Google Scholar]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability, and mitigation. Lancet 2006, 367, 2101–2109, Erratum in Lancet 2006, 368, 646. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Panic, M.; Ford, J. Climate change and human health: Impacts and adaptation strategies. Glob. Health Action 2013, 61, 1–9. [Google Scholar]
- Hoeg, L. Climate change and the risk of infectious diseases: A global health perspective. Environ. Health Perspect. 2019, 1275, 540–548. [Google Scholar]
- Rengasamy, A. Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuar. Coast. Shelf Sci. 2006, 67, 333–339. [Google Scholar]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Andreote, F.D.; et al. Microbial diversity and ecosystem functions in mangrove forests. Sci. Total Environ. 2012, 421, 231–240. [Google Scholar]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barbera, P.; Bates, S.T.; Borer, E.T.; Firn, J.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; et al. Variation in organic carbon concentrations in soils across different ecosystems. Soil Biol. Biochem. 2011, 43, 430–441. [Google Scholar]
- Martins, L.F.; Silva, R.F.; Oliveira, A.P.; Santos, J.C.; Almeida, M.T.; Costa, P.R.; Pereira, L.A.; Rodrigues, F.J.; Souza, D.M.; Lima, E.R.; et al. Soil organic carbon in agricultural and forest ecosystems: A comparative study. Geoderma 2008, 146, 307–318. [Google Scholar]
- Staelens, J.; De Schrijver, A.; Verheyen, K.; Verhoest, N.E.C.; Boeckx, P.; Nachtergaele, L.; Luyssaert, S.; Van den Berge, J.; Van den Bulcke, J.; Muys, B.; et al. The role of mangrove litter in nutrient cycling and organic matter retention. Wetl. Ecol. Manag. 2011, 19, 65–74. [Google Scholar]
- Wood, A.R.; Smith, T.J.; Anderson, G.H.; Brown, M.B.; Carter, R.L.; Davis, J.P.; Evans, K.L.; Foster, J.R.; Green, P.A.; Hall, R.J.; et al. Carbon sequestration in mangrove forests: The contribution of litter production to soil organic carbon storage. Glob. Biogeochem. Cycles 2012, 26, GB3032. [Google Scholar]
- Amaro, V.E.; Rocha-Junior, J.M. Avaliação ecológico-econômica do manguezal na foz do rio Açu/RN: O sequestro de carbono e a importância da aplicação de práticas preservacionistas. Rev. Geologia. 2012, 25, 71–84. [Google Scholar]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 33, 313–322. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Lacerda, L.D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean. Coast Manag. 2016, 125, 38–46. [Google Scholar] [CrossRef]
- Linares, A.P.M.; López-Portillo, J.; Hernández-Santana, J.R.; Pérez, M.A.O.; Orozco, O.O. The mangrove communities in the Arroyo Seco deltaic fan, Jalisco, Mexico, and their relation with the geomorphic and physical-geographic zonation. Catena 2007, 70, 127–142. [Google Scholar] [CrossRef]
- Castella, R.M.B.; Castella, P.R.; Figueiredo, D.C.S.; Queiroz, S.M.P. Paraná—Mar e Costa. Subsídios ao Ordenamento das Áreas Estuarina e Costeira do Paraná; Curitiba Secretaria de Estado do Meio Ambiente e Recursos Hídricos—SEMA: Mercês, Brazil, 2006.
