Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sources of Antibiotic Resistance in West Africa
3.2. Antibiotics Under Study in West Africa
3.3. Antibiotic-Resistant Bacterial Strains, Along with Their Associated Resistance Genes
3.4. Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa
3.4.1. Environmental Pollution and Waste Management
3.4.2. Poor Hygiene
3.4.3. Agriculture, Aquaculture, and Animal Antibiotic Use
3.4.4. Transmission Within Hospital Settings
4. Challenges and Limitations Encountered by Researchers in Studying Antibiotic Resistance in West Africa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Spellberg, B.; Gilbert, D.N. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 2014, 59 (Suppl. 2), S71–S75. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.; Worden, L.; Hinterwirth, A.; Arzika, A.M.; Maliki, R.; Abdou, A.; Zhong, L.; Chen, C.; Cook, C.; Lebas, E.; et al. Macrolide and nonmacrolide resistance with mass azithromycin distribution. N. Engl. J. Med. 2020, 383, 1941–1950. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Gautam, A. Antimicrobial resistance: The next probable pandemic. J. Nepal Med. Assoc. 2022, 60, 225. [Google Scholar] [CrossRef]
- Silbergeld, E.K.; Patrick, T.E. Environmental exposures, toxicologic mechanisms, and adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2005, 192, S11–S21. [Google Scholar] [CrossRef]
- Nwafia, I.N.; Ike, A.C.; Orabueze, I.N.; Nwafia, W.C. Carbapenemase producing Enterobacteriaceae: Environmental reservoirs as primary targets for control and prevention strategies. Niger. Postgrad. Med. J. 2022, 29, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ngbede, E.O.; Adekanmbi, F.; Poudel, A.; Kalalah, A.; Kelly, P.; Yang, Y.; Adamu, A.M.; Daniel, S.T.; Adikwu, A.A.; Akwuobu, C.A.; et al. Concurrent resistance to carbapenem and colistin among Enterobacteriaceae recovered from human and animal sources in Nigeria is associated with multiple genetic mechanisms. Front. Microbiol. 2021, 12, 740348. [Google Scholar] [CrossRef] [PubMed]
- Ayibieke, A.; Kobayashi, A.; Suzuki, M.; Sato, W.; Mahazu, S.; Prah, I.; Mizoguchi, M.; Moriya, K.; Hayashi, T.; Suzuki, T.; et al. Prevalence and characterization of carbapenem-hydrolyzing class D β-lactamase-producing Acinetobacter isolates from Ghana. Front. Microbiol. 2020, 11, 587398. [Google Scholar] [CrossRef]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in food animals in Africa: A systematic review and meta-analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.; Matee, M.I. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Ogunlaja, A.; Ogunlaja, O.O.; Olukanni, O.D.; Taylor, G.O.; Olorunnisola, C.G.; Dougnon, V.T.; Mousse, W.; Fatta-Kassinos, D.; Msagati, T.A.; Unuabonah, E.I. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. Environ. Pollut. 2022, 312, 119783. [Google Scholar] [CrossRef]
- Bah, S.Y.; Kujabi, M.A.; Darboe, S.; Kebbeh, N.; Kebbeh, B.F.; Kanteh, A.; Bojang, R.; Lawn, J.E.; Kampmann, B.; Sesay, A.K.; et al. Acquisition and carriage of genetically diverse multi-drug resistant gram-negative bacilli in hospitalised newborns in The Gambia. Commun. Med. 2023, 3, 79. [Google Scholar] [CrossRef]
- Sintondji, K.; Fabiyi, K.; Hougbenou, J.; Koudokpon, H.; Lègba, B.; Amoussou, H.; Haukka, K.; Dougnon, V. Prevalence and characterization of ESBL-producing Escherichia coli in healthy pregnant women and hospital environments in Benin: An approach based on Tricycle. Front. Public Health 2023, 11, 1227000. [Google Scholar] [CrossRef]
- Bekoe, S.O.; Hane-Weijman, S.; Trads, S.L.; Orman, E.; Opintan, J.; Hansen, M.; Frimodt-Møller, N.; Styrishave, B. Reservoir of antibiotic residues and resistant coagulase negative staphylococci in a healthy population in the Greater Accra region, Ghana. Antibiotics 2022, 11, 119. [Google Scholar] [CrossRef]
