Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antagonistic Activity against Phytopathogenic Fungi
2.3. In Vitro Nematicidal Activity
2.4. In Vitro Activity on Plant Growth
2.5. Pot Experiments
2.5.1. Effects on Wheat Plants
2.5.2. Effects on RKND and Plant Growth in Grow-Box Experiment
2.6. Statistical Analysis
3. Results
3.1. Characterization of Bacterial Strains
3.2. Influence of B. velezensis BZR 86 on development of the Root Knot Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrios, G.N. Plant diseases caused by nematodes. In Plant Pathology; Elsevier Academic Press: Burlington, NJ, USA, 2005; pp. 825–874. [Google Scholar]
- Lychagina, S.V.; Shesteperov, A.A. Monitoring of root-knot disease of vegetable crops in greenhouses. Plant Prot. Quar. Plant. 2008, 4, 57–61. (In Russian) [Google Scholar]
- Johnson, A.W.; Littrell, R.H. Pathogenicity of Pythium aphanidermatum to Chrysanthemum in combined inoculations with Belonolaimus longicaudatus or Meloidogyne incognita. J. Nematol. 1970, 2, 255–259. [Google Scholar]
- Mucksood, A.G.; Khan, T.A. Studies on the interactive effect of Meloidogyne incognita and Fusarium solani on Lycopersicon esculentum, Mill. Int. J. Bot. 2011, 7, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Lamelas, A.; Desgarennes, D.; López-Lima, D.; Villain, L.; Alonso-Sánchez, A.; Artacho, A.; Latorre, A.; Moya, A.; Carrión, G. The bacterial microbiome of Meloidogyne-Based Disease Complex in coffee and tomato. Front. Plant Sci. 2020, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Feng, H.; Schuelke, T.; De Santiago, A.; Zhang, Q.; Zhang, J.; Luo, C.; Wei, L. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microb. Ecol. 2019, 78, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, B.R. Introduction to Plant Growth-Promoting Bacteria. In Beneficial Plant-Bacterial Interactions; Springer International Publishing, Ed.; Springer: Heidelberg, Germany, 2020; pp. 1–37. [Google Scholar]
- Munif, A.; Hallmann, J.; Sikora, R.A. The influence of endophytic bacteria on Meloidogyne incognita infection and tomato plant growth. J. ISSAAS 2013, 19, 68–74. [Google Scholar]
- Kokalis-Burelle, N. Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. J. Nematol. 2015, 47, 207–213. [Google Scholar]
- Xiang, N.; Lawrence, K.S.; Kloepper, J.W.; Donald, P.A.; McInroy, J.A.; Lawrence, G.W. Biological Control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Dis. 2017, 101, 774–784. [Google Scholar] [CrossRef] [Green Version]
- Mazzuchelli, R.C.L.; Mazzuchelli, E.H.L.; De Araujo, F.F. Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biol. Control 2020, 143, 104185. [Google Scholar] [CrossRef]
- Susič, N.; Žibrat, U.; Sinkovič, L.; Vončina, A.; Razinger, J.; Knapič, M.; Sedlar, A.; Širca, S.; Gerič Stare, B. From genome to field—observation of the multimodal nematicidal and plant growth-promoting effects of Bacillus firmus I-1582 on tomatoes using hyperspectral remote sensing. Plants 2020, 9, 592. [Google Scholar] [CrossRef]
- Talavera, M.; Mizukubo, T.; Ito, K.; Aiba, S. Effect of spore inoculum and agricultural practices on the vertical distribution of the biocontrol plant-growth-promoting bacterium Pasteuria penetrans and growth of Meloidogyne incognita-infected tomato. Biol. Fertil. Soils 2002, 35, 435–440. [Google Scholar] [CrossRef]
- Ashoub, A.H.; Amara, M.T. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J. Am. Sci. 2010, 6, 321–328. [Google Scholar]
- Zhao, D.; Zhao, H.; Zhao, D.; Zhu, X.; Wang, Y.; Duan, Y.; Xuan, Y.; Chen, L. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control 2018, 119, 12–19. [Google Scholar] [CrossRef]
- Burkett-Cadena, M.; Kokalis-Burelle, N.; Lawrence, K.S.; van Santen, E.; Kloepper, J.W. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol. Control 2008, 47, 55–59. [Google Scholar] [CrossRef]
- Wolfgang, A.; Taffner, J.; Guimarães, R.A.; Coyne, D.; Berg, G. Novel strategies for soil-borne diseases: Exploiting the microbiome and volatile-based mechanisms toward controlling Meloidogyne-based disease complexes. Front. Microbiol. 2019, 10, 1296. [Google Scholar] [CrossRef]
- Adam, M.; Heuer, H.; Hallmann, J. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE 2014, 9, e90402. [Google Scholar] [CrossRef] [Green Version]
- Raymaekers, K.; Ponet, L.; Holtappels, D.; Berckmans, B.; Cammue, B.P.A. Screening for novel biocontrol agents applicable in plant disease management—A review. Biol. Control 2020, 144, 104240. [Google Scholar] [CrossRef]
- Mandic-Mulec, I.; Stefanic, P.; van Elsas, J.D. Ecology of Bacillaceae. Microbiol. Spectr. 2015, 3, TBS-0017-2013. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Busse, H.J.; Glaeser, S.P.; Kloepper, J.W.; Hu, C.H.; McInroy, J.A. Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int. J. Syst. Evol. Microbiol. 2016, 66, 1039–1044. [Google Scholar] [CrossRef]
- Horak, I.; Engelbrecht, G.; van Rensburg, P.J.J.; Claassens, S. Microbial metabolomics: Essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. J. Appl. Microbiol. 2019, 127, 2. [Google Scholar] [CrossRef] [Green Version]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K.H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 2019, 24, 1046. [Google Scholar] [CrossRef] [Green Version]
- Migunova, V.D.; Sasanelli, N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, Z.; Escudero, N.; Beltrán-Anadón, D.; Saus, E.; Cunquero, M.; Andilla, J.; Loza-Alvarez, P.; Gabaldón, T.; Sorribas, F.J. Bacillus firmus Strain I-1582, a nematode antagonist by itself and through the plant. Front. Plant Sci. 2020, 11, 796. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Moscow State University. Methods of Soil Microbiology and Biochemistry; Zvyagintsev, D.G., Ed.; Moscow State University: Moscow, Russia, 1991; p. 304. (In Russian) [Google Scholar]
- Asaturova, A.M.; Dubyaga, V.M.; Tomashevich, N.S. Selection of perspective biological control agents for fall wheat protection from fusarium diseases. Polythematic Online Sci. J. Kuban State Agrar. Univ. 2012, 75, 1–12. Available online: http://ej.kubagro.ru/2012/01/pdf/37.pdf (accessed on 1 July 2021).
- KREWMNEVA, O.Y.; Asaturova, A.M.; Volkova, G.V. Selection of strains that are antagonistic to wheat leaf tan spot disease pathogen. Biotechnol. Russ. 2013, 5, 54–59. [Google Scholar]
- Castaneda-Alvarez, C.; Aballay, E. Rhizobacteria with nematicide aptitude: Enzymes and compounds associated. World J. Microbiol. Biotechnol. 2016, 32, 203. [Google Scholar] [CrossRef]
- Bergey, D.H.; Holt, J.G. Bergey’s Manual of Systematic Bacteriology; Yi Hsien Publishing: Taiwan, China, 1984. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 84, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Asaturova, A.M.; Homyak, A.I.; Kozitsyn, A.E.; Shternshis, M.V.; Rakitin, A.L.; Beletsky, A.V.; Mardanov, A.V.; Ravin, N.V. Draft genome sequence of Bacillus velezensis BZR 277, a prospective biocontrol agent against phytoparasitic nematodes. Microbiol. Resour. Announc. 2021, 10, e00266-21. [Google Scholar] [CrossRef]
- Radchenko, V.V.; Vasilyev, I.Y.; Ilnitskaya, E.V.; Garkovenko, A.V.; Asaturova, A.M.; Tomashevich, N.S.; Kozitsyn, A.E.; Milovanov, A.V.; Grigoreva, T.V.; Shternshis, M.V. Draft genome sequence of the plant growth promoting bacterium Bacillus subtilis strain BZR 517, isolated from winter wheat, now reclassified as Bacillus velezensis strain BZR 517. Microbiol. Resour Announc. 2020, 9, e00853-20. [Google Scholar] [CrossRef]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O.; Notes, A. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Asaturova, А.М.; Homyak, A.I.; Tomashevich, N.S.; Pavlova, M.D.; Zhevnova, N.A.; Dubyaga, V.M.; Kozitsin, A.Y.; Sidorova, Т.М.; Nadykta, V.D.; Ismailov, V.Y. Conditions for the cultivation of new Bacillus bacteria being micro bioproduct producers. J. Pure Appl. Microbiol. 2015, 9, 2797–2804. [Google Scholar]
- Montealegre, J.R.; Reyes, R.; Perez, L.M.; Herrera, R.; Silva, P.; Besoain, X. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron. J. Biotechnol. 2003, 6, 116–127. [Google Scholar] [CrossRef]
- Kado, C.I.; Heskett, M.G.; Langley, R.A. Studies on Agrobacterium tumefaciens: Characterization of strains 1D135 and B6, and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor inducing ability. Physiol. Plant Pathol. 1972, 2, 47–57. [Google Scholar] [CrossRef]
- Shchukovskaya, A.G.; Shestepyorov, A.A.; Babosha, A.V.; Ryabchenko, A.S.; Tkachenko, O.B. Psychrotolerant mycohelminths Aphelenchus avenae, Aphelenchoides saprophilus, and Paraphelenchus tritici as potential bioagents against pink (Microdochium nivale) and speckled (Typhula ishikariensis) snow molds. In Proceedings of the International Conference Plant and Microbe Adaptations to Cold 2012, Sapporo, Japan, 24–28 June 2012; Hokkaido University: Sapporo, Japan, 2012; p. 87. [Google Scholar]
- Shesteperov, A.A.; Savotikov, Y.F. Quarantine Phyto Helminthosis; Kolos: Moscow, Russia, 1995; pp. 180–181. (In Russian) [Google Scholar]
