Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. DNA Extraction and Sequencing
2.3. Processing of NGS Data
3. Results and Discussion
3.1. Phyla and Dominant Taxonomical Units
3.2. Abundances of Taxonomical Groups Related to Extremophilic Characters
3.2.1. Acidobacteria, Acidimicrobiia and Other Actinobacteria
3.2.2. Abundances of Chloroflexi
3.2.3. Special pH-Dependent OTUs
3.2.4. Halo- and Psychrophilic Bacterial Soil Community in a Sample from Industrial Mine Dump Nienstedt
3.2.5. Less Abundant Types with Special Tolerances and Metabolic Features
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torsvik, V.; Sorheim, R.; Gokskoyr, J. Total bacterial diversity in soil and sediment—A review. J. Indust. Microbiol. 1996, 17, 170–178. [Google Scholar] [CrossRef]
- Bartelt-Ryser, J.; Joshi, J.; Schmid, B.; Brandl, H.; Balser, T. 2005 Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Persp. Plant Evol. Evol. Syst. 2005, 7, 27–49. [Google Scholar] [CrossRef]
- Aanderud, Z.T.; Jones, S.E.; Fierer, N. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front. Microbiol. 2015, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.E.; Lennon, J.T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 5881–5886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrich, S.; Schippers, A. Metallgewinnung mittels Geobiotechnologie. Chem. Ing. Tech. 2017, 89, 29–39. [Google Scholar] [CrossRef]
- Thavamani, P.; Samkumar, R.A.; Satheesh, V.; Subashchandrabose, S.R.; Ramadass, K.; Naidu, R.; Venkateswarlu, K.; Megharaj, M. Microbes from mined sites: Harnessing their potential for reclamation of derelicted mine sites. Environ. Pollut. 2017, 230, 495–505. [Google Scholar] [CrossRef]
- Barns, S.M.; Cain, E.C.; Sommerville, L.; Kuske, C.R. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl. Environ. Microbiol. 2007, 73, 3113–3116. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.; Epstein, S.; D’onofrio, A.; Ling, L.L. Uncultured microorganisms as a source of secondary metabolites. J. Antibiot. 2010, 63, 468–476. [Google Scholar] [CrossRef]
- Clement, M. Tausend Jahre Metallerzbergbau in Mitteleuropa; VGE: Essen, Germany, 1996. [Google Scholar]
- Margesin, R.; Siles, J.A.; Cajthaml, T.; Ohlinger, B.; Kistler, E. Microbiology meets archaeology: Soil microbial communities reveal different human activities at archaic Monte Iato (Sixth century BC). Microbial. Ecol. 2017, 73, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Köhler, J.M.; Kalensee, F.; Günther, P.M.; Schüler, T.; Cao, J. The local ecological memory of soil: Majority and minority components of bacterial communities in prehistoric urns from Schöps (Germany). Int. J. Environ. Res. 2018, 12, 575–684. [Google Scholar] [CrossRef]
- Köhler, J.M.; Beetz, N.; Günther, P.M.; Möller, F.; Schüler, T.; Cao, J. Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). Community Ecol. 2020, 21, 107–120. [Google Scholar] [CrossRef]
- Chernysheva, E.; Korobov, D.; Borisov, A. Thermophilic microorganisms in arable land around medieval archaeological sites in Northern Caucasus, Russia: Novel evidence of past manuring practices. Geoarchaeol. Int. J. 2017, 32, 494–501. [Google Scholar] [CrossRef]
- Hedrich, S.; Schippers, A. Distribution of acidophilic microorganisms in natural and man-made acidic environments. Curr. Issues Mol. Biol. 2021, 40, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Köhler, J.M.; Kalensee, F.; Cao, J.; Günther, P.M. Hadesarchaea and other extremophile bacteria from ancient mining areas of the East Harz region (Germany) suggest an ecological long-term memory of soil. SN Appl. Sci. 2019, 1, 839. [Google Scholar] [CrossRef] [Green Version]
- Köhler, J.M.; Kalensee, F.; Günther, P.M.; Cao, J. Searching for Rare Type Associations in Bacterial Communities from Ancient Copper Mining Areas in the East Harz region (Germany). Asp. Min. Miner. Sci. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Ratzke, C.; Barrere, J.; Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 2020, 4, 376. [Google Scholar] [CrossRef] [PubMed]
- Purohit, J.; Chattopadhyay, A.; Teli, B. Metagenomic exploration of plastic degrading microbes for biotechnological applications. Curr. Genom. 2020, 21, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A. Available online: http://hannonlab.cshl.edu/fastx_toolkit (accessed on 28 June 2021).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.-W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glockner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acid Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Kurahashi, M.; Fukunaga, Y.; Sakiyama, Y.; Harayama, S.; Yokota, A. Iamia majanohamensis gen. nov., sp. Nov., an actinobacterium isolated from sea cucmber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2009, 4, 869–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Kasai, H.; Matsuo, Y.; Omura, S.; Shizuri, Y.; Takahashi, Y. Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from sediment of an estuary. J. Gen. Appl. Microbiol. 2009, 55, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa, V.; Gallego, J.L.R.; Gonzáles-Gil, R.; Lauga, B.; Sánchez, J.; Méndez-Garcia, C.; Peláez, A.I. Bacterial, archaeal, and eukaryotic diversity across distinct microhabits in an acid mine drainage. Front. Microbiol. 2018, 8, 1756. [Google Scholar] [CrossRef]
- Pankratov, T.A.; Dedysh, S.N. Granulicella gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rose asp. Nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int. J. Syst. Evol. Microbiol. 2010, 60, 2951–2959. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, L.; Monciardini, P.; Schumann, P.; Rohde, M.; Bamonte, R.; Busti, E.; Sosio, M.; Donadio, S. Actinospica robiniae gen. nov., sp. nov. and Actinospica acidphilia sp. nov.: Proposal for Actinospicaceae fam. nov. and Catenulisporinae subord. nov. in the order Actinomycetales. Int. J. Syst. Evol. Microbiol. 2006, 56, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Stallwood, B.; Kimura, S.; Hallberg, K.B. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: A novel sulfur-oxidizing, ferric iron-reducing thermos-acidophilic heterotrophic Proteobacterium. Arch. Microbiol. 2006, 185, 212–221. [Google Scholar] [CrossRef]
- Kulichevskaya, I.S.; Danilova, O.; Tereshina, V.M.; Kevbrin, V.V. Description of Roseiarcus fermentans gen. Nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 2558–2565. [Google Scholar] [CrossRef]
- Antunes, A.; Eder, W.; Fareleira, P.; Santos, H.; Huber, R. Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately holophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 2003, 7, 23–94. [Google Scholar] [CrossRef]
- Lim, J.-M.; Jeon, C.O.; Lee, J.-C.; Song, S.-M.; Kim, K.-Y.; Kim, C.-J. Marinimicrobium koreense gen. Nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novelmoderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int. J. Syst. Evol. Microbiol. 2006, 56, 653–657. [Google Scholar] [CrossRef]
- Seo, H.-S.; Kwon, K.K.; Yang, S.-H.; Lee, H.-S.; Bae, S.S.; Lee, J.-H.; Kim, S.-J. Marinoscillum gen. nov., a member of the family ‘Flexibacteraceae’, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. Rev., comb. nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 1204–1208. [Google Scholar] [CrossRef]
- Nedashkovskaya, O.; Kim, S.B.; Lee, D.H.; Lysenko, A.M.; Shevchenko, L.; Frolova, G.M.; Mikhailov, V.V.; Lee, K.H.; Bae, K.S. Roseivirga ehrenbergii gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’, isolated from the green alga Ulva fenestrata. Int. J. Syst. Evol. Microbiol. 2005, 55, 231–234. [Google Scholar]
- Ivanova, E.P.; Nedashkovskaya, O.; Chun, J.; Lysenko, A.M.; Frolova, G.M.; Svetashev, V.I.; Vysotskii, M.V.; Mikhailov, V.V.; Huq, A.; Colwell, R.R. Arenibacter gen. nov., new genus of the family flavobacteriaceae and description of a new species, Arenibacter lactericius sp. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 1987–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, J.E.; Nielsen, P.; SjØholm, C. Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 1999, 49, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, S.; Jung, Y.-T.; Park, J.-M.; Yoon, J.-H. Confluentibacter lentus gen. nov., sp. nov., isolated from the junction between the ocean and a freshwater lake. Int. J. Syst. Evol. Microbiol. 2016, 66, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-Y.; Kang, S.-J.; Lee, M.-H.; Lee, S.-Y.; Oh, T.-K.; Yoon, J.-H. Gaetbulibacter saemankumensis gen. nov., sp. nov., a novel member of family Flavobacteriaceae isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol. 2005, 55, 1845–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedashkovskaya, O.; Kim, S.B.; Han, S.K.; Lysenko, A.M.; Rohde, M.; Rhee, M.-S.; Frolova, G.M.; Falsen, E.; Mikhailov, V.V.; Bae, K.S. Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habits, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Bruns, A.; Rohde, M.; Berthe-Corti, L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int. J. Syst. Evol. Microbiol. 2001, 51, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.D. Tamlana crocina gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae, isolated from beach sediment in Korea. Int. J. Syst. Evol. Microbiol. 2007, 57, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Urios, L.; Agogué, H.; Lesongeur, F.; Stackebrandt, E.; Lebaron, P. Balneola vulgaris gen. nov., sp. nov., a member of the phylum Bacteroidetes from the north-western Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 2006, 56, 1883–1887. [Google Scholar] [CrossRef] [Green Version]
- Wagner-Döbler, I.; Rheims, H.; Felske, A.; Pukall, R.; Tindall, B.J. Jannaschia helgolandesis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int. J. Syst. Evol. Microbiol. 2003, 53, 731–738. [Google Scholar] [CrossRef]
