Gene Detection and Enzymatic Activity of Psychrotrophic Bacillus cereus s.s. Isolated from Milking Environments, Dairies, Milk, and Dairy Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Characterization
2.3. Genotypic Characterization
2.4. Phenotypic Characterization
2.5. Statistical Analysis
3. Results
Presence of Genes in Bacillus cereus s.s. Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthold-Pluta, A.B.; Pluta, A.C.; Garbowska, M.D.; Stefańska, I.E. Prevalence and Toxicity Characterization of Bacillus cereus in Food Products from Poland. Foods 2019, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Von Neubeck, M.; Baur, C.; Krewinkel, M.; Stoeckel, M.; Kranz, B.; Estressler, T.; Fischer, L.; Hinrichs, J.; Scherer, S.; Wenning, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int. J. Food Microbiol. 2015, 211, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Júnior, J.C.; Tamanini, R.; Oliveira, A.L.M.; Ribeiro, J.; Beloti, V. Deterioração potencial de formador de esporos bactérias de refrigerado cru leite. Semin. Ciênc. Agrár. 2018, 39, 2049–2058. [Google Scholar] [CrossRef]
- Zhou, G.; Bester, K.; Liao, B.; Yang, Z.; Jiang, R.; Hendriksen, N.B. Characterization of Three Bacillus cereus Strains Involved in a Major Outbreak of Food Poisoning After Consumption of Fermented Black Beans (Douchi) in Yunan, China. Foodborne Pathog. Dis. 2014, 11, 769–774. [Google Scholar] [CrossRef]
- Schmid, D.; Rademacher, C.; Kanitz, E.E.; Frenzel, E.; Simons, E.; Allerberger, F.; Ehling-Schulz, M. Elucidation of Enterotoxigenic Bacillus cereus Outbreaks in Austria by Complementary Epidemiological and Microbiological Investigations, 2013. Int. J. Food Microbiol. 2016, 232, 80–86. [Google Scholar] [CrossRef]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-Borne Diseases—The Challenges of 20 Years Ago Still Persist While New Ones Continue to Emerge. Int. J. Food Microbiol. 2010, 139, S3–S15. [Google Scholar] [CrossRef]
- Lentz, S.A.M.; Silva, F.M.; Rodrigues, R.Q.; Pinto, L.S.; Call, D.R.; Melo, R.T.; Rossi, D.A. Bacillus cereus as the main causal agent of foodborne outbreaks in Southern Brazil: Data from 11 years. Cad. Saúde Pública 2018, 34, e00057417. [Google Scholar] [CrossRef]
- dos Santos Mascarenhas, L.R.; Vivoni, A.M.; Caetano, R.G.; Rusak, L.A.; Alvarenga, V.O.; Lacerda, I.C.A. Molecular Characterization and Toxigenic Profiles of Bacillus cereus Isolates from Foodstuff and Food Poisoning Outbreaks in Brazil. Braz. J. Microbiol. 2024, 55, 1693–1701. [Google Scholar] [CrossRef]
- Rossi, G.A.M.; Silva, H.O.; Aguilar, C.E.G.; Rochetti, A.L.; Pascoe, B.; Méric, G.; Mourkas, E.; Hitchings, M.D.; Mathias, L.A.; Ruiz, V.L.A.; et al. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol. Lett. 2018, 365, fnx283. [Google Scholar] [CrossRef]
- Vidal-Martins, A.M.; Rossi, O.D., Jr.; Rezende-Lago, N.C. Mesophilic heterotrophic microorganisms and spore-forming bacteria of Bacillus cereus group in ultra-high temperature milk. Arq. Bras. Med. Vet. Zootec. 2005, 57, 396–400. [Google Scholar] [CrossRef]
- Janštová, B.; Dračková, M.; Vorlová, L. Effect of Bacillus cereus enzymes on milk quality following ultra high temperature processing. Acta Vet. Brno 2006, 75, 601–609. [Google Scholar] [CrossRef]
- Tsuboi, S.; Yamamura, S.; Imai, A.; Satou, T.; Iwasaki, K. Linking temporal changes in bacterial community structures with the detection and phylogenetic analysis of neutral metalloprotease genes in the sediments of a hypereutrophic lake. Microbes Environ. 2014, 29, 314–321. [Google Scholar] [CrossRef]
- Von Stetten, F.; Mayr, R.; Scherer, S. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soils. Environ. Microbiol. 1999, 1, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Montanhini, M.T.M.; Colombo, M.; Nero, L.A.; Bersot, L.S. Short communication: Presence of neutral metallopeptidase (npr) gene and proteolytic activity of Bacillus cereus isolated from dairy products. J. Dairy Sci. 2013, 96, 5641–5643. [Google Scholar] [CrossRef]
- Agaisse, H.; Gominet, M.; Økstad, O.A.; Kolstø, A.B.; Lereclus, D. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 1999, 32, 1043–1053. [Google Scholar] [CrossRef]
- Økstad, O.A.; Gominet, M.; Purnelle, B.; Rose, M.; Lereclus, D.; Kolstø, A.-B. Sequence analysis of three loci in Bacillus cereus carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 1999, 145, 3129–3138. [Google Scholar] [CrossRef]
- Gohar, M.; Økstad, O.A.; Gilois, N.; Sanchis, V.; Kolst⊘, A.-B.; Lereclus, D. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2002, 2, 784–791. [Google Scholar] [CrossRef]
- Gominet, M.; Slamti, L.; Gilois, N.; Rose, M.; Lereclus, D. Oligopeptide permease is required for expression of the Bacillus thuringiensis PlcR regulon and for virulence. Mol. Microbiol. 2001, 40, 963–975. [Google Scholar] [CrossRef]
- Declerck, N.; Bouillaut, L.; Chaix, D.; Rugani, N.; Slamti, L.; Hoh, F.; Lereclus, D.; Arold, S.T. Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 18490–18495. [Google Scholar] [CrossRef]
- Lereclus, D.; Agaisse, H.; Grandvalet, C.; Salamitou, S.; Gominet, M. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 2000, 290, 295–299. [Google Scholar] [CrossRef]
- Slamti, L.; Lereclus, D. A cell-cell signaling peptide activates the PlcR virulence regulon in Bacillus cereus group bacteria. EMBO J. 2002, 21, 4550–4559. [Google Scholar] [CrossRef] [PubMed]
- Klungel, G.H.; Slaghuis, B.A.; Hogeveen, H. The Effect of the Introduction of Automatic Milking Systems on Milk Quality. J. Dairy Sci. 2000, 83, 1998–2003. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.; Brözel, V.S.; Mostert, J.F.; von Holy, A. Physiology of dairy-associated Bacillus spp. over a wide pH range. Int. J. Food Microbiol. 2000, 54, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Coolbear, T.; Daniel, R.M. Characteristics of proteinases and lipases produced by seven Bacillus sp. isolated from milk powder production lines. Int. Dairy J. 2004, 14, 495–504. [Google Scholar] [CrossRef]
- Marth, E.H.; Steele, J. Applied Dairy Microbiology; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Vyletelová, M.H.; Urbanová, E.; Kopunecz, P. Occurrence and identification of psychrotrophic bacteria with proteolytic and lipolytic activity in bulk milk samples stored under primary production conditions. Czech J. Anim. Sci. 2000, 45, 373–383. [Google Scholar]
- Clark, S.; Costello, M.; Drake, M.; Bodyfelt, F. (Eds.) The Sensory Evaluation of Dairy Products; Springer USA: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Bemfeito, R.M.; Rodrigues, J.F.; Silva, J.G.; Abreu, L.R. Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil. J. Dairy Sci. 2016, 99, 7886–7897. [Google Scholar] [CrossRef]