- Socohou, A.; Sina, H.; Degbey, C.; Adjobimey, T.; Sossou, E.; Boya, B.; N’tcha, C.; Adoukonou-Sagbadja, H.; Adjanohoun, A.; Baba-Moussa, L. Pathogenicity and Molecular Characterization of Staphylococcus aureus Strains Isolated from the Hospital Environment of CHU-Z Abomey-Calavi/Sô-Ava (Benin). BioMed Res. Int. 2021, 2021, 6637617. [Google Scholar] [CrossRef]
- Acolatse, J.E.E.; Portal, E.A.; Boostrom, I.; Akafity, G.; Dakroah, M.P.; Chalker, V.J.; Sands, K.; Spiller, O.B. Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. Antimicrob. Resist. Infect. Control 2022, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Olowe, O.A.; Adefioye, O.J.; Ajayeoba, T.A.; Schiebel, J.; Weinreich, J.; Ali, A.; Burdukiewicz, M.; Rödiger, S.; Schierack, P. Phylogenetic grouping and biofilm formation of multidrug resistant Escherichia coli isolates from humans, animals and food products in South-West Nigeria. Sci. Afr. 2019, 6, e00158. [Google Scholar] [CrossRef]
- Adzitey, F.; Huda, N.; Shariff, A.H.M. Phenotypic antimicrobial susceptibility of Escherichia coli from raw meats, ready-to-eat meats, and their related samples in one health context. Microorganisms 2021, 9, 326. [Google Scholar] [CrossRef]
- Dougnon, V.; Houssou, V.M.C.; Anago, E.; Nanoukon, C.; Mohammed, J.; Agbankpe, J.; Koudokpon, H.; Bouraima, B.; Deguenon, E.; Fabiyi, K.; et al. Assessment of the presence of resistance genes detected from the environment and selected food products in Benin. J. Environ. Public Health 2021, 2021, 8420590. [Google Scholar] [CrossRef] [PubMed]
- Abegewi, U.A.; Esemu, S.N.; Ndip, R.N.; Ndip, L.M. Prevalence and risk factors of coliform-associated mastitis and antibiotic resistance of coliforms from lactating dairy cows in North West Cameroon. PLoS ONE 2022, 17, e0268247. [Google Scholar] [CrossRef]
- Beshiru, A.; Igbinosa, E.O. Surveillance of Vibrio parahaemolyticus pathogens recovered from ready-to-eat foods. Sci. Rep. 2023, 13, 4186. [Google Scholar] [CrossRef]
- Quarcoo, G.; Boamah Adomako, L.A.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What is in the salad? Escherichia coli and antibiotic resistance in lettuce irrigated with various water sources in Ghana. Int. J. Environ. Res. Public Health 2022, 19, 12722. [Google Scholar] [CrossRef]
- Adeyemi, F.M.; Ojo, O.O.; Badejo, A.A.; Oyedara, O.O.; Olaitan, J.O.; Adetunji, C.O.; Hefft, D.I.; Ogunjobi, A.A.; Akinde, S.B. Integrated poultry-fish farming system encourages multidrug-resistant gram-negative bacteria dissemination in pond environment and fishes. Aquaculture 2022, 548, 737558. [Google Scholar] [CrossRef]
- Deguenon, E.; Dougnon, V.; Houssou, V.M.C.; Gbotche, E.; Ahoyo, R.A.; Fabiyi, K.; Agbankpe, J.; Mousse, W.; Lougbegnon, C.; Klotoe, J.R.; et al. Hospital effluents as sources of antibiotics residues, resistant bacteria and heavy metals in Benin. SN Appl. Sci. 2022, 4, 206. [Google Scholar] [CrossRef]
- Kagambèga, A.B.; Dembélé, R.; Bientz, L.; M’zali, F.; Mayonnove, L.; Mohamed, A.H.; Coulibaly, H.; Barro, N.; Dubois, V. Detection and characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital effluents of Ouagadougou, Burkina Faso. Antibiotics 2023, 12, 1494. [Google Scholar] [CrossRef]
- Adelowo, O.O.; Helbig, T.; Knecht, C.; Reincke, F.; Mäusezahl, I.; Müller, J.A. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS ONE 2018, 13, e0208269. [Google Scholar] [CrossRef] [PubMed]
- Adelowo, O.O.; Ikhimiukor, O.O.; Knecht, C.; Vollmers, J.; Bhatia, M.; Kaster, A.K.; Müller, J.A. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS ONE 2020, 15, e0229451. [Google Scholar] [CrossRef] [PubMed]
- Adekanmbi, A.O.; Adeleke, O.J.; Aremu, O.O.; Olaposi, A.V. Molecular characterization, antibiogram and distribution of zntA gene in zinc-resistant Escherichia coli population recovered from anthropogenically-influenced surface water sources in Nigeria. Meta Gene 2020, 26, 100789. [Google Scholar] [CrossRef]
- Adekanmbi, A.O.; Rabiu, A.G.; Ajose, D.J.; Akinlabi, O.C.; Bolarinwa, K.A.; Farinu, E.P.; Olaposi, A.V.; Adeyemi, A.O. Solid waste dumpsite leachate and contiguous surface water contain multidrug-resistant ESBL-producing Escherichia coli carrying Extended Spectrum β-Lactamase (ESBL) genes. BMC Microbiol. 2024, 24, 308. [Google Scholar] [CrossRef]
- Babalola, T.F.; Olowomofe, T.O.; Omodara, T.R.; Ogunyemi, T.Y. Antibiotic resistance pattern and plasmid profile of bacteria isolates from household water distribution tanks in Ado-Ekiti. J. Pure Appl. Microbiol. 2021, 15, 1697–1705. [Google Scholar] [CrossRef]
- Tsekleves, E.; de Souza, D.; Pickup, R.; Ahorlu, C.; Darby, A. Developing home cleaning intervention through community engagement to reduce infections and antimicrobial resistance in Ghanaian homes. Sci. Rep. 2023, 13, 10505. [Google Scholar] [CrossRef] [PubMed]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infect. Drug Resist. 2018, 2018, 1907–1920. [Google Scholar] [CrossRef]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar]
- Haenni, M.; Dagot, C.; Chesneau, O.; Bibbal, D.; Labanowski, J.; Vialette, M.; Bouchard, D.; Martin-Laurent, F.; Calsat, L.; Nazaret, S.; et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ. Int. 2022, 159, 107047. [Google Scholar] [CrossRef]
- Ehsan, H. Antibiotic Resistance in Developing Countries: Emerging Threats and Policy Responses. Public Health Chall. 2025, 4, e70034. [Google Scholar] [CrossRef]
- Aglomasa, B.C.; Adu-Asiamah, C.K.; Asiedu, S.O.; Kini, P.; Amewu, E.K.A.; Boahen, K.G.; Wireko, S.; Amponsah, I.K.; Boakye, Y.D.; Boamah, V.E.; et al. Multi-drug resistant bacteria isolates from lymphatic filariasis patients in the Ahanta West District, Ghana. BMC Microbiol. 2022, 22, 245. [Google Scholar]
- Adomako, L.A.; Yirenya-Tawiah, D.; Nukpezah, D.; Abrahamya, A.; Labi, A.K.; Grigoryan, R.; Ahmed, H.; Owusu-Danquah, J.; Annang, T.Y.; Banu, R.A.; et al. Reduced bacterial counts from a sewage treatment plant but increased counts and antibiotic resistance in the recipient stream in Accra, Ghana—A cross-sectional study. Trop. Med. Infect. Dis. 2021, 6, 79. [Google Scholar] [CrossRef]
- Anokyewaa Appau, A.A.; Ofori, L.A. Antibiotic Resistance Profile of E. coli isolates from lettuce, poultry manure, irrigation water, and soil in Kumasi, Ghana. Int. J. Microbiol. 2024, 2024, 6681311. [Google Scholar] [CrossRef]
- Al-Mustapha, A.I.; Alada, S.A.; Raufu, I.A.; Lawal, A.N.; Eskola, K.; Brouwer, M.S.; Adetunji, V.; Heikinheimo, A. Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. J. Glob. Antimicrob. Resist. 2022, 31, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Okoh, A.I. Antimicrobial resistance and genetic characterisation of Salmonella enterica from retail poultry meats in Benin City, Nigeria. LWT 2022, 169, 114049. [Google Scholar] [CrossRef]
- Somda, N.S.; Bonkoungou, O.J.; Zongo, C.; Kagambèga, A.; Bassolé, I.H.; Traoré, Y.; Mahillon, J.; Scippo, M.L.; Hounhouigan, J.D.; Savadogo, A. Safety of ready-to-eat chicken in Burkina Faso: Microbiological quality, antibiotic resistance, and virulence genes in Escherichia coli isolated from chicken samples of Ouagadougou. Food Sci. Nutr. 2018, 6, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.; Ibangha, I.A.; Chigor, C.; Titilawo, Y. Treated wastewater used in fresh produce irrigation in Nsukka, Southeast Nigeria is a reservoir of enterotoxigenic and multidrug-resistant Escherichia coli. Heliyon 2020, 6, e03780. [Google Scholar] [CrossRef]
- Ebob, T.J.; Asikong, B.E.E.; Ukwuoma, C.I.I.C. Prevalence of Vibrio species in Sea Foods and Water Sources in Cross River State. Annu. Res. Rev. Biol. 2022, 37, 63–78. [Google Scholar] [CrossRef]