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Douhan, G.A.; Vincenot, L.; Gryta, H.; Selosse, M.A. Genética populacional de fungos ectomicorrízicos: Do conhecimento atual às direções emergentes. Biol. Fúngica 2011, 115, 569–597. [Google Scholar]
- Soares, S.C.; et al. Diversity of yeasts in the mangroves of Guanabara Bay and Sepetiba Bay, Rio de Janeiro. J. Appl. Environ. Microbiol. 1997, 6312, 4760–4767. [Google Scholar]
- Oliveira, T.B.; Lopes, V.C.P.; Barbosa, F.N.; Ferro, M.; Meirelles, L.A.; Sette, L.D.; Gomes, E.; Rodrigues, A. Fungal communities in pressumud compositing harbors beneficial and detrimental fungi for human welfare. Microbiology 2016, 7, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Medrano, A.; et al. Taxonomic reclassification of Candida species: A comprehensive review. J. Med. Mycol. 2021, 45, 253–267. [Google Scholar]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change, 2nd ed.; Academic Press: San Diego, CA, USA, 1997; p. 588. [Google Scholar]
- Fonseca, S.M.; Drummond, J.A. Reflorestamento de manguezais e o valor de resgate para o sequestro de carbono atmosférico. Hist. Cienc. Saude Manguinhos 2003, 103, 1071–1081. [Google Scholar] [CrossRef]
- Grace, J. Carbon cycle. In Encyclopedia of Biodiversity; Academic Press: San Diego, CA, USA, 2001; Volume 1, pp. 609–629. [Google Scholar]
- Niego, A.G.T.; Rapior, S.; Thongklang, N.; Raspé, O.; Hyde, K.D.; Mortimer, P.D. Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biol. Rev. 2023, 44, 100294. [Google Scholar] [CrossRef]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef]
- Bücking, H.; Mensah, J.A.; Fellbaum, C.R. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun. Integr. Biol. 2016, 91, e1107684. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Amirbahman, A.; Fisher, N.; Harding, G.; Lamborg, C.; Nacci, D.; Taylor, D. Methylmercury in marine ecosystems: Spatial patterns and processes of production, bioaccumulation, and biomagnification. EcoHealth 2008, 54, 399–408. [Google Scholar] [CrossRef]
- Izzo, A.; Agbowo, J.; Bruns, T.D. Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol. 2005, 166, 619–629. [Google Scholar] [CrossRef]
- Bellei, M.M.; Carvalho, E.M.S. Ectomicorrizas. In Microbiologia do Solo; Cardoso, E.J.B.B., Tsai, S.M., Neves, M.C.P., Eds.; Sociedade Brasileira de Ciência do Solo: Campinas, Brasil, 1992; pp. 297–318. [Google Scholar]
- Raven, P.H.; Evert, R.F.; Eichhorn, S.E. Biologia Vegetal, 5th ed.; Guanabara Koogan S.A.: Rio de Janeiro, Brazil, 1996. [Google Scholar]
- de Souza, A.M.; de Carvalho, D.; da Silva, S.C.; de Lima Pereira, N.S. Caracterização morfológica e isoenzimática de isolados de Pisolithus spp. Cerne 2001, 7, 22–34. [Google Scholar]
- Yokomizo, N.K.S.; Rodrigues, E. Associação ectomicorrízica entre Suillus luteus e Pinus elliottii var. elliottii. Rev. Inst. Florest. 1998, 10, 73–79. [Google Scholar] [CrossRef]
- Johnson, D.; Martin, F.; Cairney, J.W.G.; Anderson, I.C. The importance of individuals: Intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol. 2012, 194, 614–628. [Google Scholar] [CrossRef]
- Gusmão, L.F.P. Fungos. In Serrano, Parque Municipal da Muritiba; Funch, L.S., Miranda, A.P., Eds.; Print Mídia: Feira de Santana, Brazil, 2011; pp. 47–57. [Google Scholar]
- Kapulnik, Y. Plant growth promotion by rhizosphere bacteria. In Plant Roots: The Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 757–768. [Google Scholar]
- Abuzinadah, R.A.; et al. Influence of plant growth and nutritional status on ectomycorrhizal fungi. Mycorrhiza 1989, 43, 177–183. [Google Scholar]
- Siqueira, J.O.; Franco, A.A. Biotecnologia do Solo: Fundamentos e Perspectivas; MEC/ABEAS/ESAL/FAEPE: Brasília, Brazil, 1988. [Google Scholar]
- Martin, F.M.; Öpik, M.; Dickie, I.A. Mycorrhizal research now: From the micro- to the macro-scale. New Phytol. 2024, 242, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Júnior, P.; Silva, R.; Oliveira, A.; Santos, M.; Almeida, T.; Costa, L.; Pereira, F.; Rodrigues, J.; Souza, D.; Lima, E.; et al. Micorrizas: Conceitos, Metodologias e Aplicações; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2021. [Google Scholar]
- Chancel, L. Desigualdade global de carbono entre 1990 e 2019. Nat. Sustain. 2022, 5, 931–938. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- INEP. Adaptation Strategies for Mangrove Ecosystems in the Face of Rising Sea Levels; Instituto Nacional de Ecología y Cambio Climático: Tlalpan, Mexico, 2014.