- Püntener, W. Manual for Field Trials in Plant Protection, 2nd ed.; Agricultural Division, Ciba-Geigy Limited: Basel, Switzerland, 1981; p. 205. [Google Scholar]
- Minselchos. State Catalogue of Pesticides and Agrochemicals Allowed for Use in the Russian Federation; Minselchos: Moscow, Russia, 2020; p. 148. (In Russian) [Google Scholar]
- Chin Ann, Y. Screening for nematicidal activities of Bacillus species against root knot nematode (Meloidogyne incognita). J. Exp. Agric. Int. 2013, 3, 794–805. [Google Scholar]
- Xia, Y.; Xie, S.; Ma, X.; Wu, H.; Wang, X.; Gao, X. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol. Lett. 2011, 322, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Peng, Q.; Man, Y.; Li, Z.; Zhou, X.; Bai, L.; Peng, D. Analysis of the antifungal properties of Bacillus velezensis B-4 hrough a bioassay and complete-genome sequencing. Front. Genet. 2020, 11, 703. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Zhang, W.; Chi, F.; Hao, X.; Bian, J.; Li, Y. Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egypt. J. Biol. Pest Control 2020, 30, 9. [Google Scholar] [CrossRef]
- Castro, D.; Torres, M.; Sampedro, I.; Martínez-Checa, F.; Torres, B.; Béjar, V. Biological control of Verticillium wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms 2020, 8, 1080. [Google Scholar] [CrossRef]
- Meng, Q.; Jiang, H.; Hao, J.J. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Control 2016, 98, 18–26. [Google Scholar] [CrossRef]
- Balderas-Ruiz, K.A.; Bustos, P.; Santamaria, R.I.; González, V.; Cristiano-Fajardo, S.A.; Barrera-Ortiz, S.; Mezo-Villalobos, M.; Aranda-Ocampo, S.; Arturo Guevara-Garcia, A.A.; Galindo, E.; et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Expr. 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-H.; Won, S.-J.; Maung, C.E.H.; Choi, J.-H.; Choi, S.-I.; Ajuna, H.B.; Ahn, Y.S. Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes growth of japanese cypress (Chamaecyparis obtuse Endlicher) seedlings. Microorganisms 2021, 9, 821. [Google Scholar] [CrossRef]
- Xiao, T.J.; Tan, S.Y.; Shen, Q.R.; Ran, W. Bacillus cereus X5 suppresses root-knot nematode of tomato by colonizing in roots and soil. Afr. J Microbiol. Res. 2012, 6, 2321–2327. [Google Scholar]
- Zaghloul, R.A.; Neweigy, N.A.; Abou-Aly, H.E.; El-Sayed, S.A.; Bahloul, A.M. Nematicidal activity of some biocontrol agents against root-knot nematodes in-vitro. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 429–438. [Google Scholar]
- Migunova, V.D.; Konrat, A.N.; Lychagina, S.V.; Asaturova, A.M.; Sasanelli, N. Nematicidal effect of bacterial strain Bacillus sp. BZR 86 on larval mortality of the root-knot nematode. Contemporary parasitology—Major trends and challenges. In Proceedings of the International Conference VI Congress of the Society of Parasitologists, Saint Petersburg, Russia, 15–19 October 2018; p. 159. [Google Scholar]
- Huang, W.K.; Cui, J.K.; Liu, S.M.; Kong, L.A.; Wua, Q.S.; Peng, H. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biol. Control 2016, 92, 31–37. [Google Scholar] [CrossRef]
- Choi, T.G.; Maung, C.E.H.; Lee, D.R.; Ajuna, H.B.; Lee, Y.S.; Kim, K.Y. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Sci. Technol. 2020, 30, 685–700. [Google Scholar] [CrossRef]
- Colagiero, M.A.; Rosso, L.C.; Ciancio, A. Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes. Biol. Control 2018, 120, 11–16. [Google Scholar] [CrossRef]
- El-Nagdi, W.M.A.; Abd-El-Khair, H. Application of Bacillus species for controlling root-knot nematode Meloidogyne incognita in eggplant. Bull. Natl. Res. Cent. 2019, 43, 154. [Google Scholar] [CrossRef]
- Vetrivelkalai, P.; Sivakumar, M.; Jonathan, E.I. Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in hendi. J. Biopestic. 2010, 3, 452–457. [Google Scholar]
- Chowdhury, S.P.; Hartmann, A.; Gao, X.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Front. Microbiol. 2015, 6, 780. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.; Muttucumaru, N.; Powers, S.J.; Gaur, H.S.; Kurup, S.; Curtis, R.H.C. Differential defense response due to jasmonate seed treatment in cowpea and tomato against root-knot and potato cyst nematodes. Nematology 2013, 15, 15–21. [Google Scholar] [CrossRef]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms 2020, 8, 992. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Z.; Ling, N.; Yuan, Y.; Zheng, X.; Shen, B.; Shen, Q. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soil. 2011, 47, 495–506. [Google Scholar] [CrossRef]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of two Plant-Growth Promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Mohammad Parast Tabas, H.; Baruah, N.; Koskimäki, J.J. Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms 2021, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Cheffi, M.; Bouket, A.C.; Alenezi, F.N.; Luptakova, L.; Belka, M.; Vallat, A.; Rateb, M.E.; Tounsi, S.; Triki, M.A.; Belbahri, L. Olea europaea L. Root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms 2019, 7, 314. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Shang, Q.; Zhang, Y.; Li, P.; Chai, Y. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front. Microbiol. 2017, 8, 2620. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Tabassum, B.; Abd-Allah, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Çakmakçi, R.; Donmez, F.; Aydın, A.; Şahin, F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006, 38, 1482–1487. [Google Scholar] [CrossRef]
- Bizos, G.; Papatheodorou, E.M.; Chatzistathis, T.; Ntalli, N.; Aschonitis, V.G.; Monokrousos, N. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Aeron, A.; Khare, E.; Jha, C.K.; Meena, V.S.; Aziz, S.M.A.; Islam, M.T.; Kim, K.; Meena, S.K.; Pattanayak, A.; Rajashekara, H.; et al. Revisiting the plant growth-promoting rhizobacteria: Lessons from the past and objectives for the future. Arch Microbiol. 2020, 202, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Hanif, A.; Farzand, A.; Sheikh, T.M.M.; Khan, A.R.; Suleman, M.; Ayaz, M.; Gao, X. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhang, L.; Goodwin, P.H.; Xia, M.; Zhang, J.; Wang, Q.; Liang, J.; Sun, R.; Wu, C.; Yang, L. Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Front. Microbiol. 2020, 11, 598285. [Google Scholar] [CrossRef]
- Palazzinia, J.M.; Dunlapb, C.A.; Bowmanc, M.J.; Chulze, S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol. Res. 2016, 192, 30–36. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Ho, M.T.; Weselowski, B.; McDowell, T.; Solomon, O.; Renaud, J.; Yuan, Z.-C. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol. 2019, 19, 5. [Google Scholar] [CrossRef]
- Li, J.; Hu, M.; Xue, Y.; Chen, X.; Lu, G.; Zhang, L.; Zhou, J. Screening, identification and efficacy evaluation of antagonistic bacteria for biocontrol of soft rot disease caused by Dickeya zeae. Microorganisms 2020, 8, 697. [Google Scholar] [CrossRef]
- Mullins, A.J.; Li, Y.; Qin, L.; Hu, X.; Xie, L.; Gu, C.; Mahenthiralingam, E.; Xing Liao, X.; Webster, G. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. Microbiology 2020, 166, 1121–1128. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, D.; Qi, G.; Mao, Z.; Hu, X.; Du, B.; Liu, K.; Ding, Y. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides. Front. Microbiol. 2020, 10, 2889. [Google Scholar] [CrossRef]
Strain 1 | Nematicidal Activity (%) | GI 2 | Antagonistic Activity on the 15th Day (%) | ||
---|---|---|---|---|---|
F. oxysporum | R. solani | F. graminearum | |||
BZR 18 | 92 ± 3.1 3 ij 4 | 0.84 ± 0.06 efg | 0 ± 0 k | 0 ± 0 k | 53.9 ± 2.2 bcd |
BZR 59 | 63 ± 0 hi | 0.86 ± 0.23 efgh | 0 ± 0 k | 28 ± 1.3 ij | 52.9 ± 1.4 cd |
BZR 86 | 100 ± 5 j | 1.18 ± 0.06 mn | 32.4 ± 2 f | 45.8 ± 0.8 bcd | 45.9 ± 0.8 h |
BZR 148 | 4 ± 0 ef | 0.78 ± 0.08 def | 42.2 ± 0.8 a | 48.4 ± 0.8 a | 41.5 ± 1.4 ij |
BZR 187 | 100 ± 0 j | 0.94 ± 0.08 ghij | 40 ± 1.3 c | 43.1 ± 1.5 e | 32.2 ± 0.8 mn |
BZR 241 | 96 ± 0 j | 0.87 ± 0.08 efghi | 41.8 ± 0.8 abd | 43.1 ± 3.4 e | 41 ± 0.8 ij |
BZR245 F | 12 ± 0.6 bcd | 0.44 ± 0.09 b | 25.8 ± 2.0 i | 25.8 ± 2.0 j | 28 ± 0.8 o |
BZR 261 | 100 ± 0.5 j | 1.10 ± 0.09 klmn | 36.4 ± 0.8 e | 46.7 ab | 39.5 ± 0.8 j |
BZR 277 | 92 ± 0 ij | 0.22 ± 0 a | 40.9 ± 0.8 abcd | 44 ± 2.7 cde | 42.9 ± 1.4 i |
BZR 337 | 70 ± 0 g | 0.67 ± 0.05 cd | 0 ± 0 k | 0 ± 0 k | 52.5 ± 0.8 cd |
BZR 348 | 17 ± 0 cd | 0.73 ± 0.10 cde | 24 ± 2.3 j | 46.7 ab | 35.9 ± 2.5 kl |
BZR 367 | 0 ± 0 a | 1.00 ± 0 hijkl | 25.3 ± 2.3 ij | 28.4 ± 2.0 i | 30.8 ± 2.2 n |