- Djim-Adjim-Ngana, K.; Oumar, L.A.; Mbiakop, B.W.; Njifon, H.L.M.; Crucitti, T.; Nchiwan, E.N.; Yanou, N.N.; Deweerdt, L. Prevalence of extended-spectrum beta-lactamase-producing enterobacterial urinary infections and associated risk factors in small children of Garoua, Northern Cameroon. Pan Afr. Med. J. 2020, 36, 157. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Odetokun, I.A.; Jibrin, M.S.; Lawan, M.K.; Kwaga, J. Antibiotic resistance and mitigation using One Health lens in aquaculture of Northern Nigeria. Onderstepoort J. Vet. Res. 2024, 91, 2165. [Google Scholar] [CrossRef]
- Oche, C.; Aladetoun, N.F.; Barde, I.J. Use and abuse of antibiotics in Eriwe farms in Ijebu Ode, Ogun State, Nigeria: A case report. Glob. J. Fish. Sci. 2024, 6, 97–106. [Google Scholar] [CrossRef]
- Oloso, N.O.; Adeyemo, I.A.; van Heerden, H.; Fasanmi, O.G.; Fasina, F.O. Antimicrobial drug administration and antimicrobial resistance of salmonella isolates originating from the broiler production value chain in Nigeria. Antibiotics 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Nkrumah, N.; Hansen, D.S.; Awuah-Mensah, G.; Blankson, N.K.; Frimodt-Møller, N.; Newman, M.J.; Opintan, J.A.; Krogfelt, K.A. High level of colonization with third-generation cephalosporin-resistant Enterobacterales in African community settings, Ghana. Diagn. Microbiol. Infect. Dis. 2023, 106, 115918. [Google Scholar] [CrossRef]
- Calland, J.K.; Haukka, K.; Kpordze, S.W.; Brusah, A.; Corbella, M.; Merla, C.; Samuelsen, Ø.; Feil, E.J.; Sassera, D.; Karikari, A.B.; et al. Population structure and antimicrobial resistance among Klebsiella isolates sampled from human, animal, and environmental sources in Ghana: A cross-sectional genomic One Health study. Lancet Microbe 2023, 4, e943–e952. [Google Scholar] [CrossRef] [PubMed]
- Ayibieke, A.; Sato, W.; Mahazu, S.; Prah, I.; Addow-Thompson, J.; Ohashi, M.; Suzuki, T.; Iwanaga, S.; Ablordey, A.; Saito, R. Molecular characterisation of the NDM-1-encoding plasmid p2189-NDM in an Escherichia coli ST410 clinical isolate from Ghana. PLoS ONE 2018, 13, e0209623. [Google Scholar] [CrossRef]
- Muhigwa, M.; Sanou, S.; Kantagba, D.; Ouangraoua, S.; Yehouenou, C.L.; Michodigni, F.; Poda, A.; Renggli, E.P.; Bernasconi, A.; Godreuil, S.; et al. Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. J. Infect. Dev. Ctries. 2023, 17, 1714–1721. [Google Scholar] [CrossRef]
- Adelowo, O.O.; Vollmers, J.; Mäusezahl, I.; Kaster, A.K.; Müller, J.A. Detection of the carbapenemase gene bla VIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Sci. Rep. 2018, 8, 15116. [Google Scholar] [CrossRef]
- Akinola, O.T.; Onyeaghasiri, F.U.; Oluranti, O.O.; Elutade, O.O. Assessment of well water as a reservoir for extended-spectrum β-lactamases (ESBL) and carbapenem resistant Enterobacteriaceae from Iwo, Osun state, Nigeria. Iran. J. Microbiol. 2022, 14, 351. [Google Scholar] [CrossRef]
- Banu, R.A.; Alvarez, J.M.; Reid, A.J.; Enbiale, W.; Labi, A.K.; Ansa, E.D.; Annan, E.A.; Akrong, M.O.; Borbor, S.; Adomako, L.A.; et al. Extended spectrum beta-lactamase Escherichia coli in river waters collected from two cities in Ghana, 2018–2020. Trop. Med. Infect. Dis. 2021, 6, 105. [Google Scholar] [CrossRef]
- Mahazu, S.; Sato, W.; Ayibieke, A.; Prah, I.; Hayashi, T.; Suzuki, T.; Iwanaga, S.; Ablordey, A.; Saito, R. Insights and genetic features of extended-spectrum beta-lactamase producing Escherichia coli isolates from two hospitals in Ghana. Sci. Rep. 2022, 12, 1843. [Google Scholar] [CrossRef]