- Gan, H.H.; Yan, B.; Linforth, R.S.T.; Fisk, I.D. Development and validation of an APCI-MS/GC–MS approach for the classification and prediction of Cheddar cheese maturity. Food Chem. 2016, 190, 442–447. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 2004, 64, 763–781. [Google Scholar] [CrossRef]
- Sameshima-Yamashita, Y.; Ueda, H.; Koitabashi, M.; Kitamoto, H. Pretreatment with an esterase from yeast Pseudozyma antarctica accelerates biodegradation of mulch film in soil under laboratory conditions. J. Biosci. Bioeng. 2018, 127, 93–98. [Google Scholar] [CrossRef]
- Lehmann, S.C.; Maraite, A.; Steinhagen, M.; Ansorge-Schumacher, M.B. Characterization of a Novel Pseudomonas stutzeri Lipase/Esterase with Potential Application in the Production of Chiral Secondary Alcohols. Adv. Biosci. Biotechnol. 2014, 5, 1009–1017. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Zhou, S.; Li, X.; Ying, X.; Wang, Z. A stereoselective esterase from Bacillus megaterium: Purification, gene cloning, expression and catalytic properties. Protein Expr. Purif. 2017, 136, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.; Geiger, R.; Junghare, M.; Schink, B. Microbial degradation of phthalates: Biochemistry and environmental implications. Environ. Microbiol. Rep. 2020, 12, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Sayer, C.; Finnigan, W.; Isupov, M.N.; Levisson, M.; Kengen, S.W.M.; Oost, J.V.D.; Harmer, N.J.; Littlechild, J.A. Structural and biochemical characterization of Archaeoglobus fulgidus esterase reveals a CoA molecule bound near the active site. Sci. Rep. 2016, 6, 25542. [Google Scholar] [CrossRef]
- Ivanova, N.; Sorokin, A.; Anderson, I.; Galleron, N.; Candelon, B.; Kapatral, V.; Bhattacharyya, A.; Reznik, G.; Mikhailova, N.; Lapidus, A.; et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 423, 87–91. [Google Scholar] [CrossRef]
- Gohar, M.; Faegri, K.; Perchat, S.; Ravnum, S.; Økstad, O.A.; Gominet, M.; Kolstø, A.-B.; Lereclus, D. The PlcR virulence regulon of Bacillus cereus. PLoS ONE 2008, 3, e2793. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 24 September 2024).
- Beerens, H.; Luquet, F.M. Guía Práctico para el Análisis Microbiológico de la Leche y los Productos Lácteos; Editorial Acríbia: Zaragoza, Spain, 1990; 141p, ISBN 10: 8420006688/13: 9788420006680. [Google Scholar]
- Montanhini, M.T.M. Phenotypic and Genotypic Characterization of Bacillus cereus Isolated from Dairy Products Regarding Its Psychrotrophic Behavior. Ph.D. Thesis, Federal University of Paraná, Curitiba, Brazil, 2012. [Google Scholar]
- Mehta, D.S.; Metzger, L.E.; Hassan, A.N.; Nelson, B.K.; Patel, H.A. The ability of spore formers to degrade milk proteins, fat, phospholipids, common stabilizers, and exopolysaccharides. J. Dairy Sci. 2019, 102, 10799–10813. [Google Scholar] [CrossRef]
- Maziero, M.T.; Viana, C.; Montanhini Neto, R.; Pinto, J.P.A.N.; Bersot, L.S. Incidência e avaliação da atividade lipolítica e proteolítica de Bacillus cereus em leite UHT. Pubvet 2015, 5. [Google Scholar] [CrossRef]
- Vidal-Martins, A.M.C.; Salotti, B.M.; Rossi Junior, O.D.; Penna, A.L.B. Evolução do índice proteolítico e do comportamento reológico durante a vida de prateleira de leite UAT/UHT. Food Sci. Technol. 2005, 25, 698–704. [Google Scholar] [CrossRef]