- Almeida, H.S.; da Silva, R.F.; Grolli, A.L.; Scheid, D.L. Ocorrência e diversidade da fauna edáfica sob diferentes sistemas de uso do solo. Rev. Bras. Tecnol. Agropecu. 2017, 1, 15–23. [Google Scholar]
- Ellison, J.C.; Stoddart, D.R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J. Coast Res. 1991, 7, 151–165. [Google Scholar]
- Wilkin, S. Emerging fungal diseases in mangrove ecosystems. Mar. Ecol. Prog. Ser. 2016, 546, 127–138. [Google Scholar]
- Panackal, A. Global Climate Change and Infectious Diseases: Invasive Mycoses. J. Earth Sci. Clim. Change 2011, 2, 2–5. [Google Scholar] [CrossRef]
- Casadevall, A. Don’t forget the fungi when considering global catastrophic biorisks. Health Secur. 2017, 15, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; et al. The presence of mercury in the mangrove ecosystem of Baixada Santista, São Paulo, Brazil. Environ. Pollut. Ecotoxicol. J. 2007, 75, 395–402. [Google Scholar]
- Oliveira, M.L.J.; Vidal-Torrado, P.; Otero, X.L.; Ferreira, J.R. Mercúrio total em solos de manguezais da Baixada Santista e Ilha do Cardoso, Estado de São Paulo. Quím. Nova 2007, 30, 519–524. [Google Scholar] [CrossRef]
- Bayen, S.; Wurl, O.; Karuppiah, S.; Sivasothi, N.; Lee, H.K.; Obbard, J.P. Persistent organic pollutants in mangrove food webs in Singapore. Chemosphere 2005, 61, 303–313. [Google Scholar] [CrossRef]
- Guimarães, R.R.; Silva, J.P.; Oliveira, M.T.; Santos, A.L.; Almeida, R.F.; Costa, L.M.; Pereira, F.J.; Rodrigues, D.S.; Souza, E.M.; Lima, T.R.; et al. Influence of sewage discharge on pathogen growth and environmental contamination. Water Res. 2010, 44, 4705–4715. [Google Scholar]
- Sánchez-Quinto, A.; Costa, J.C.; Zamboni, N.S.; Sanches, F.H.; Principe, S.C.; Viotto, E.V.; Casagranda, E.; da Veiga-Lima, F.A.; Possamai, B.; Faroni-Perez, L. Development of a conceptual framework for the management of biodiversity and ecosystem services in the Mexican Caribbean. Biota Neotrop. 2020, 20, e20190901. [Google Scholar] [CrossRef]
- Gomes, D.N.F.; Cavalcanti, M.A.Q.; Passavante, J.Z.O. Fungos filamentosos isolados de sedimento do manguezal Barra das Jangadas, Jaboatão dos Guararapes, Pernambuco, Brasil. Trop. Oceanogr. 2011, 39, 36–45. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Mangrove sediments and geomorphology. In Tropical Mangrove Ecosystems; Robertson, A.I., Alongi, D.M., Eds.; AGU: Washington, DC, USA, 1992; pp. 7–41. [Google Scholar]
- Godoy, M.D.P.; Lacerda, L.D. River-island response to land-use change within the Jaguaribe River, Brazil. J. Coast Res. 2014, 30, 399–410. [Google Scholar] [CrossRef]
- Eslami, A.; Smith, J.P.; Brown, M.T.; Davis, R.L.; Carter, G.H.; Green, P.A.; Foster, J.R.; Hall, R.J.; Evans, K.L.; Anderson, T.J.; et al. Mangrove migration and climate change: Impacts of sea level rise and sedimentation rates. Glob. Change Biol. 2009, 15, 2687–2695. [Google Scholar]
- Krauss, K.W.; Allen, J.A.; Cahoon, D.R.; Lynch, J.C.; Cormier, N.; Chen, R.; Twilley, R.R.; McKee, K.L.; Lovelock, C.E.; Saintilan, N.; et al. Mangrove forest dynamics in response to environmental change: The role of coastal processes. J. Ecol. 2003, 91, 647–657. [Google Scholar]