- Adekanmbi, A.O.; Oluwaseyi, T.A.; Oyelade, A.A. Dumpsite leachate as a hotspot of multidrug resistant Enterobacteriaceae harbouring extended spectrum and AmpC β-lactamase genes; a case study of Awotan municipal solid waste dumpsite in Southwest Nigeria. Meta Gene 2021, 28, 100853. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Ikott, W.E.; Okoh, A.I. Carbapenem resistance associated with coliuria among outpatient and hospitalised urology patients. New Microbes New Infect. 2022, 48, 101019. [Google Scholar] [CrossRef]
- Egbule, O.S.; Iweriebor, B.C.; Odum, E.I. Beta-Lactamase-producing Escherichia coli isolates recovered from pig handlers in retail shops and Abattoirs in selected localities in Southern Nigeria: Implications for public health. Antibiotics 2020, 10, 9. [Google Scholar] [CrossRef]
- John-Onwe, B.N.; Iroha, I.R.; Moses, I.B.; Onuora, A.L.; Nwigwe, J.O.; Adimora, E.E.; Okolo, I.O.; Uzoeto, H.O.; Ngwu, J.N.; Mohammed, I.D.; et al. Prevalence and multidrug-resistant ESBL-producing E. coli in urinary tract infection cases of HIV patients attending Federal Teaching Hospital, Abakaliki, Nigeria. Afr. J. Microbiol. Res. 2022, 16, 196–201. [Google Scholar] [CrossRef]
- Labi, A.K.; Bjerrum, S.; Enweronu-Laryea, C.C.; Ayibor, P.K.; Nielsen, K.L.; Marvig, R.L.; Newman, M.J.; Andersen, L.P.; Kurtzhals, J.A. High carriage rates of multidrug-resistant gram-negative bacteria in neonatal intensive care units from Ghana. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2020; Volume 7, p. ofaa109. [Google Scholar]
- Bisi-Johnson, M.A.; Adedeji, A.A.; Sulaiman, A.A.; Adefisoye, M.A.; Okoh, A.I. Isolation and genotypic characterization of extended-spectrum beta-lactamase-producing Escherichia coli O157: H7 and Aeromonas hydrophila from selected freshwater sources in Southwest Nigeria. Sci. Rep. 2023, 13, 10746. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Atobatele, B.O.; Akinola, O.T.; Olutona, G.O. Molecular characterization and detection of multidrug-resistant gene in bacterial strains in a health care centre located in Iwo, Osun State, Nigeria. Sci. Afr. 2023, 21, e01866. [Google Scholar] [CrossRef]
- Nsofor, C.A.; Moses, A.; Onyeakazi, C.M.; Okeke, C.J.; Ikegbunam, M.N. Detection of blaCTX-M, blaTEM, and blaSHV genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Nigeria. Rev. Res. Med. Microbiol. 2023, 34, 66–72. [Google Scholar] [CrossRef]
- Hansen, K.H.; Andreasen, M.R.; Pedersen, M.S.; Westh, H.; Jelsbak, L.; Schønning, K. Resistance to piperacillin/tazobactam in Escherichia coli resulting from extensive IS 26-associated gene amplification of bla TEM-1. J. Antimicrob. Chemother. 2019, 74, 3179–3183. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Portal, E.A.R.; Sands, K.; Farley, C.; Boostrom, I.; Jones, E.; Barrell, M.; Carvalho, M.J.; Milton, R.; Iregbu, K.; Modibbo, F.; et al. Characterisation of colistin resistance in Gram-negative microbiota of pregnant women and neonates in Nigeria. Nat. Commun. 2024, 15, 2302. [Google Scholar] [CrossRef]
- Mohamadou, M.; Essama, S.R.; Ngonde Essome, M.C.; Akwah, L.; Nadeem, N.; Gonsu Kamga, H.; Sattar, S.; Javed, S. High prevalence of Panton-Valentine leukocidin positive, multidrug resistant, Methicillin-resistant Staphylococcus aureus strains circulating among clinical setups in Adamawa and Far North regions of Cameroon. PLoS ONE 2022, 17, e0265118. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, A.O.; Oladipo, O.G.; Bezuidenhout, C.C. Multi-drug resistance traits of methicillin-resistant Staphylococcus aureus and other Staphylococcal species from clinical and environmental sources. J. Water Health 2019, 17, 930–943. [Google Scholar] [CrossRef] [PubMed]
- Adekanmbi, A.O.; Adejoba, A.T.; Banjo, O.A.; Saki, M. Detection of sul1 and sul2 genes in sulfonamide-resistant bacteria (SRB) from sewage, aquaculture sources, animal wastes and hospital wastewater in South-West Nigeria. Gene Rep. 2020, 20, 100742. [Google Scholar] [CrossRef]