- Moreira, N.V.; Montanhini, M.T.M. Milk contamination in the milking by proteolytic and lipolytic microorganisms. Rev. Bras. Hig. Sanit. Anim. 2014, 8, 29–38. [Google Scholar] [CrossRef]
- Molva, C.; Sudagidan, M.; Okuklu, B. Extracellular enzyme production and enterotoxigenic gene profiles of Bacillus cereus and Bacillus thuringiensis strains isolated from cheese in Turkey. Food Control. 2009, 20, 829–834. [Google Scholar] [CrossRef]
- Odoch, M.; Buys, E.M.; Taylor, J.R. Effects of vacuum packaging storage of minimally processed cassava roots at various temperatures on microflora, tissue structure, starch extraction by wet milling and granule quality. J. Sci. Food Agric. 2021, 101, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
- Rathnakumar, K.; Jain, S.; Awasti, N.; Vashisht, P.; Thorakkattu, P.; Ramesh, B.; Balakrishnan, G.; Babu, K.S.; Ramniwas, S.; Rustagi, S.; et al. Ultrasonic processing: Effects on the physicochemical and microbiological aspects of dairy products. Crit. Rev. Biotechnol. 2024, 44, 1638–1652. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Gibson, K.E. Evaluation of a recirculating dipper well combined with ozone sanitizer for control of foodborne pathogens in food service operations. J. Food Prot. 2016, 79, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Capodifoglio, E.; Vidal, A.M.C.; Lima, J.A.S.; Bortoletto, F.; D’Abreu, L.F.; Gonçalves, A.C.S.; Vaz, A.C.N.; Balieiro, J.C.C.; Netto, A.S. Lipolytic and proteolytic activity of Pseudomonas spp. isolated during milking and storage of refrigerated raw milk. J. Dairy Sci. 2016, 99, 5214–5223. [Google Scholar] [CrossRef]
- Teh, K.H.; Lindsay, D.; Palmer, J.; Andrewes, P.; Bremer, P.; Flint, S. Lipolysis in mono- and co-culture dairy biofilms. Int. J. Food Microbiol. 2013, 163, 129–135. [Google Scholar] [CrossRef]
- Deeth, H.C. Milk Lipids | Lipolysis and Hydrolytic Rancidity. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 721–726. [Google Scholar] [CrossRef]
- Wiking, L. Milking and Handling of Raw Milk | Influence on Free Fatty Acids. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 638–641. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Zhao, C.; Xue, Y.; Tan, D.; Wang, S.; Jia, M.; Wu, H.; Ma, A.; Chen, G. Milk lipids characterization in relation to different heat treatments using lipidomics. Food Res. Int. 2022, 157, 111345. [Google Scholar] [CrossRef]
- Teng, F.; Reis, M.G.; Yang, L.; Ma, Y.; Day, L. Structural characteristics of triacylglycerols contribute to the distinct in vitro gastric digestibility of sheep and cow milk fat prior to and after homogenization. Food Res. Int. 2020, 130, 108911. [Google Scholar] [CrossRef]
- Santos, C.I.A.; Salgado, C.A.; Vanetti, M.C.D. Bacterial lipases: Impacts on dairy product quality and biotechnological potential. Res. Soc. Dev. 2021, 10, e230101321213. [Google Scholar] [CrossRef]
- Ping, L.; Yuan, X.; Zhang, M.; Chai, Y.; Shan, S. Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate. Int. J. Biol. Macromol. 2018, 106, 302–311. [Google Scholar] [CrossRef]
- Andrewes, P. Indirect detection of lipase in UHT milk by measuring methyl ester formation. Int. Dairy J. 2018, 79, 1–4. [Google Scholar] [CrossRef]
- Mordor Intelligence. Lipase Market Size & Share Analysis-Growth Trends & Forecasts (2024–2029). Available online: https://www.mordorintelligence.com/industry-reports/lipase-market (accessed on 19 October 2024).
- Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 2002, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Avhad, M.R.; Marchetti, J.M. Uses of enzymes for biodiesel production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization; Elsevier Inc.: Edinburg, TX, USA, 2019; pp. 135–152. [Google Scholar] [CrossRef]
- Sales, J.C.S.; de Castro, A.M.; Ribeiro, B.D.; Coelho, M.A.Z. Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly(ethylene terephthalate) (PET) depolymerization reactions. Biocatal. Biotransform. 2020, 38, 457–468. [Google Scholar] [CrossRef]
- Holmes, R.S.; Masters, C.J. The developmental multiplicity and isoenzyme status of cavian esterases. Biochim. Biophys. Acta Enzymol. 1967, 132, 379–399. [Google Scholar] [CrossRef] [PubMed]
- Forster, T.L.; Montgomery, M.W.; Montoure, J.E. Some factors influencing the activity of the A-, B-, and C-esterases of bovine milk. J. Dairy Sci. 1961, 44, 1420–1430. [Google Scholar] [CrossRef]
- Marquardt, R.R.; Forster, T.L. Titrimetric Procedure for Assay of Milk Arylesterase Activity. J. Dairy Sci. 1965, 48, 1602–1606. [Google Scholar] [CrossRef]
- Purr, A.; Fuchs, D. Some esterases of cows’ milk. J. Dairy Sci. 1969, 52, 440–447. [Google Scholar]
- Olivecrona, T.; Egelrud, T.; Hernell, O.; Castberg, H.B.; Solberg, P. Developments in Dairy Chemistry. In Federation International Dairy, 2nd ed.; Springer: Dordrecht, The Netherlands, 1975; p. 86. [Google Scholar]
Genes | M.E. | D.E. | R.M. | D.P. | Chi-Square Test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | N | DF | x2 | p_Value | |
PlcR (BC5350) | 27 | 44.26 | 9 | 14.75 | 7 | 11.48 | 16 | 11.48 | 61 | 3 | 3.73 | 0.292 |
npR (BC0598) | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 14 | 22.95 | 8.17 | 0.043 * | ||
inhA2 (BC0666) | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 16 | 26.23 | 2.63 | 0.452 | ||
inhA3 (BC2984) | 26 | 42.62 | 9 | 14.75 | 8 | 13.11 | 15 | 24.59 | 2.67 | 0.446 | ||
nprB (BC5351) | 14 | 22.95 | 4 | 6.56 | 5 | 8.20 | 2 | 3.28 | 8.90 | 0.031 * | ||
nprC (BC3383) | 20 | 32.79 | 7 | 11.48 | 3 | 4.92 | 13 | 21.31 | 4.87 | 0.181 | ||
nprP2 (BC2735) | 23 | 37.70 | 7 | 11.48 | 3 | 4.92 | 13 | 21.31 | 7.63 | 0.054 | ||
Prot. activity | 26 | 42.62 | 9 | 14.75 | 7 | 11.48 | 14 | 22.95 | 3.74 | 0.291 | ||
TOTAL | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 17 | 27.87 |
Genes | M.E. | D.E. | R.M. | D.P. | Chi-Square Test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | N | DF | x2 | p_Value | |
BC4862 | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 16 | 26.23 | 61 | 3 | 2.63 | 0.452 |
BC2141 | 20 | 32.79 | 9 | 14.75 | 5 | 8.20 | 13 | 21.31 | 3.78 | 0.287 | ||
BC1027 | 26 | 42.62 | 9 | 14.75 | 8 | 13.11 | 16 | 26.23 | 0.96 | 0.812 | ||
