Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen, Diagnosis and Storage
2.2. Antifungal Susceptibility Testing (AFST) by CLSI Method
2.3. Antifungal Susceptibility Testing by MALDI-TOF MS (AFST-MS)
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arendrup, M.C. Epidemiology of invasive candidiasis. Curr. Opin. Crit. Care 2010, 16, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.A.; Evangelista, A.J.J.; Serpa, R.; Andrade, A.R.C.; Mendes, P.B.L.; Oliveira, J.S.; Alencar, L.P.; Pereira, V.S.; Lima-Neto, R.G.; Brilhante, R.N.; et al. Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Front. Microbiol. 2019, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Hinrichsen, S.L.; Falcão, E.; Vilella, T.A.S.; Rêgo, L.; Lira, C.; Almeida, L.; Martins, M.; Araújo, C.; Duarte, M.; Lopes, G. Candida isolates in tertiary hospitals in Northeastern Brazil. Braz. J. Microbiol. 2009, 40, 325–328. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nucci, M.; Queiroz-Telles, F.; Alvarado-Matute, T.; Tiraboschi, I.N.; Cortes, J.; Zurita, J.; Guzman-Blanco, M.; Santolaya, M.E.; Thompson, L.; Sifuentes-Osornio, J.; et al. Epidemiology of candidemia in Latin America: A laboratory-based survey. PLoS ONE 2013, 8, 59373. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.B.; Hinrichsen, S.L.; Neves, R.P.; Lima-Neto, R.G. Candidemia in a public hospital in Northeastern Brazil: Epidemiological features and risk factors in critically ill patients. Rev. Iberoam. Micol. 2019, 36, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.; Shah, P.M.; Mentzel, C.; Schneider, M.; Just-Nuebling, G.; Huebner, K. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J. Infect. 1996, 33, 23–32. [Google Scholar] [CrossRef]
- Klingspor, L.; Jalal, S. Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin. Microbiol. Infect. 2006, 12, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Saracli, M.A.; Fothergill, A.W.; Sutton, D.A.; Wiederhold, N.P. Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med. Mycol. 2015, 53, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Lima-Neto, R.G.; Santos, C.; Lima, N.; Sampaio, P.; Pais, C.; Neves, R.P. Application of MALDI-TOF MS for requalification of Candida clinical isolates culture collection. Braz. J. Microbiol. 2014, 45, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Marinach, C.; Alanio, A.; Palous, M.; Kwasek, S.; Fekkar, A.; Brossas, J.Y.; Brun, S.; Snounou, G.; Hennequin, C.; Sanglard, D.; et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: The example of Candida albicans and fluconazole. Proteomics 2009, 9, 4627–4631. [Google Scholar] [CrossRef] [PubMed]
- Vella, A.; De Carolis, E.; Vaccaro, L.; Posteraro, P.; Perlin, D.S.; Kostrzewa, M.; Posteraro, B.; Sanguinetti, M. Rapid antifungal susceptibility testing by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry analysis. J. Clin. Microbiol. 2013, 51, 2964–2969. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Testing of Yeasts Approved Standard Document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 28, pp. 1–25. ISBN 1-56238-66-2. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. M27-S4; Fourth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 28, pp. 1–23. [Google Scholar]
- Vella, A.; De Carolis, E.; Mello, E.; Perlin, D.S.; Sanglard, D.; Sanguinetti, M.; Posteraro, B. Potential use of MALDI-TOF mass spectrometry for rapid detection of antifungal resistance in the human pathogen Candida glabrata. Sci. Rep. 2017, 7, 9099. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, E.; Vella, A.; Florio, A.R.; Posteraro, P.; Perlin, D.S.; Sanguinetti, M.; Posteraro, B. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDITOF MS) for caspofungin susceptibility testing of Candida and Aspergillus species. J. Clin. Microbiol. 2012, 50, 2479–2483. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Singh, P.; Shamanth, A.S.; Rudramurthy, S.M.; Chakrabarti, A.; Ghosh, A.K. Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS. Med. Mycol. 2018, 56, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Barchiesi, F.; Cuenca-Estrella, M.; Pfaller, M.A.; Rinaldi, M.; Rodriguez-Tudela, J.L.; Verweij, P.E. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 2005, 43, 3884–3889. [Google Scholar] [CrossRef] [PubMed]