- Peix, A.; Rivas, R.; Trujillo, M.E.; Vancanneyt, M.; Velázquez, E.; Willems, A. Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1163–1166. [Google Scholar] [CrossRef] [Green Version]
- Van Trappen, S.; Mergaert, J.; Swings, J. Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new member of the RHodobacter group, isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol. 2004, 54, 1263–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Li, H.-R.; Zeng, Y.-X.; Sun, K.; Chen, B. Pricia antarctica gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from Antarctic intertidal sediment. Int. J. Syst. Evol. Microbiol. 2012, 62, 2218–2223. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.P.; Mancuso Nichols, C.; Gibson, J.A.E. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int. J. Syst. Evol. Microbiol. 2003, 53, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Nedashkovskaya, O.I.; Kim, S.B.; Han, S.K.; Rhee, M.-S.; Lysenko, A.; Rhode, M.; Zhukova, N.V.; Frolova, G.M.; Mikhailov, V.V.; Bae, K.S. Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int. J. Syst. Evol. Microbiol. 2004, 54, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.P.; Nichols, D.S. Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int. J. Syst. Evol. Microbiol. 2002, 52, 1533–1541. [Google Scholar]
- McCammon, S.A.; Bowman, J.P. Taxonomy of Antarctic Flavobacterium species: Description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. Rev. And reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 1055–1063. [Google Scholar]
- Bowman, S.A.; Nichols, D.S. Novel members of the family Flavobacteriaceae from Antarctic maritime habits including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., and novel species of the Bizionia, Gelidibacter and Gillisia. Int. J. Syst. Evol. Microbiol. 2005, 55, 1471–1486. [Google Scholar]
- Liu, C.; Zhang, X.-Y.; Wen, X.-R.; Shi, M.; Chen, X.-L.; Su, H.-N. Arcticiflavibacter luteus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from intertidal sand. Int. J. Syst. Evol. Microbiol. 2016, 66, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.P.; McCammon, S.A.; Lewis, T.; Skerratt, J.H.; Brown, J.L.; Nichols, D.S.; McMeekin, T.A. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1998, 144, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
No. | Location | Group | pH Value | Electrical Conductivity |
---|---|---|---|---|
1 | Wolferode, pre-industrial mine | A | 7.15 | 225 µS/cm |
2 | Wolferode, pre-industrial mine | B | 7.56 | 220 |
3 | Wimmelburg, slag deposit | D | 5.57 | 35.4 |
4 | Hergisdorf, pre-industrial mine | A | 7.11 | 724 |
5 | Wiederstedt, pre-industrial mine | B | 7.72 | 695 |
6 | Wiederstedt, pre-industrial mine | B | 7.63 | 201 |
7 | Welfesholz, mine dump, early 19th century | C | 8.24 | 94.5 |
8 | Welfesholz, mine dump, early 19th century | C | 8.78 | 69.1 |
9 | Burgörner, mine dump, early 19th century | C | 8.27 | 148 |
10 | Burgörner, mine dump, early 19th century | C | 8.85 | 82 |
11 | Burgörner, mine dump, early 19th century | C | 8.28 | 163 |
12 | Burgörner, mine dump, early 19th century | C | 8.01 | 237 |
13 | Pölsfeld, pre-industrial mine dump | B | 7.69 | 228 |
14 | Rodishain, pre-industrial mine | A | 6.98 | 331 |
15 | Rodishain, pre-industrial mine | A | 7.04 | 1240 |
16 | Uftrungen, pre-industrial mine | A | 6.23 | 229 |
17 | Uftrungen, pre-industrial mine | A | 6.79 | 367 |
18 | Uftrungen, pre-industrial mine | A | 7.34 | 344 |
19 | Nienstedt, industrial mine dump | E | 7.66 | 4677 |
Comparative sites (limestone substrate, forest) | ||||
20 | Burgwenden, Monraburg, prehist. rampart | F | 7.84 | 183 |
21 | Haynrode, Hasenburg, prehist. rampart, castle | F | 7.82 | 246 |
22 | Kahla, Dohlenstein, prehist. rampart | F | 6.82 | 455 |
Comparative sites (acid soil, forest) | ||||
23 | Suhl, Lange Bahn | G | 3.99 | 56.7 |
24 | Völkershausen, Dietrich | G | 4.01 | 231 |
25 | Rastenberg, Streitholz | G | 4.42 | 64.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhler, J.M.; Beetz, N.; Günther, P.M.; Möller, F.; Cao, J. Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data. Microorganisms 2021, 9, 1422. https://doi.org/10.3390/microorganisms9071422
Köhler JM, Beetz N, Günther PM, Möller F, Cao J. Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data. Microorganisms. 2021; 9(7):1422. https://doi.org/10.3390/microorganisms9071422
Chicago/Turabian StyleKöhler, J. Michael, Nancy Beetz, Peter Mike Günther, Frances Möller, and Jialan Cao. 2021. "Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data" Microorganisms 9, no. 7: 1422. https://doi.org/10.3390/microorganisms9071422
APA StyleKöhler, J. M., Beetz, N., Günther, P. M., Möller, F., & Cao, J. (2021). Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data. Microorganisms, 9(7), 1422. https://doi.org/10.3390/microorganisms9071422