BZR 413 | 82 ± 0 ij | 1.20 ± 0.07 n | 0 ± 0 k | 0 ± 0 k | 31.8 ± 0.8 n |
BZR 416 | 16 ± 1.7 cd | 0.93 ± 0.10 ghij | 25.8 ± 0.8 i | 25.8 ± 0.8 j | 28.3 ± 0.8 o |
BZR 417 | 12 ± 0 de | 1.02 ± 0.05 ijkl | 39.6 ± 0.8 c | 40 ± 3.5 f | 39.9 ± 1.4 j |
BZR 430 | 10 ± 0 bc | 1.02 ± 0.09 ijkl | 0 ± 0 k | 0 ± 0 k | 42.4 ± 0.8 i |
BZR 436 | 7 ± 0 cd | 0.84 ± 0.29 efg | 28 ± 1.3 gh | 32 ± 2.3 h | 50 ± 1.4 ef |
BZR 441 | 100 ± 0 j | 1.06 ± 0.08 jklm | 39.1 ± 2.0 c | 43.6 ± 0.8 de | 54 ± 1.4 bc |
BZR 455 | 100 ± 0 j | 1.13 ± 0.07 lmn | 0 ± 0 k | 0 ± 0 k | 58.1 ± 2.2 a |
BZR 462 | 93 ± 11.5 ij | 1.00 ± 0 hijkl | 42.2 ± 0.8ab | 47.1 ± 0.8 ab | 36.9 ± 0.8 k |
BZR 472 | 92 ± 3.5 ij | 0.68 ± 0.07 cd | 0 ± 0 k | 0 ± 0 k | 48.5 ± 1.4 fg |
BZR 480 | 100 ± 0 j | 1.00 ± 0 hijkl | 0 ± 0 k | 0 ± 0 k | 34.3 ± 1.4 lm |
BZR 512 | 100 ± 0 j | 0.63 ± 0 c | 0 ± 0 k | 0 ± 0 k | 48 ± 0.8 fg |
BZR 517 | 80 ± 0 hi | 0.67 ± 0.17 cd | 36.9 ± 0.8 e | 43.6 ± 0.8de | 52.5 ± 0.8 cd |
BZR 519 | 100 ± 0.5 j | 0.94 ± 0.08 ghij | 40 ± 0 cd | 46.2 ± 4.1 abc | 54.9 ± 1.6 bc |
BZR 523−1 | 84 ± 4.2 hi | 0.89 ± 0 fghi | 26.7 ± 0 hi | 43.6 ± 0.8 de | 51.5 de |
BZR 523-2 | 16 ± 0 cd | 0.89 ± 0.11 fghi | 0 ± 0 k | 0 ± 0 k | 48.5 ± 1.4 fg |
BZR 528 | 100 ± 0 j | 0.89 ± 0.06 fghi | 0 ± 0 k | 0 ± 0 k | 52.5 ± 1.4 cd |
BZR 538 | 11 ± 2.5 bc | 0.75 ± 0 cdef | 0 ± 0 k | 0 ± 0 k | 45.3 ± 1.4 h |
BZR 623 | 100 ± 0.6 j | 1.10 ± 0.09 klmn | 40.4 ± 0.8 bcd | 48.4 ± 0.8a | 41 ± 0.8 ij |
BZR 658 | 100 ± 0 j | 1.23 ± 0.09 n | 0 ± 0 k | 0 ± 0 k | 39.5 ± 0.8 j |
BZR 673 | 9 ± 0 de | 0.96 ± 0.06 ghijk | 42.2 ± 2.0 ab | 47.1 ± 0.8 ab | 47.1 ± 1.4 gh |
BZR 854 | 36 ± 0 f | 0.86 ± 0.21 efgh | 39.1 ± 0.8 c | 48 ± 1.3 ab | 55.4 ± 0.8 b |
BZR 862 | 96 ± 0 j | 0.78 ± 0 def | 28.4 ± 0.8 g | 34.7 ± 1.3 g | 41.9 ± 0.8 ij |
BZR 873 | 77 ± 19.6 gh | 1.23 ± 0.09 n | 0 ± 0 k | 0 ± 0 k | 52.9 ± 1.4 cd |
Treatment | Plant Height (cm) | Root Length (cm) | Weight of Dry Biomass (g) | |
---|---|---|---|---|
Aerial Parts | Roots | |||
Control | 14.6 ± 1.8 1 a 2 | 18.3 ± 3.7 a | 0.11 ± 0 a | 0.15 ± 0.01 d |
BZR 441 | 14.8 ± 1.7 a | 16.4 ± 2.9 b | 0.11 ± 0.01 a | 0.13 ± 0.01 bcd |
Control | 14.9 ± 1.6 a | 14.6 ± 2.1 c | 0.11 ± 0.01 a | 0.12 ± 0.02 ab |
BZR 623 | 15.8 ± 1.9 b | 14.5 ± 3.1 c | 0.12 ± 0.01 a | 0.14 ± 0.01 cd |
Control | 14.8 ± 1.9 a | 14.6 ± 3.2 c | 0.11 ± 0.01 a | 0.10 ± 0.01 a |
BZR 86 | 15.1 ± 1.7 a | 14.5 ± 3.0 c | 0.11 ± 0.01 a | 0.13 ± 0.01 bcd |
Control | 14.8 ± 1.9 a | 14.6 ± 3.2 c | 0.11 ± 0 a | 0.10 ± 0.01 a |
BZR 261 | 14.7 ± 1.9 a | 17.0 ± 3.6 b | 0.11 ± 0 a | 0.13 ± 0.01 bc |
Treat | Galls/Root | Eggs/Egg Mass | Root Gall Index (1–5) |
---|---|---|---|
Control | 218 ± 58.6 1 c 2 | 316 ± 41.9 a | 2.6 ± 1.1 b |
Phytoverm | 73 ± 13.2 ab | 191 ± 19.0 b | 1 ± 0.6 a |
BZR 86, 7 × 106 CFU mL−1 | 86 ± 16.8 ab | 207 ± 36.1 b | 1.4 ± 0.9 a |
BZR 86, 7 × 105 CFU mL−1 | 141 ± 31.8 bc | 177 ± 24.4 b | 1.8 ± 0.5 ab |