BC4123 | 24 | 39.34 | 9 | 14.75 | 8 | 13.11 | 16 | 26.23 | 2.12 | 0.548 | ||
BC4345 | 24 | 40.00 | 9 | 15.00 | 6 | 10.00 | 16 | 26.67 | 3.41 | 0.333 | ||
BC5402 | 26 | 42.62 | 9 | 14.75 | 8 | 13.11 | 17 | 27.87 | 1.28 | 0.734 | ||
BC5401 | 27 | 44.26 | 8 | 13.11 | 8 | 13.11 | 16 | 26.23 | 3.29 | 0.349 | ||
BC2519 | 7 | 11.67 | 2 | 3.33 | 2 | 3.33 | 0 | 0.00 | 5.25 | 0.155 | ||
BC2449 | 16 | 26.23 | 5 | 8.2 | 6 | 9.34 | 12 | 19.67 | 1.28 | 0.734 | ||
Lip. activity | 9 | 15.52 | 3 | 5.17 | 4 | 6.9 | 5 | 8.62 | 1.07 | 0.785 | ||
TOTAL | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 17 | 27.87 |
Genes | M.E. | D.E. | R.M. | D.P. | Chi-Square Test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | Freq 1 | % 2 | N | DF | x2 | p_Value | |
BC1954 | 23 | 37.7 | 7 | 11.47 | 5 | 8.19 | 12 | 19.67 | 61 | 3 | 5.67 | 0.461 |
BC4515 | 25 | 40.98 | 9 | 14.75 | 8 | 13.11 | 16 | 26.22 | 2.25 | 0.896 | ||
BC3413 | 23 | 37.7 | 9 | 14.75 | 6 | 26.22 | 16 | 26.22 | 4.72 | 0.580 | ||
BC3606 | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 16 | 26.22 | 2.63 | 0.452 | ||
TOTAL | 27 | 44.26 | 9 | 14.75 | 8 | 13.11 | 17 | 27.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar, C.E.G.; Rossi, G.A.M.; Silva, H.O.; Oliveira, L.M.F.S.; Vasconcellos, A.N.; Fonseca, D.d.C.M.; Vaz, A.C.N.; de Souza, B.M.S.; Vidal, A.M.C. Gene Detection and Enzymatic Activity of Psychrotrophic Bacillus cereus s.s. Isolated from Milking Environments, Dairies, Milk, and Dairy Products. Microorganisms 2025, 13, 889. https://doi.org/10.3390/microorganisms13040889
Aguilar CEG, Rossi GAM, Silva HO, Oliveira LMFS, Vasconcellos AN, Fonseca DdCM, Vaz ACN, de Souza BMS, Vidal AMC. Gene Detection and Enzymatic Activity of Psychrotrophic Bacillus cereus s.s. Isolated from Milking Environments, Dairies, Milk, and Dairy Products. Microorganisms. 2025; 13(4):889. https://doi.org/10.3390/microorganisms13040889
Chicago/Turabian StyleAguilar, Carlos E. G., Gabriel Augusto Marques Rossi, Higor O. Silva, Luisa Maria F. S. Oliveira, Alenia Naliato Vasconcellos, Danielle de Cássia Martins Fonseca, Andréia Cristina Nakashima Vaz, Bruna Maria Salotti de Souza, and Ana Maria Centola Vidal. 2025. "Gene Detection and Enzymatic Activity of Psychrotrophic Bacillus cereus s.s. Isolated from Milking Environments, Dairies, Milk, and Dairy Products" Microorganisms 13, no. 4: 889. https://doi.org/10.3390/microorganisms13040889
APA StyleAguilar, C. E. G., Rossi, G. A. M., Silva, H. O., Oliveira, L. M. F. S., Vasconcellos, A. N., Fonseca, D. d. C. M., Vaz, A. C. N., de Souza, B. M. S., & Vidal, A. M. C. (2025). Gene Detection and Enzymatic Activity of Psychrotrophic Bacillus cereus s.s. Isolated from Milking Environments, Dairies, Milk, and Dairy Products. Microorganisms, 13(4), 889. https://doi.org/10.3390/microorganisms13040889