- Tettey, R.; Egyir, B.; Tettey, P.; Arko-Mensah, J.; Addo, S.O.; Owusu-Nyantakyi, C.; Boateng, W.; Fobil, J. Genomic analysis of multidrug-resistant Escherichia coli from Urban Environmental water sources in Accra, Ghana, Provides Insights into public health implications. PLoS ONE 2024, 19, e0301531. [Google Scholar] [CrossRef] [PubMed]
- Abana, D.; Gyamfi, E.; Dogbe, M.; Opoku, G.; Opare, D.; Boateng, G.; Mosi, L. Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect. Dis. 2019, 19, 76. [Google Scholar] [CrossRef]
- Azaglo, G.S.K.; Khogali, M.; Hann, K.; Pwamang, J.A.; Appoh, E.; Appah-Sampong, E.; Agyarkwa, M.A.K.; Fiati, C.; Kudjawu, J.; Hedidor, G.K.; et al. Bacteria and their antibiotic resistance profiles in ambient air in Accra, Ghana, February 2020: A Cross-Sectional Study. Trop. Med. Infect. Dis. 2021, 6, 110. [Google Scholar] [CrossRef]
- Greenland, K.; de-Witt Huberts, J.; Wright, R.; Hawkes, L.; Ekor, C.; Biran, A. A cross-sectional survey to assess household sanitation practices associated with uptake of “Clean Team” serviced home toilets in Kumasi, Ghana. Environ. Urban. 2016, 28, 583–598. [Google Scholar] [CrossRef]
- Abubakar, I.R. Exploring the determinants of open defecation in Nigeria using demographic and health survey data. Sci. Total Environ. 2018, 637, 1455–1465. [Google Scholar] [CrossRef]
- Gayawan, E.; Somo-Aina, O.; Kuti, O. Analysis of the space-time trends in open defecation in Nigeria. Environ. Sci. Pollut. Res. 2023, 30, 68524–68535. [Google Scholar] [CrossRef]
- Johnson, N.G.; Agada, D.U.; John-Nwagwu, H.O.; Aremu, R.; Guma, E.P. Assessing the Spatial Distribution of Public Toilets in Lokoja Metropolis, Kogi State, Nigeria, Mitigating Open Defecation. J. Spat. Inf. Sci. 2024, 1, 111–126. [Google Scholar]
- Adesiyan, I.M.; Bisi-Johnson, M.A.; Okoh, A.I. Incidence of antibiotic resistance genotypes of Vibrio species recovered from selected freshwaters in Southwest Nigeria. Sci. Rep. 2022, 12, 18912. [Google Scholar] [CrossRef]
- Agboola, T.; Nmema, E.; Samuel, T.; Odetoyin, B. Multiple antibiotic resistant Vibrio pathotypes with the incidence of V. cholerae and V. parahaemolyticus in fish and fish storage water in Okitipupa and Igbokoda areas, Nigeria. South Asian J. Res. Microbiol. 2022, 13, 11–23. [Google Scholar] [CrossRef]
- Azike, C.A.; Agi, V.N.; Nwokah, E.G.; Ollor, A.O.; Nyenke, C.U.; Wachukwu, C.K. Antibiogram, Genomic and Phylogeny of Stool and Seafood Isolates from Some Cholera-Prone Coastal Communities in Rivers State, Nigeria. J. Biosci. Med. 2023, 11, 385–406. [Google Scholar] [CrossRef]
- Mphasa, M.; Ormsby, M.J.; Mwapasa, T.; Nambala, P.; Chidziwisano, K.; Morse, T.; Feasey, N.; Quilliam, R.S. Urban waste piles are reservoirs for human pathogenic bacteria with high levels of multidrug resistance against last resort antibiotics: A comprehensive temporal and geographic field analysis. J. Hazard. Mater. 2025, 484, 136639. [Google Scholar] [CrossRef] [PubMed]
- Edet, U.O.; Joseph, A.P.; Nwaokorie, F.O.; Okoroiwu, H.U.; Udofia, U.U.; Ibor, O.R.; Bassey, I.U.; Atim, A.D.; Edet, B.O.; Bassey, D.E.; et al. Impact of “sachet water” microplastic on agricultural soil physicochemistry, antibiotics resistance, bacteria diversity and function. SN Appl. Sci. 2022, 4, 323. [Google Scholar] [CrossRef]
- Borquaye, L.S.; Ekuadzi, E.; Darko, G.; Ahor, H.S.; Nsiah, S.T.; Lartey, J.A.; Mutala, A.H.; Boamah, V.E.; Woode, E. Occurrence of antibiotics and antibiotic-resistant bacteria in landfill sites in Kumasi, Ghana. J. Chem. 2019, 2019, 6934507. [Google Scholar] [CrossRef]
- Akpan, S.N.; Odeniyi, O.A.; Adebowale, O.; Alarape, S.A.; Adeyemo, O.K. Antibiotic resistance profile of Gram-negative bacteria isolated from Lafenwa abattoir effluent and its receiving water (Ogun River) in Abeokuta, Ogun state, Nigeria. Onderstepoort J. Vet. Res. 2020, 87, 8. [Google Scholar] [CrossRef]