- McKee, K.L.; Cahoon, D.R.; Feller, I.C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 2007, 16, 545–556. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Adame, M.F.; Bennion, V.; Hayes, M.; Reef, R.; Santini, M.; Cahoon, D.R. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 2015, 153, 1–9. [Google Scholar] [CrossRef]
- Schleupner, C. Vulnerability of mangrove ecosystems to land-based pollution: A review. Estuar. Coast. Shelf Sci. 2008, 76, 515–526. [Google Scholar]
- Li, J.; Heath, I.B. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. I. Cladistic analysis of rRNA sequences. Can. J. Bot. 1992, 70, 1738–1746. [Google Scholar] [CrossRef]
- Kulkarni, R.; Sharma, P.; Desai, A.; Patel, M.; Singh, R.; Gupta, N.; Mehta, S.; Rao, K.; Joshi, V.; Nair, P.; et al. Pharmaceutical residues and heavy metals in mangrove ecosystems: Impact on biodiversity and ecological functions. Environ. Toxicol. Chem. 2018, 37, 2956–2964. [Google Scholar]
- Gustin, M.S.; Amos, H.M.; Huang, J.; Miller, M.B.; Bash, J.O.; Smith, S.; Selin, N.E.; Jaffe, D.A.; Holmes, C.D.; Obrist, D.; et al. Role of vegetation in the atmospheric deposition of mercury: A review. Environ. Pollut. 2015, 197, 154–162. [Google Scholar]
- Obrist, D.; Johnson, D.W.; Lindberg, S.E.; Luo, Y.; Hararuk, O.; Bracho, R.; Battles, J.J.; Dail, D.B.; Edmonds, R.L.; Monson, R.K.; et al. Mercury cycling in the mangrove forests of tropical and subtropical regions. Environ. Toxicol. Chem. 2018, 37, 2272–2286. [Google Scholar]
- Liu, G.; Cai, Y.; Driscoll, N.O. Environmental Chemistry and Toxicology of Mercury; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Sci. Total Environ. 2013, 408, 6436–6443. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.C.; Schoeny, R.; Mahaffey, K. Methods and rationale for derivation of a reference dose for methylmercury by the US EPA. Risk Anal. Int. J. 2003, 23, 107–115. [Google Scholar] [CrossRef]
- Dorea, J.; Barbosa, A.; Ferrari, Í.; De Souza, J. Mercury in hair and in fish consumed by Riparian women of the Rio Negro, Amazon, Brazil. Int. J. Environ. Health Res. 2003, 13, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.K.; Chandra, S.; Bhat, R.A. Assessment of metal contamination in the Mandovi estuary, Goa. Environ. Pollut. 2018, 245, 892–902. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, H.; Hwang, U.K.; Kang, J.C.; Kang, Y.J.; Kim, K.I.; Kim, J.H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol. 2019, 68, 101–108. [Google Scholar] [CrossRef]
- El-Metwally, M.A.; Abu El-Regal, A.I.; Abdelkader, E.F.; Sanad, E.F. Heavy metal accumulation in zooplankton and impact of water quality on its community structure. Arab. J. Geosci. 2022, 15, 117. [Google Scholar] [CrossRef]
- Dehghani, M.; Ahmadi, S.; Hosseini, R.; Karimi, A.; Ghasemi, N.; Mohammadi, F.; Ebrahimi, M.; Tavakoli, H.; Zare, M.; Shafiei, S.; et al. Heavy metal absorption in aquatic organisms: Mechanisms, bioaccumulation, and ecological implications. Environ. Toxicol. 2022, 41, 278–292. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Hagler, A.N.; Martins, L.F.; Barros, J.P.; Santos, R.C.; Almeida, T.M.; Costa, P.R.; Pereira, L.A.; Rodrigues, F.J.; Souza, D.M.; Lima, E.R.; et al. The relationship between nutrient pollution and pathogen development in aquatic systems. Sci. Total Environ. 2017, 607–608, 1649–1659. [Google Scholar]
