Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data
2.3. Methodological Approach
- The objective function (which is maximized in the optimization problem) denotes the gross margin achieved by each typical farm (GM_SF, GM_MF, and GM_LF), while the optimal solution shows the number of farms that belong to each type which achieves the maximum gross margin.
- Constraints that relate to
- ○
- The available sea surface (ASS) and the sea surface that can be occupied by each typical farm (SS_SF, SS_MF, and SS_LF)
- ○
- The available family labor (AFL) and the family labor required by each typical farm (RFL_SF, RFL_MF, and RFL_LF)
- ○
- The available hired labor (AHL) and the family labor required by each typical farm (RHL_SF, RHL_MF, and RHL_LF)
- ○
- Variable capital available to the mussel farms in the area (VC) and their requirements per farm (VC_SF, VC_MF, and VC_LF)
- Mussel production per farm type (Prod_SF, Prod_MF, and Prod_LF)
SF | MF | LF | HLAB | PROD | |
---|---|---|---|---|---|
Objective function (Max) | GM_SF | GM_MF | GM_LF | -HLHR | 0 |
ASS>= | SS_SF | SS_MF | SS_LF | ||
AFL>= | RFL_SF | RFL_MF | RFL_LF | ||
0>= | RHL_SF | RHL_MF | RHL_LF | −1 | |
AHL>= | 1 | ||||
VC>= | VC_SF | VC_MF | VC_LF | ||
0>= | Prod_SF | Prod_MF | Prod_LF |
3. Results
Results of the LP Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theodoridis, A.; Ragkos, A.; Angelidis, P.; Batzios, C.; Samathrakis, V. Typologies as Management Tools: Understanding the Environmental Attitudes and Economic Prospects of Mussel Farmers in Greece. In Tools and Techniques for Economic Decision Analysis; IGI Global: Hershey, PA, USA, 2017; pp. 170–180. [Google Scholar]
- Theodoridis, A.; Batzios, C.; Ragkos, A.; Angelidis, P. Technical efficiency measurement of mussel aquaculture in Greece. Aquac. Int. 2017, 25, 1025–1037. [Google Scholar] [CrossRef]
- Theodoridis, A.; Ragkos, A.; Koutouzidou, G. Revealing the profile of economically efficient mussel farms: A restricted data envelopment analysis application. Aquac. Int. 2020, 28, 675–689. [Google Scholar] [CrossRef]
- Avdelas, L.; Avdic-Mravlje, E.; Marques, A.C.B.; Cano, S.; Capelle, J.J.; Carvalho, N.; Cozzolino, M.; Dennis, J.; Ellis, T.; Polanco, J.M.F.; et al. The decline of mussel aquaculture in the European Union: Causes, economic impacts and opportunities. Rev. Aquac. 2021, 13, 91–118. [Google Scholar] [CrossRef]
- Georgoulis, I.; Feidantsis, K.; Kouvas, D.; Lattos, A.; Delis, G.A.; Theodoridis, A.; Michaelidis, B.; Giantsis, I.A. The effect of seawater physical parameters in bivalve farming: Could systematic monitoring and early warning prevent negative impacts? A review focused on Vistonikos Gulf, North Aegean Sea. Int. J. Agric. Resour. Gov. Ecol. 2022, 18, 22–37. [Google Scholar] [CrossRef]
- Feidantsis, K.; Giantsis, I.A.; Vratsistas, A.; Makri, S.; Pappa, A.Z.; Drosopoulou, E.; Anestis, A.; Mavridou, E.; Exadactylos, A.; Vafidis, D.; et al. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R264–R281. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.P.; Bailey, M.A.; Merselis, D.G.; Morrison, J.R. Physiological response of the blue mussel Mytilus edulis to differences in food and temperature in the Gulf of Maine. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Lattos, A.; Chaligiannis, I.; Papadopoulos, D.; Giantsis, I.A.; Petridou, E.I.; Vafeas, G.; Staikou, A.; Michaelidis, B. How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods 2021, 10, 2793. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzidou, M.P.; Nannou, C.I.; Lambropoulou, D.A.; Papageorgiou, K.V.; Theodoridis, A.M.; Economou, V.K.; Giantsis, I.A.; Angelidis, P.G.; Kritas, S.K.; Petridou, E.J. First report of detection of microcystins in farmed mediterrane—An mussels Mytilus galloprovincialis in Thermaikos gulf in Greece. J. Biol. Res. 2021, 28, 8. [Google Scholar]
- Kalaitzidou, M.P.; Alvanou, M.V.; Papageorgiou, K.V.; Lattos, A.; Sofia, M.; Kritas, S.K.; Petridou, E.; Giantsis, I.A. Pollution Indicators and HAB-Associated Halophilic Bacteria Alongside Harmful Cyanobacteria in the Largest Mussel Cultivation Area in Greece. Int. J. Environ. Res. Public Health 2022, 19, 5285. [Google Scholar] [CrossRef] [PubMed]
- Cebu, E.H. Bamboo Tray Module Mussel Farming. J. Acad. Res. 2016, 1, 22–39. [Google Scholar]
- Coelho-Caro, P.A.; Saavedra-Rubilar, C.E.; Staforelli, J.P.; Gallardo-Nelson, M.J.; Guaquin, V.; Tarifeño, E. Mussel classifier system based on morphological characteristics. IEEE Access 2018, 6, 76935–76941. [Google Scholar] [CrossRef]
- Martin-Rodriguez, F.; