The Control of Cultural Heritage Microbial Deterioration
Abstract
:1. Introduction
2. Chemical Methods
2.1. Traditional Chemical Biocides
2.2. Nanoparticles
3. Physical Methods
3.1. Mechanical Removal
3.2. UV-C Irradiation
3.3. Gamma Radiation
3.4. Laser Cleaning
3.5. Heat Shocking, Microwaves, and Dry Ice Treatment
4. Biological Methods
4.1. Biocidal Treatments with Compounds of Natural Origin
4.2. Other Biological Methods
5. Combination of Control Methods
6. Implications and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Allsopp, D.; Seal, K.J.; Gaylarde, C.C. Introduction to Biodeterioration, 2nd ed.; Cambridge University Press: New York, NY, USA, 2004; p. 1. [Google Scholar]
- Teixeira, F.S.; dos Reis, T.A.; Sgubin, L.; Thome, L.E.; Bei, I.W.; Clemencio, R.E.; Correa, B.; Salvadori, M.C. Disinfection of ancient paper contaminated with fungi using supercritical carbon dioxide. J. Cult. Herit. 2018, 30, 110–116. [Google Scholar] [CrossRef]
- Rusu, D.E.; Stratulat, L.; Ioanid, G.E.; Vlad, A.M. Cold high-frequency plasma versus afterglow plasma in the preservation of mobile cultural heritage on paper substrate. IEEE Trans. Plasma Sci. 2020, 48, 410–413. [Google Scholar] [CrossRef]
- Nugari, M.P.; Salvadori, O. Biodeterioration control of cultural heritage: Methods and products. In Molecular Biology and Cultural Heritage; Saiz-Jimenez, C., Ed.; Swets & Zeitlinger: Lisse, The Netherlands, 2003; pp. 233–242. [Google Scholar]
- Meng, H.; Zhang, X.; Katayama, Y.; Ge, Q.; Gu, J.-D. Microbial diversity and composition of the Preah Vihear temple in Cambodia by high-throughput sequencing based on genomic DNA and RNA. Int. Biodeter. Biodegr. 2020, 149, 104936. [Google Scholar] [CrossRef]
- Szulc, J.; Ruman, T.; Gutarowska, B. Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. Int. Biodeter. Biodegr. 2017, 125, 13–23. [Google Scholar] [CrossRef]
- Gutarowska, B. The use of -omics tools for assessing biodeterioration of cultural heritage: A review. J. Cult. Herit. 2020, in press. [Google Scholar]
- Caneva, G.; Nugari, M.P.; Salvadori, O. Control of biodeterioration and bioremediation techniques. In Plant Biology for Cultural Heritage. Biodeterioration and Conservation; Caneva, G., Nugari, M.P., Salvadori, O., Eds.; Getty Publication: Los Angeles, CA, USA, 2008; pp. 309–345. [Google Scholar]
- Doehne, E.; Price, C.A. Stone Conservation—An Overview of Current Research, 2nd ed.; The Getty Conservation Institute: Los Angeles, CA, USA, 2010. [Google Scholar]
- Gulotta, D.; Villa, F.; Cappitelli, F.; Toniolo, L. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci. Total Environ. 2018, 639, 1480–1490. [Google Scholar] [CrossRef]
- Chiari, G.; Cossio, R. Lichens on Wyoming Sandstone. Do They Cause Damage? In Biodeterioration of Stone Surfaces; Springer: Dordrecht, The Netherlands, 2004; pp. 99–113. [Google Scholar]
- Villa, F.; Gulotta, D.; Toniolo, L.; Borruso, L.; Cattò, C.; Cappitelli, F. Aesthetic alteration of marble surfaces caused by biofilm formation: Effects of chemical cleaning. Coatings 2020, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyk, A.; Rybitwa, D.; Rahnama, M.; Wilczyński, S. Microorganisms colonising historical cardboard objects from the Auschwitz-Birkenau State Museum in Oświęcim, Poland and their disinfection with vaporised hydrogen peroxide (VHP). Int. Biodeter. Biodegr. 2020, 152, 104997. [Google Scholar]
- Favero-Longo, S.E.; Benesperi, R.; Bertuzzi, S.; Bianchi, E.; Buffa, G.; Giordani, P.; Loppie, S.; Malaspina, P.; Matteucci, E.; Paoli, L.; et al. Species- and site-specific efficacy of commercial biocides and application solvents against lichens. Int. Biodeter. Biodegr. 2017, 123, 127–137. [Google Scholar] [CrossRef]
- Nugari, M.P.; Pietrini, A.M.; Caneva, G.; Imperi, F.; Visca, P. Biodeterioration of mural paintings in a rocky habitat: The Crypt of the Original Sin (Matera, Italy). Int. Biodeter. Biodegr. 2009, 63, 705–711. [Google Scholar] [CrossRef]
- Fiorillo, F.; Fiorentino, S.; Montanari, M.; Roversi Monaco, C.; Del Bianco, A.; Vandini, M. Learning from the past, intervening in the present: The role of conservation science in the challenging restoration of the wall painting Marriage at Cana by Luca Longhi (Ravenna, Italy). Herit. Sci. 2020, 8, 10. [Google Scholar] [CrossRef]
- Becerra, J.; Ortiz, P.; Zaderenko, A.P.; Karapanagiotis, I. Assessment of nanoparticles/nanocomposites to inhibit micro-algal fouling on limestone façades. Build. Res. Informat. 2020, 48, 180–190. [Google Scholar] [CrossRef]
- Salvadori, O.; Charola, A.E. Methods to Prevent Biocolonization and Recolonization: An Overview of Current Research for Architectural and Archaeological Heritage. In Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 37–50. [Google Scholar]
- Faimon, J.; Štelcl, J.; Kubešová, S.; Zimák, J. Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environ. Pollut. 2003, 122, 417–422. [Google Scholar] [CrossRef]
- Toreno, G.; Isola, D.; Meloni, P.; Carcangiu, G.; Selbmann, L.; Onofri, S.; Caneva, G.; Zucconi, L. Biological colonization on stone monuments: A new low impact cleaning method. J. Cult. Herit. 2018, 30, 100–109. [Google Scholar] [CrossRef]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefèvre, M. La ‘Maladie Verte’ de Lascaux. Stud. Conserv. 1974, 19, 126–156. [Google Scholar]
- Li, T.; Hu, Y.; Zhang, B. Evaluation of efficiency of six biocides against microorganisms commonly found on Feilaifeng Limestone, China. J. Cult. Herit. 2019, 43, 45–50. [Google Scholar] [CrossRef]
- Kyi, C.; Sloggett, R.; Schiesser, C.H. Preliminary investigations into the action of nitric oxide in the control of biodeterioration. AICCM Bull. 2014, 35, 60–68. [Google Scholar]
- Alexander, S.-A.; Rouse, E.M.; White, J.M.; Tse, N.; Kyi, C.; Schiesser, C.H. Controlling biofilms on cultural materials: The role of 3-(dodecane-1-thiyl)-4-(hydroxymethyl)-2,2,5,5-tetramethyl-1-pyrrolinoxyl. Chem. Commun. 2015, 51, 3355–3358. [Google Scholar] [CrossRef]
- Alexander, S.-A.; Schiesser, C.H. Heteroorganic molecules and bacterial biofilms: Controlling biodeterioration of cultural heritage. Arkivoc 2017, 180–222. [Google Scholar] [CrossRef] [Green Version]
- Robertson, P.K.J.; Alakomi, H.L.; Arrien, N.; Gorbushina, A.A.; Krumbein, W.E.; Maxwell, I.; McCullagh, C.; Ross, N.; Saarela, M.; Valero, J.; et al. Inhibitors of biofilm damage on mineral materials (Biodam). In Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, Stockholm, Sweden, 27 June–2 July 2004; Kwiatkowski, D., Löfvendahl, R., Eds.; ICOMOS Sweden: Stockholm, Sweden, 2004; pp. 399–406. [Google Scholar]
- Young, M.E.; Alakomi, H.-L.; Fortune, I.; Gorbushina, A.A.; Krumbein, W.E.; Maxwell, I.; McCullagh, C.; Robertson, P.; Saarela, M.; Valero, J.; et al. Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ. Geol. 2008, 56, 631–641. [Google Scholar] [CrossRef]
- Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A brief review. Health Technol. 2020, 10, 51–59. [Google Scholar] [CrossRef]
- Gutarowska, B.; Skora, J.; Zduniak, K.; Rembisz, D. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int. Biodeter. Biodegr. 2012, 68, 7–17. [Google Scholar] [CrossRef]
- Becerra, J.; Mateo, M.P.; Nicolás, G.; Ortiz, P. Evaluation of the penetration depth of nano-biocide treatments by LIBS. In Science and Digital Technology for Cultural Heritage & Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models, Proceedings of the 4th International Congress Science and Technology for the Conservation of Cultural Heritage (TechnoHeritage 2019), Sevilla, Spain, 26–30 March 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 368–372. [Google Scholar]
- Essa, A.M.M.; Khallaf, M.K. Biological nanosilver particles for the protection of archaeological stones against microbial colonization. Int. Biodeter. Biodegr. 2014, 94, 31–37. [Google Scholar] [CrossRef]
- Van der Werf, I.D.; Ditaranto, N.; Picca, R.A.; Sportelli, M.C.; Sabbatini, L. Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Herit. Sci. 2015, 3, 1–9. [Google Scholar] [CrossRef]
- Franco Castillo, I.; Garciá Guillén, E.; De La Fuente, J.M.; Silva, F.; Mitchell, S.G. Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles. J. Mat. Chem. B 2019, 7, 6412–6419. [Google Scholar] [CrossRef]
- Zarzuela, R.; Carbú, M.; Gil, M.L.A.; Cantoral, J.M.; Mosquera, M.J. CuO/SiO2 nanocomposites: A multifunctional coating for application on building stone. Mater. Des. 2017, 114, 364–372. [Google Scholar] [CrossRef]
- Soria-Castro, M.; De la Rosa-García, S.C.; Quintana, P.; Gómez-Cornelio, S.; Sierra-Fernandez, A.; Gómez-Ortíz, N. Broad spectrum antimicrobial activity of Ca(Zn(OH)3)2·2H2O and ZnO nanoparticles synthesized by the sol–gel method. J. Sol-Gel Sci. Technol. 2019, 89, 284–294. [Google Scholar] [CrossRef]
- Sterflinger, K.; Sert, H. Biodeterioration of Buildings and Works of Art—Practical Implications on Restoration Practice. In Heritage, Weathering and Conservation; Fort, R., Alvarez de Buergo, M., Gomez-Heras, M., Vazquez-Calvo, C., Eds.; Taylor & Francis Group: London, UK, 2006; Volume 1, pp. 299–304. [Google Scholar]
- Lee, C.H.; Lee, M.S.; Kim, Y.T.; Kim, J. Deterioration assessment and conservation of a heavily degraded Korean Stone Buddha from the ninth century. Stud. Conserv. 2006, 51, 305–316. [Google Scholar] [CrossRef]
- Sanmartín, P.; Rodríguez, A.; Aguiar, U. Medium-term field evaluation of several widely used cleaning-restoration techniques applied to algal biofilm formed on a granite-built historical monument. Int. Biodeter. Biodegr. 2020, 147, 104870. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Adams, R.I.; Tian, Y.; Taylor, J.W.; Bruns, T.D.; Hyvärinen, A.; Täubel, M. Passive dust collectors for assessing airborne microbial material. Microbiome 2015, 3, 46. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; VanSnick, S. The effectiveness of dust mitigation and cleaning strategies at The National Archives, UK. J. Cult. Herit. 2017, 24, 100–107. [Google Scholar] [CrossRef]
- Mulec, J.; Kosi, G. Lampenflora algae and methods of growth control. J. Cave Karst Stud. 2009, 71, 109–115. [Google Scholar]
- Pozo, S.; Montojo, C.; Rivas, T.; López-Díaz, A.J.; Fiorucci, M.P.; López De Silanes, M.E. Comparison between Methods of Biological Crust Removal on Granite. Key Eng. Mater. 2013, 548, 317–325. [Google Scholar] [CrossRef]
- Delgado Rodrigues, J.; Vale Anjos, M.; Charola, A.E. Recolonization of Marble Sculptures in a Garden Environment. In Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series; Charola, A.E., McNamara, C.J., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 71–85. [Google Scholar]
- Charola, A.E.; Vale Anjos, M.; Delgado Rodrigues, J.; Barreiro, A. Developing a maintenance plan for the stone sculptures and decorative elements in the Gardens of the National Palace of Queluz, Portugal. Restorat. Build. Monum. 2007, 13, 377–388. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the Performance of Innovative and Traditional Biocides Mixed with Consolidants and Water-Repellents for the Prevention of Biological Growth on Stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef]
- Adhikary, S.P.; Sahu, J.K. UV protecting pigment of the terrestrial cyanobacterium Tolypothrix byssoidea. J. Plant Physiol. 1998, 153, 770–773. [Google Scholar] [CrossRef]
- Borderie, F.; Alaoui-Sossé, B.; Aleya, L. Heritage materials and biofouling mitigation through UV-C irradiation in show caves: State-of-the-art practices and future challenges. Environ. Sci. Pollut. Res. 2015, 22, 4144–4172. [Google Scholar] [CrossRef]
- Borderie, F.; Laurence, A.-S.; Naoufal, R.; Bousta, F.; Orial, G.; Rieffel, D.; Badr, A.-S. UV-C irradiation as a tool to eradicate algae in caves. Int. Biodeter. Biodegr. 2011, 65, 579–584. [Google Scholar] [CrossRef]
- Borderie, F.; Tête, N.; Cailhol, D.; Alaoui-Sehmer, L.; Bousta, F.; Rieffel, D.; Aleya, L.; Alaoui-Sossé, B. Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci. Total Environ. 2014, 484, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Pfendler, S.; Borderie, F.; Bousta, F.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. Comparison of biocides, allelopathic substances and UV-C as treatments for biofilm proliferation on heritage monuments. J. Cult. Herit. 2018, 33, 117–124. [Google Scholar] [CrossRef]
- Sanmartín, P.; Villa, F.; Polo, A.; Silva, B.; Prieto, B.; Cappitelli, F. Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Ann. Microbiol. 2015, 65, 1153–1158. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Sanmartín, P. Exposure to artificial daylight or UV irradiation (A, B or C) prior to chemical cleaning: An effective combination for removing phototrophs from granite. Biofouling 2018, 34, 851–869. [Google Scholar] [CrossRef]
- Calvo, A.M.C.; Docters, A.; Miranda, M.V.; Saparrat, M.C.N. The use of gamma radiation for the treatment of cultural heritage in the Argentine National Atomic Energy Commission: Past, present, and future. Top. Curr. Chem. 2017, 375, 9. [Google Scholar] [CrossRef]
- Katušin-Ražem, B.; Ražem, D.; Braun, M. Irradiation treatment for the protection and conservation of cultural heritage artefacts in Croatia. Radiat. Phys. Chem. 2009, 78, 729–731. [Google Scholar] [CrossRef]
- Kantoğlu, Ö.; Ergun, E.; Ozmen, D.; Halkman, H.B.D. A biological survey on the Ottoman Archive papers and determination of the D10 value. Radiat. Phys. Chem. 2018, 144, 204–210. [Google Scholar] [CrossRef]
- Ponta, C.C. Irradiation conservation of cultural heritage. Nucl. Phys. News 2008, 18, 22–24. [Google Scholar] [CrossRef]
- Cortella, L.; Albino, C.; Tran, Q.-K.; Froment, K. 50 years of French experience in using gamma rays as a tool for cultural heritage remedial conservation. Radiat. Phys. Chem. 2020, 171, 108726. [Google Scholar] [CrossRef]
- Manea, M.M.; Negut, C.D.; Stanculescu, I.R.; Ponta, C.C. Irradiation effects on canvas oil painting: Spectroscopic observations. Radiat. Phys. Chem. 2012, 81, 1595–1599. [Google Scholar] [CrossRef]
- Abdel-Haliem, M.E.F.; Ali, M.F.; Ghaly, M.F.; Sakr, A.A. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J. Cult. Herit. 2013, 14, 45–50. [Google Scholar] [CrossRef]
- Nunes, I.; Mesquita, N.; Cabo Verde, S.; João Trigo, M.; Ferreira, A.; Carolino, M.M.; Portugal, A.; Luísa Botelho, M. Gamma radiation effects on physical properties of parchment documents: Assessment of D max. Radiat. Phys. Chem. 2012, 81, 1943–1946. [Google Scholar] [CrossRef]
- Geba, M.; Lisa, G.; Ursescu, C.M.; Olaru, A.; Spiridon, I.; Leon, A.L.; Stanculescu, I. Gamma irradiation of protein-based textiles for historical collections decontamination. J. Therm. Anal. Calorim. 2014, 118, 977–985. [Google Scholar] [CrossRef]
- Vujcic, I.; Masic, S.; Medic, M. The influence of gamma irradiation on the color change of wool, linen, silk, and cotton fabrics used in cultural heritage artifacts. Radiat. Phys. Chem. 2019, 156, 307–313. [Google Scholar] [CrossRef]
- Choi, J.-I.; Lim, S. Inactivation of fungal contaminants on Korean traditional cashbox by gamma irradiation. Radiat. Phys. Chem. 2014, 118, 70–74. [Google Scholar] [CrossRef]
- Marušić, K.; Klarić, M.S.; Šincić, L.; Pucić, I.; Mihaljević, B. Combined effects of gamma-irradiation, dose rate and mycobiota activity on cultural heritage—Study on model paper. Radiat. Phys. Chem. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Barreiro, P.; González, P.; Paz-Bermúdez, G. Nd:YAG and Er:YAG laser cleaning to remove Circinaria hoffmanniana (Lichenes, Ascomycota) from schist located in the Côa Valley Archaeological Park. Int. Biodeter. Biodegr. 2019, 144, 104748. [Google Scholar] [CrossRef]
- Barreiro, P.; Andreotti, A.; Colombini, M.P.; González, P.; Pozo-Antonio, J.S. Influence of the laser wavelength on harmful effects on granite due to biofilm removal. Coatings 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Leavengood, P.; Twilley, J.; Asmus, J.F. Lichen removal from Chinese Spirit path figures of marble. J. Cult. Herit. 2000, 1, s71–s74. [Google Scholar] [CrossRef]
- DeCruz, A.; Wolbarsht, M.L.; Andreotti, A.; Colombini, M.P.; Pinna, D.; Culberson, C.F. Investigation of the Er:YAG laser at 2.94 μm to remove lichens growing on stone. Stud. Conserv. 2009, 54, 268–277. [Google Scholar] [CrossRef]
- Speranza, M.; Sanz, M.; Oujja, M.; de los Rios, A.; Wierzchos, J.; Pérez-Ortega, S.; Castillejo, M.; Ascaso, C. Nd-YAG laser irradiation damages to Verrucaria nigrescens. Int. Biodeter. Biodegr. 2013, 84, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: Comparison among different pulse durations and wavelengths. Appl. Phys. A-Mater. Sci. Process. 2014, 118, 1517–1526. [Google Scholar] [CrossRef]
- López, A.J.; Rivas, T.; Lamas, J.; Ramil, A.; Yáñez, A. Optimisation of laser removal of biological crusts in granites. Appl. Phys. A-Mater. Sci. Process. 2010, 100, 733–739. [Google Scholar] [CrossRef]
- Gemeda, B.T.; Lahoz, R.; Caldeira, A.T.; Schiavon, N. Efficacy of laser cleaning in the removal of biological patina on the volcanic scoria of the rock-hewn churches of Lalibela, Ethiopia. Environ. Earth Sci. 2018, 77, 36. [Google Scholar] [CrossRef]
- Tretiach, M.; Bertuzzi, S.; Candotto Carniel, F. Heat shock treatments: A new safe approach against lichen growth on outdoor stone surfaces. Environ. Sci. Technol. 2012, 46, 6851–6859. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, S.; Gustavs, L.; Pandolfini, G.; Tretiach, M. Heat shock treatments for the control of lithobionts: A case study with epilithic green microalgae. Int. Biodeter. Biodegr. 2017, 123, 236–243. [Google Scholar] [CrossRef]
- Cuzman, O.-A.; Olmi, R.; Riminesi, C.; Tiano, P. Preliminary study on controlling black fungi dwelling on stone monuments by using a microwave heating system. Int. J. Conserv. Sci. 2013, 4, 133–144. [Google Scholar]
- Cerchiara, T.; Palermo, A.M.; Esposito, G.; Chidichimo, G. Effects of microwave heating for the conservation of paper artworks contaminated with Aspergillus versicolor. Cellulose 2018, 25, 2063–2074. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M.; Bacchiani, R.; de Leo, R.; Bisceglia, B.; Frontoni, E. Accurate modeling of the microwave treatment of works of art. Sustainability 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Giovagnoli, A.; Nugari, M.P.; Pietrini, A.M. The Ice Clean system for removing biological patina: The case of Piramide of Caio Cestio in Rome. In Proceedings of the International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage (ART 2011), Florence, Italy, 13–15 April 2011. [Google Scholar]
- Tayel, A.A.; Ebeid, M.M.; ElSawy, E.; Khalifa, S.A. Fungicidal effects of plant smoldering fumes on archival paper-based documents. Restaurator 2016, 37, 15–28. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, H.J.; Kim, D.W.; Chung, Y.J. New biocide for eco-friendly biofilm removal on outdoor stone monuments. Int. Biodeter. Biodegr. 2018, 131, 19–28. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Genova, C.; Grottoli, A.; Zoppis, E.; Cencetti, C.; Matricardi, P.; Favero, G. An integrated approach to the recovery of travertine biodegradation by combining phyto-cleaning with genomic characterization. Microchem. J. 2020, 156, 104918. [Google Scholar] [CrossRef]
- Mak, K.-K.; Kamal, M.B.; Ayuba, S.B.; Sakirolla, R.; Kang, Y.-B.; Mohandas, K.; Balijepalli, M.K.; Ahmad, S.H.; Pichika, M.R. A comprehensive review on Eugenol’s antimicrobial properties and industry applications: A transformation from ethnomedicine to industry. Pharmacogn. Rev. 2019, 13, 1–9. [Google Scholar]
- Candela, R.G.; Maggi, F.; Lazzara, G.; Rosselli, S.; Bruno, M. The essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces. Plants 2019, 8, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casiglia, S.; Bruno, M.; Scandolera, E.; Senatore, F. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian J. Chem. 2019, 12, 2704–2712. [Google Scholar]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential oils as natural biocides in conservation of cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhou, F.; Ji, B.-P.; Pei, R.-S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Bogdan, S.; Deya, C.; Micheloni, O.; Bellotti, N.; Romagnoli, R. Natural products to control biofilm on painted surfaces. Pigm. Resin. Technol. 2018, 47, 180–187. [Google Scholar] [CrossRef]
- Gazzano, C.; Favero-Longo, S.E.; Iacomussi, P.; Piervittori, R. Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. Int. Biodeter. Biodegr. 2013, 84, 300–306. [Google Scholar] [CrossRef]
- Nezhadali, A.; Nabavi, M.; Rajabian, M.; Akbarpour, M.; Pourali, P.; Amini, F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef University. J. Basic Appl. Sci. 2014, 3, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakotonirainy, M.S.; Lavédrine, B. Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int. Biodeter. Biodegr. 2005, 55, 141–147. [Google Scholar] [CrossRef]
- Valentini, F.; Diamanti, A.; Palleschi, G. New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl. Surf. Sci. 2010, 256, 6550–6563. [Google Scholar] [CrossRef]
- Wu, J.; Lou, W. Study of biological enzymes’ inhibition of filamentous fungi on the Crosslake Bridge ruins. Sci. Archaeol. Conserv. 2016, 3, 25–29. [Google Scholar]
- Marin, E.; Vaccaro, C.; Leis, M. Biotechnology applied to historic stoneworks conservation: Testing the potential harmfulness of two biological biocides. Int. J. Conserv. Sci. 2016, 7, 227–238. [Google Scholar]
- Silva, M.; Salvador, C.; Candeias, M.F.; Teixeira, D. Toxicological assessment of novel green biocides for cultural heritage. Int. J. Conserv. Sci. 2016, 7, 265–272. [Google Scholar]
- Caselli, E.; Pancaldi, S.; Baldisserotto, C.; Petrucci, F.; Impallaria, A.; Volpe, L.; D’Accolti, M.; Soffritti, I.; Coccagna, M.; Sassu, G.; et al. Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS ONE 2018, 13, e0207630. [Google Scholar] [CrossRef]
- Jurado, V.; del Rosal, Y.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Saiz-Jimenez, C. Biological control of phototrophic biofilms in a show cave: The case of Nerja Cave. Appl. Sci. 2020, 10, 3448. [Google Scholar] [CrossRef]
- Hu, H.; Ding, S.; Katayama, Y.; Kusumi, A.; Li, S.X.; de Vries, R.P.; Wang, J.; Yu, X.-Z.; Yu, X.-Z.; Gu, J.-D. Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int. Biodeter. Biodegr. 2013, 76, 112–117. [Google Scholar] [CrossRef]
- BACPOLES. 2005. Available online: https://www.shr.nl/uploads/pdf-files/2005-0101-final-report-european-project-bacpoles.pdf (accessed on 4 August 2020).
- May, E.; Zamarreño, D.; Hotchkiss, S.; Mitchell, J.; Inkpen, R. Bioremediation of Algal Contamination on Stone. In Biocolonization of Stone: Control and Preventive Methods. Proceedings from the MCI Workshop Series; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 59–70. [Google Scholar]
- Soffritti, I.; D’Accolti, M.; Lanzoni, L.; Volta, A.; Bisi, M.; Mazzacane, S.; Caselli, E. The potential use of microorganisms as restorative agents: An update. Sustainability 2019, 11, 3853. [Google Scholar] [CrossRef] [Green Version]
- Mascalchi, M.; Orsini, C.; Pinna, D.; Salvadori, B.; Siano, S.; Riminesi, C. Assessment of different methods for the removal of biofilms and lichens on gravestones of the English Cemetery in Florence. Int. Biodeter. Biodegr. 2020, 154, 105041. [Google Scholar] [CrossRef]
- Sakr, A.A.; Ghaly, M.F.; Edwards, H.G.M.; Elbashar, Y.H. Gamma-radiation combined with tricycloazole to protect tempera paintings in ancient Egyptian tombs (Nile Delta, Lower Egypt). J. Radioanal. Nucl. Chem. 2019, 321, 263–276. [Google Scholar] [CrossRef]
- Rivas, T.; Pozo-Antonio, J.S.; López de Silanes, M.E.; Ramil, A.; López, A.J. Laser versus scalpel cleaning of crustose lichens on granite. Appl. Surf. Sci. 2018, 440, 467–476. [Google Scholar] [CrossRef]
- Pena-Poza, J.; Ascaso, C.; Sanz, M.; Pérez-Ortega, S.; Oujja, M.; Wierzchos, J.; Souza-Egipsy, V.; Cañamares, M.V.; Urizal, M.; Castillejo, M.; et al. Effect of biological colonization on ceramic roofing tiles by lichens and a combined laser and biocide procedure for its removal. Int. Biodeter. Biodegr. 2018, 126, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B. Approaches to prevention, removal and killing of biofilms. Int. Biodeter. Biodegr. 2003, 51, 249–253. [Google Scholar] [CrossRef]
- Polo, A.; Diamanti, M.V.; Bjarnsholt, T.; Høiby, N.; Villa, F.; Pedeferri, M.P.; Cappitelli, F. Effects of photoactivated titanium dioxide nanopowders and coating on planktonic and biofilm growth of Pseudomonas aeruginosa. Photochem. Photobiol. 2011, 87, 1387–1394. [Google Scholar] [CrossRef]
- Villa, F.; Pitts, B.; Lauchnor, E.; Cappitelli, F.; Stewart, P.S. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface. Front. Microbiol. 2015, 6, 1251. [Google Scholar] [CrossRef] [Green Version]
- Laurenzi Tabasso, M.; Simon, S. Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials. Stud. Conserv. 2006, 51 (Suppl. 1), 67–82. [Google Scholar]
- Mecchi, A.M.; Poli, T.; Realini, M.; Sansonetti, A. A proposal for a common approach in choosing tests for the protocol evaluation of cleaning methods. In Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, Torun, Poland, 15–20 September 2008; pp. 425–433. [Google Scholar]
- Perez-Monserrat, E.M.; Varas, M.J.; Fort, R.; de Buergo, M.A. Assessment of different methods for cleaning the limestone façades of the former Workers Hospital of Madrid, Spain. Stud. Conserv. 2011, 56, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Revez, M.J.; Delgado Rodrigues, J. Incompatibility risk assessment procedure for the cleaning of built heritage. J. Cult. Herit. 2016, 18, 219–228. [Google Scholar] [CrossRef]
- ICOMOS-ICS, Illustrated Glossary on Stone Deterioration Patterns. Available online: https://www.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf (accessed on 5 August 2020).
- González-Gómez, W.S.; Quintana, P.; Gómez-Cornelio, S.; García-Solis, C.; Sierra-Fernandez, A.; Ortega-Morales, O.; De la Rosa-García, S.C. Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico. Environ. Earth Sci. 2018, 77, 230. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- ICOMOS, Charter Principles for the Analysis, Conservation and Structural Restoration of Architectural Heritage. 2003. Available online: https://www.icomos.org/en/about-the-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-for-the-analysis-conservation-and-structural-restoration-of-architectural-heritage (accessed on 5 August 2020).
Control Strategy | Advantages | Drawbacks | |
---|---|---|---|
Chemical Methods | Traditional chemical biocides | Wide variety of compounds available on the market. Cheap and generally easy to apply. Effective against a broad range of microorganisms. Application in remote areas. | Toxic for the operators and the environment. The long-term effectiveness is very low. Often not selective against specific biodeteriogens. Promotion of biocide-resistant communities. Possible modification of biofilm structures favoring the growth of more harmful biodeteriogens. Repeated use may damage the heritage material. |
Nanoparticles | Wide variety of compounds available on the market. Easy to apply. Effective at very low concentrations. Application in remote areas. | Possible toxic effects on the operators and the environment. Not selective against specific biodeteriogens. Promote biocide-resistant communities. Lack of experiments discussing the interference with the heritage materials. Costly. | |
Physical Methods | Mechanical removal | Efficient method on surfaces with good state of conservation. Instant results. Do not require the use of toxic compounds. Do not generate toxic products. | The long-term effectiveness is very low. Repeated use may damage the heritage material. Biological contaminants can be pushed deep into the heritage material and spread in the environment. |
UV-C irradiation | Do not introduce any harmful chemicals to humans, to environment, or to the heritage material. Do not generate any toxic residual element in the environment. Simple application. | Repeated use may damage organic heritage material such as wood, leather, parchment, and textiles. Low penetration in substrates and in very thick biofilms. Not selective against specific biodeteriogens. Limited application in remote areas. | |
Gamma radiation | Do not introduce any harmful chemicals to humans, to environment, or to the heritage material. High penetration in substrates and in very thick biofilms. | Repeated use may damage organic heritage material such as wood, leather, parchment, and textiles. Require specialized staff. Applications are limited to artworks of limited size. No longer possible to carry out radioluminescence dating after irradiation. Limited application in remote areas. Costly. | |
Laser cleaning | Controllable, selective, contactless, and environmentally friendly. Do not introduce any harmful chemicals to humans, to environment, or to the heritage material. Instant results with highly localized effect. Do not generate any toxic residual elements in the environment. | Repeated use may damage the heritage material. Not selective against specific biodeteriogens. Limited application in remote areas. Required specialized staff. Costly. | |
Heat shocking, microwaves, and dry ice treatment | Instant results with highly localized effect. Do not require the use of toxic compounds. Do not generate toxic products. | Microwaves and dry ice treatment equipment complicated to transport and apply, require continued access to energy supply, and are costly. Hazardous to handle. Not selective against specific biodeteriogens. Repeated use may damage some fragile surfaces. Limited application in remote areas. Costly. | |
Biological Methods | Biocidal treatments with compounds of natural origin | Generally safer for human beings and greener for the environment than traditional biocides. Generally easy to apply. Effective against a broad range of microorganisms. Application in remote areas. | The extract composition depends on the harvesting season, geographical location, and other agronomic factors. Only few products available on the market. Not selective against specific biodeteriogens. Lack of experiments discussing the interference of the natural compounds with the heritage materials. |
Other biological methods | Harmless for humans and the environmental health. Relatively easy to set up and improve. Effective against a broad range of microorganisms. Selective for the target microorganism. Application in remote areas. | Lack of experiments discussing the interference with the heritage materials. Lack of experiments assessing the persistence over time of the treatment. Costs evaluation needs to be done. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. https://doi.org/10.3390/microorganisms8101542
Cappitelli F, Cattò C, Villa F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms. 2020; 8(10):1542. https://doi.org/10.3390/microorganisms8101542
Chicago/Turabian StyleCappitelli, Francesca, Cristina Cattò, and Federica Villa. 2020. "The Control of Cultural Heritage Microbial Deterioration" Microorganisms 8, no. 10: 1542. https://doi.org/10.3390/microorganisms8101542
APA StyleCappitelli, F., Cattò, C., & Villa, F. (2020). The Control of Cultural Heritage Microbial Deterioration. Microorganisms, 8(10), 1542. https://doi.org/10.3390/microorganisms8101542