- Baah, D.A.; Kotey, F.C.; Dayie, N.T.; Codjoe, F.S.; Tetteh-Quarcoo, P.B.; Donkor, E.S. Multidrug-resistant gram-negative bacteria contaminating raw meat sold in Accra, Ghana. Pathogens 2022, 11, 1517. [Google Scholar] [CrossRef]
- Abas, R.; Cobbina, S.J.; Abakari, G. Microbial quality and antibiotic sensitivity of bacterial isolates in “Tuo-Zaafi” vended in the central business district of tamale. Food Sci. Nutr. 2019, 7, 3613–3621. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Allam, M.; Ismail, A.; Djoko, C.F.; Essack, S.Y. Genome sequencing of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from pigs and abattoir workers in Cameroon. Front. Microbiol. 2018, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Ogofure, A.G.; Uwhuba, K.E. Prevalence and characterization of food-borne Vibrio parahaemolyticus from African salad in southern Nigeria. Front. Microbiol. 2021, 12, 632266. [Google Scholar] [CrossRef] [PubMed]
- Beshiru, A.; Igbinosa, I.H.; Enabulele, T.I.; Ogofure, A.G.; Kayode, A.J.; Okoh, A.I.; Igbinosa, E.O. Biofilm and antimicrobial resistance profile of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in vegetables and salads. LWT 2023, 182, 114913. [Google Scholar] [CrossRef]
- Darboe, S.; Dobreniecki, S.; Jarju, S.; Jallow, M.; Mohammed, N.I.; Wathuo, M.; Ceesay, B.; Tweed, S.; Basu Roy, R.; Okomo, U.; et al. of Panton-Valentine leukocidin (PVL) and antimicrobial resistance in community-acquired clinical Staphylococcus aureus in an urban Gambian hospital: A 11-year period retrospective pilot study. Front. Cell. Infect. Microbiol. 2019, 9, 170. [Google Scholar] [CrossRef]
- Manasfi, R.; Brienza, M.; Ait-Mouheb, N.; Montemurro, N.; Perez, S.; Chiron, S. Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci. Total Environ. 2021, 765, 142742. [Google Scholar] [CrossRef]
- Matchawe, C.; Bonny, P.; Yandang, G.; Mafo, H.C.Y.; Nsawir, B.J. Water shortages: Cause of water safety in Sub-Saharan Africa. In Drought-Impacts and Management; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Inyinbor, A.A.; Tsopmo, A.; Udenigwe, C.C. Antibiotics threats on vegetables and the perils of low income nations practices. Sustain. Chem. Pharm. 2021, 21, 100448. [Google Scholar] [CrossRef]
- Mapfumo, B. Regional Review on Status and Trends in Aquaculture Development in Sub-Saharan Africa–2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Ogunji, J.; Wuertz, S. Aquaculture development in Nigeria: The second biggest aquaculture producer in Africa. Water 2023, 15, 4224. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Maikai, B.V.; Kwaga, J.K. Antimicrobial use, residue and resistance dissemination in freshwater fish farms of north-central Nigeria: One health implications. Food Control 2021, 130, 108238. [Google Scholar] [CrossRef]
- Michael, A.; Polycarp, M.; Sanda, M.K.; David, S.A. An Analysis Of Fish Farmers’management Practices And Information Needs In Adamawa State, Nigeria. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2021, 21, 571–583. [Google Scholar]
- Adah, D.A.; Saidu, L.; Oniye, S.J.; Adah, A.S.; Daoudu, O.B.; Ola-Fadunsin, S.D. Molecular characterization and antibiotics resistance of Aeromonas species isolated from farmed African catfish Clarias gariepinus Burchell, 1822. BMC Vet. Res. 2024, 20, 16. [Google Scholar] [CrossRef]