- Fortunato, J.M.; HYPOlITO, R.; Moura, C.L.; Nascimento, S.C. Caracterização da contaminação por metais pesados em área de manguezal, município de Santos (SP). Rev. Inst. Geol. 2022, 33, 57–69. [Google Scholar] [CrossRef]
- Morales, D.V. Behavioral and Physiological Effects of Heavy Metals on Fish: A Review and Preliminary Results. Master’s Thesis, City University of New York, New York, NY, USA, 2022. [Google Scholar]
- Zhang, Z.W.; Xu, X.R.; Sun, Y.X.; Yu, S.; Chen, Y.S.; Peng, J.X. Heavy metal and organic contaminants in mangrove ecosystems of China: A review. Environ. Sci. Pollut. Res. 2014, 21, 11938–11950. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.N.; Massone, C.G.; Senez-Mello, T.; da Silva, F.S.; Crapez, M.A.C. Interferência da ocupação urbana na distribuição de poluentes orgânicos persistentes em manguezal. Eng. Sanit. Ambient. 2022, 27, 395–402. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Sun, X.L.; Xu, Y.; Zhang, Q.Q.; Li, X.Z. Accumulation and tolerance of mangroves to heavy metals: A review. Environ. Pollut. 2017, 3, 302–317. [Google Scholar] [CrossRef]
- da Silva Paes, E.; Gloaguen, T.V.; da Conceição Silva, H.D.A.; Duarte, T.S.; da Conceição de Almeida, M.; Costa, O.D.V.; Bomfim, M.R.; Santos, J.A.G. Widespread microplastic pollution in mangrove soils of Todos os Santos Bay, northern Brazil. Environ. Res. 2022, 210, 112952. [Google Scholar] [CrossRef] [PubMed]
- Prarat, P.; Hongsawat, P.; Chouychai, B. Microplastic occurrence in surface sediments from coastal mangroves in Eastern Thailand: Abundance, characteristics, and ecological risk implications. Reg. Stud. Mar. Sci. 2024, 71, 103389. [Google Scholar] [CrossRef]
- Mohan, P.; Hamid, F.S. Charting the microplastic menace: A bibliometric analysis of pollution in Malaysian mangroves and polypropylene bioaccumulation assessment in Anadara granosa. Mar. Pollut. Bull. 2024, 205, 116654. [Google Scholar] [CrossRef] [PubMed]
- Bayen, S.; Segovia Estrada, E.; Juhel, G.; Lee, W.K.; Kelly, B.C. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. Mar. Pollut. Bull. 2016, 109, 716–722. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhou, K.; Sun, X.L.; Zhao, L.R.; Zhang, Y.B. Occurrence and distribution of the environmental pollutant antibiotics in Gaoqiao mangrove area, China. Chemosphere 2016, 147, 25–35. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Xu, J.R.; Ren, K.J.; Meng, X.Z. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China. Environ. Pollut. 2016, 219, 916–923. [Google Scholar] [CrossRef]
- Lima, S.R.; Martins, D.; Andrade, M.C. Dinâmica hidrológica na Baixada Santista e suas implicações para o planejamento urbano. Rev. Bras. Recur. Hídr. 2013, 18, 45–55. [Google Scholar]