- Martines-Lamas, L.; Molino, M.L.P.; Pardo, F.; Varela, E.; Regueiro, B.J. Espectrometría de masas matrix-assisted laser desorption ionization time-of-flight vs. metodología convencional en la identificación de Candida no-albicans. Enferm. Infecc. Microbiol. Clin. 2011, 29, 568–572. [Google Scholar] [CrossRef] [PubMed]
Isolated and Lab Number | Breakpoint (MIC in µg/mL) Breakpoint (MPCC in µg/mL) | |||||
---|---|---|---|---|---|---|
Anidula. | Caspo. | Mica. | Anidula. | Caspo. | Mica. | |
C. parapsilosis 346A | S (0.25) | S (0.25) | S (2) | S (0.5) | S (0.125) | S (0.5) |
C. parapsilosis 346B | S (0.25) | S (0.25) | S (2) | S (0.25) | S (0.0625) | S (0.5) |
C. parapsilosis 474 | S (0.5) | S (0.5) | S (2) | S (0.125) | S (0.5) | S (0.5) |
C. parapsilosis 595 | S (0.25) | S (0.25) | S (1) | S (0.0625) | S (0.25) | S (0.25) |
C. parapsilosis 596A | S (0.25) | S (0.25) | S (0.5) | S (0.0625) | S (0.125) | S (0.5) |
C. parapsilosis 596B | S (0.25) | S (0.25) | S (0.5) | S (0.125) | S (0.0625) | S (2) |
C. parapsilosis 5902 | S (0.0625) | S (0.0625) | S (0.03125) | S (0.25) | S (0.25) | S (0.03125) |
C. parapsilosis 12 | S (0.125) | S (0.03125) | S (0.03125) | S (0.03125) | S (0.125) | S (0.06125) |
C. parapsilosis 29 | S (0.125) | S (0.0625) | S (0.0625) | S (0.0625) | S (0.25) | S (0.25) |
C. parapsilosis 30 | S (0.0625) | S (0.0625) | S (0.0625) | S (0.125) | S (0.25) | S (0.25) |
C. parapsilosis 31 | S (0.25) | S (0.125) | S (0.0625) | S (1) | S (0.5) | S (0.25) |
C. parapsilosis 39 | S (0.0625) | S (0.125) | S (0.0625) | S (0.03125) | S (0.5) | S (0.25) |
C. parapsilosis 40 | R (16) | S (0.25) | S (2) | S (1) | S (0.5) | S (2) |
C. parapsilosis 44 | S (0.03125) | S (0.0625) | S (0.0625) | S (0.03125) | S (0.25) | S (0.25) |
C. parapsilosis 45 | S (0.25) | S (0.0625) | S (0.0625) | S (0.125) | S (0.0625) | S (0.25) |
C. parapsilosis 48 | S (0.0625) | S (0.0625) | S (0.03125) | S (0.25) | S (0.25) | S (0.03125) |
C. parapsilosis 49 | S (0.03125) | S (0.03125) | S (0.06125) | S (0.03125) | S (0.125) | S (0.25) |
C. orthopsilosis 03 | S (0.0625) | S (0.125) | S (0.5) | S (0.25) | I+(4) | S (0.5) |
C. orthopsilosis 07 | S (2) | S (0.0625) | S (0.5) | S (0.03125) | S (0.03125) | S (0.03125) |
C. metapsilosis 32 | S (1) | S (1) | S (0,5) | S (0.25) | S (0.25) | S (0.5) |
ATCC 22019 | S (0.5) | S (0.5) | S (1) | S (0.5) | S (0.25) | S (0.5) |
MPCC (µg/mL) | CCI Null | CCI Maximum |
---|---|---|
0.0000 | 0.4662 | 1.0000 |
0.0313 | 0.4642 | 0.9289 |
0.0625 | 0.5150 | 0.9565 |
0.1250 | 0.5127 | 0.9429 |
0.2500 | 0.4868 | 0.9322 |
0.5000 | 0.4440 | 0.7534 |
1.0000 | 0.4857 | 0.7568 |
2.0000 | 0.4550 | 0.7452 |
4.0000 | 0.5634 | 0.5955 |
8.0000 | 0.6432 | 0.6567 |
16.0000 | 1.0000 | 0.4662 |
MPCC (µg/mL) | CCI Null | CCI Maximum |
---|---|---|
0.0000 | 0.4696 | 1.0000 |
0.0313 | 0.5124 | 0.9668 |
0.0625 | 0.5476 | 0.9094 |
0.1250 | 0.5786 | 0.8908 |
0.2500 | 0.5719 | 0.8825 |
0.5000 | 0.5591 | 0.8375 |
1.0000 | 0.4858 | 0.6288 |
2.0000 | 0.4773 | 0.6363 |
4.0000 | 0.5256 | 0.4936 |
8.0000 | 0.3373 | 0.6412 |
16.0000 | 1.0000 | 0.4696 |
MPCC (µg/mL) | CCI Null | CCI Maximum |
---|---|---|
0.0000 | 0.0100 | 1.0000 |
0.0313 | 0.0095 | 0.8997 |
0.0625 | 0.0116 | 0.8445 |
0.1250 | 0.0323 | 0.8183 |
0.2500 | 0.0081 | 0.3417 |
0.5000 | 0.4160 | 0.4287 |
1.0000 | 0.0090 | 0.6709 |
2.0000 | 0.0096 | 0.2075 |
4.0000 | 0.5823 | 0.5701 |
8.0000 | 0.0087 | 0.0073 |
16.0000 | 1.0000 | 0.0100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberto, A.E.M.; Xavier, D.E.; Vidal, E.E.; Vidal, C.F.d.L.; Neves, R.P.; Lima-Neto, R.G.d. Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex. Microorganisms 2020, 8, 109. https://doi.org/10.3390/microorganisms8010109
Roberto AEM, Xavier DE, Vidal EE, Vidal CFdL, Neves RP, Lima-Neto RGd. Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex. Microorganisms. 2020; 8(1):109. https://doi.org/10.3390/microorganisms8010109
Chicago/Turabian StyleRoberto, Ana Emília M., Danilo E. Xavier, Esteban E. Vidal, Cláudia Fernanda de L. Vidal, Rejane P. Neves, and Reginaldo G. de Lima-Neto. 2020. "Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex" Microorganisms 8, no. 1: 109. https://doi.org/10.3390/microorganisms8010109
APA StyleRoberto, A. E. M., Xavier, D. E., Vidal, E. E., Vidal, C. F. d. L., Neves, R. P., & Lima-Neto, R. G. d. (2020). Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex. Microorganisms, 8(1), 109. https://doi.org/10.3390/microorganisms8010109