- Yakubu, Y.; Daneji, A.I.; Mohammed, A.A.; Jibril, A.; Umaru, A.; Aliyu, R.M.; Garba, B.; Lawal, N.; Jibril, A.H.; Shuaibu, A.B. Understanding the awareness of antimicrobial resistance amongst commercial poultry farmers in northwestern Nigeria. Prev. Vet. Med. 2024, 228, 106226. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Strategic and Technical Advisory Group for Antimicrobial Resistance (STAG-AMR): Report of the Fourth Meeting 11–13 June 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Odewale, G.; Jibola-Shittu, M.Y.; Ojurongbe, O.; Olowe, R.A.; Olowe, O.A. Genotypic determination of Extended Spectrum β-Lactamases and carbapenemase production in clinical isolates of Klebsiella pneumoniae in Southwest Nigeria. Infect. Dis. Rep. 2023, 15, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Samia, N.I.; Robicsek, A.; Heesterbeek, H.; Peterson, L.R. Methicillin-resistant staphylococcus aureus nosocomial infection has a distinct epidemiological position and acts as a marker for overall hospital-acquired infection trends. Sci. Rep. 2022, 12, 17007. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Ogofure, A.G.; Ekundayo, T.C.; Okoh, A.I. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria. Front. Cell. Infect. Microbiol. 2023, 13, 1122059. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Fluit, A.C.; Visser, M.R.; Schmitz, F.J. Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 2001, 14, 836–871. [Google Scholar] [CrossRef]
- Zamudio, R.; Boerlin, P.; Mulvey, M.R.; Haenni, M.; Beyrouthy, R.; Madec, J.Y.; Schwarz, S.; Cormier, A.; Chalmers, G.; Bonnet, R.; et al. Global transmission of extended-spectrum cephalosporin resistance in Escherichia coli driven by epidemic plasmids. EBioMedicine 2024, 103, 105097. [Google Scholar] [CrossRef]
- Anjum, M.F.; Zankari, E.; Hasman, H. Molecular methods for detection of antimicrobial resistance. Microbiol Spectr. 2018, 5, 33–50. [Google Scholar]
- Akinyemi, K.O.; Fakorede, C.O.; Linde, J.; Methner, U.; Wareth, G.; Tomaso, H.; Neubauer, H. Whole genome sequencing of Salmonella enterica serovars isolated from humans, animals, and the environment in Lagos, Nigeria. BMC Microbiol. 2023, 23, 164. [Google Scholar] [CrossRef]
- Cerdeira, J.; Mesquita, J.; Vieira, E.S. International research collaboration: Is Africa different? A cross-country panel data analysis. Scientometrics 2023, 128, 2145–2174. [Google Scholar] [CrossRef]
- Caelers, D.; Okoth, D. Research funding in Africa: Navigating sustainability and shifting perspectives. Nat. Afr. 2023. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.; van Puijenbroek, P.J.; van Beek, L.R.P.; Wanders, N.; Sutanudjaja, E.H.; van Vliet, M.T. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution. Nat. Water 2023, 1, 602–613. [Google Scholar] [CrossRef]
- Omohwovo, E.J. Wastewater management in Africa: Challenges and recommendations. Environ. Health Insights 2024, 18, 11786302241289681. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F.; Ekli, R.; Aduah, M. Incidence and antibiotic susceptibility of Staphylococcus aureus isolated from ready-to-eat meats in the environs of Bolgatanga Municipality of Ghana. Cogent Environ. Sci. 2020, 6, 1791463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adenaya, A.; Adeniran, A.A.; Ugwuoke, C.L.; Saliu, K.; Raji, M.A.; Rakshit, A.; Ribas-Ribas, M.; Könneke, M. Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Microorganisms 2025, 13, 951. https://doi.org/10.3390/microorganisms13040951
Adenaya A, Adeniran AA, Ugwuoke CL, Saliu K, Raji MA, Rakshit A, Ribas-Ribas M, Könneke M. Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Microorganisms. 2025; 13(4):951. https://doi.org/10.3390/microorganisms13040951
Chicago/Turabian StyleAdenaya, Adenike, Adedapo Adedayo Adeniran, Chidera Linus Ugwuoke, Kaosara Saliu, Mariam Adewumi Raji, Amartya Rakshit, Mariana Ribas-Ribas, and Martin Könneke. 2025. "Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa" Microorganisms 13, no. 4: 951. https://doi.org/10.3390/microorganisms13040951
APA StyleAdenaya, A., Adeniran, A. A., Ugwuoke, C. L., Saliu, K., Raji, M. A., Rakshit, A., Ribas-Ribas, M., & Könneke, M. (2025). Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Microorganisms, 13(4), 951. https://doi.org/10.3390/microorganisms13040951