BZR 86, 7 × 104 CFU mL−1 | 65 ± 16.0 ab | 224 ± 33.9 b | 1.64 ± 0.7 a |
Treatment | Height (cm) | N° Leaves | Plant Biomass (g) | Root Volume (mL) | Root Gall Index (0–5) | Galls/Root | |
---|---|---|---|---|---|---|---|
Aerial Part | Roots | ||||||
Non-infested control | 16.2 ± 2.4 1 a 2 | 12 ± 1.0 ab | 5.0 ± 1.6 a | 1.0 ± 0 d | 1.2 ± 0.4 c | - | - |
Infested control | 25.3 ± 2.3 b | 15 ± 1.9 b | 8.8 ± 2.2 ab | 3.5 ± 1.0 ab | 4.0 ± 0.8 b | 2.8 ± 1.0 b | 81 ± 10.1 b |
Phytoverm | 20.0 ± 3.4 ab | 12 ± 0.9 a | 9.2 ± 1.5 b | 2.2 ± 0.8 c | 2.8 ± 1.0 a | 0.1 ± 0 a | 3 ± 1.5 a |
BZR 86, 3 × 106 CFU mL−1 | 24.0 ± 3.9 b | 12 ± 2.0 ab | 10.8 ± 1.0 b | 3.8 ± 1.0 b | 3.5 ± 0.6 ab | 0.1 ± 0.1 a | 2 ± 1.7 a |
BZR 86, 3 × 105 CFU mL−1 | 23.2 ± 1.2 b | 15 ± 3.7 ab | 9.7 ± 2.0 b | 3.5 ± 0.5 ab | 4.0 ± 0.6 b | 0.1 ± 0.1 a | 1.2 ± 0.8 a |
BZR 86, 3 × 104 CFU mL−1 | 21.3 ± 5.3 ab | 15 ± 2.9 ab | 8.1 ± 1.2 ab | 2.4 ± 1.0 ac | 2.9 ± 1.1 a | 0.3 ± 0.4 a | 8 ± 2.7 a |
Treatment | Height (cm) | N° Leaves | Biomass Weight (g) | Root Volume (mL) | |
---|---|---|---|---|---|
Aerial Parts | Roots | ||||
Non-infested control | 51 ± 10.9 1 a 2 | 22 ± 4.1 a | 10.9 ± 1.2 ab | 4.2 ± 1.5 a | 7.6 ± 2.2 b |
Infested control | 48 ± 10.4 a | 22 ± 5.7 ab | 6.3 ± 2.0 a | 4.1 ± 2.1 a | 3.1 ± 1.6 a |
Phytoverm | 44 ± 8.7 a | 22 ± 4.2 a | 6.1 ± 3.8 a | 3.4 ± 1.7 a | 6.0 ± 2.4 ab |
BZR 86, 7 × 106 CFU mL−1 | 92 ± 4.2 b | 27 ± 1.8 b | 12.9 ± 3.1 b | 6.6 ± 2.1 a | 6.0 ± 2.8 ab |
BZR 86, 7 × 105 CFU mL−1 | 57 ± 12.7 a | 24 ± 3.2 ab | 9.6 ± 2.6 ab | 7.1 ± 1.5 a | 6.4 ± 2.4 ab |
BZR 86, 7 × 104 CFU mL−1 | 50 ± 13.7 a | 22 ± 3.4 ab | 6.9 ± 2.8 a | 4.7 ± 1.7 a | 5.4 ± 1.5 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migunova, V.D.; Tomashevich, N.S.; Konrat, A.N.; Lychagina, S.V.; Dubyaga, V.M.; D’Addabbo, T.; Sasanelli, N.; Asaturova, A.M. Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita. Microorganisms 2021, 9, 1698. https://doi.org/10.3390/microorganisms9081698
Migunova VD, Tomashevich NS, Konrat AN, Lychagina SV, Dubyaga VM, D’Addabbo T, Sasanelli N, Asaturova AM. Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita. Microorganisms. 2021; 9(8):1698. https://doi.org/10.3390/microorganisms9081698
Chicago/Turabian StyleMigunova, Varvara D., Natalia S. Tomashevich, Alena N. Konrat, Svetlana V. Lychagina, Valentina M. Dubyaga, Trifone D’Addabbo, Nicola Sasanelli, and Anzhela M. Asaturova. 2021. "Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita" Microorganisms 9, no. 8: 1698. https://doi.org/10.3390/microorganisms9081698
APA StyleMigunova, V. D., Tomashevich, N. S., Konrat, A. N., Lychagina, S. V., Dubyaga, V. M., D’Addabbo, T., Sasanelli, N., & Asaturova, A. M. (2021). Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita. Microorganisms, 9(8), 1698. https://doi.org/10.3390/microorganisms9081698