- Noormohamadi, S.; et al. Bioremediation of Cd and Ni by Phanerochaete chrysosporium in contaminated environments. Environ. Technol. 2019, 40, 292–301. [Google Scholar]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S.; Jensen, P.A.; Larsen, T.; Pedersen, S.; Hansen, K.; Nielsen, J.; et al. White-rot fungi and their potential for the bioremediation of environmental pollutants. Fungal Biol. Rev. 2015, 29, 167–175. [Google Scholar]
- Jaen-Gil, A.; Aparicio, J.; González, R.; López, D.; Martínez, J.; Pérez, M.; Sánchez, A.; Torres, M.; Vidal, C.; Zamora, P.; et al. Fungal bioremediation of pharmaceutical contaminants. Environ. Toxicol. Pharmacol. 2019, 65, 36–45. [Google Scholar]
- Huang, Y.; Li, X.; Wang, J.; Zhang, H.; Chen, L.; Liu, Y.; Zhao, W.; Zhou, Y.; Sun, Q.; Feng, J.; et al. Removal of lead (Pb) by Phanerochaete chrysosporium and its application in the treatment of wastewater. Chemosphere 2017, 168, 1100–1106. [Google Scholar]
- Bhattacharya, S.; Das, A.; Ghosh, S.; Banerjee, R.; Mukherjee, S.; Chatterjee, T.; Roy, P.; Saha, D.; Basu, S.; Dutta, P.; et al. Degradation of polycyclic aromatic hydrocarbons by white-rot fungi. Environ. Sci. Pollut. Res. 2017, 24, 23759–23768. [Google Scholar]
- Wang, L.; Zhang, J.; Li, H.; Chen, Y.; Liu, X.; Zhao, Q.; Sun, W.; Zhou, Z.; Yang, F.; Xu, J.; et al. Biodegradation of endocrine-disrupting compounds by white-rot fungi. J. Environ. Sci. 2019, 74, 30–40. [Google Scholar]
- Kaur, G.; Singh, S.; Sharma, R.; Gupta, R.; Kumar, A.; Mehta, P.; Chawla, P.; Arora, S.; Dhillon, J.; Sandhu, R.; et al. Fungal degradation of pesticides in contaminated soils. Pestic. Biochem. Physiol. 2016, 133, 1–12. [Google Scholar]
- Hanif, M.; Bhatti, H. Bioremediation of heavy metals by Agaricus bitorquis immobilized in calcium alginate beads. Environ. Sci. Pollut. Res. 2015, 22, 19468–19476. [Google Scholar]
- Wollenberg, M.; et al. Uranium removal by white-rot fungi Schizophyllum commune and Pleurotus ostreatus. Environ. Pollut. 2021, 274, 115937. [Google Scholar]
- Feng, M.; Yin, H.; Cao, Y.; Peng, H.; Lu, G.; Liu, Z.; Dang, Z. Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). Ecotoxicol. Environ. Saf. 2018, 154, 45–51. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britto Martins de Oliveira, J.; Corrêa Junior, D.; Parente, C.E.T.; Frases, S. Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation. Microorganisms 2025, 13, 878. https://doi.org/10.3390/microorganisms13040878
Britto Martins de Oliveira J, Corrêa Junior D, Parente CET, Frases S. Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation. Microorganisms. 2025; 13(4):878. https://doi.org/10.3390/microorganisms13040878
Chicago/Turabian StyleBritto Martins de Oliveira, Juliana, Dario Corrêa Junior, Cláudio Ernesto Taveira Parente, and Susana Frases. 2025. "Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation" Microorganisms 13, no. 4: 878. https://doi.org/10.3390/microorganisms13040878
APA StyleBritto Martins de Oliveira, J., Corrêa Junior, D., Parente, C. E. T., & Frases, S. (2025). Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation. Microorganisms, 13(4), 878. https://doi.org/10.3390/microorganisms13040878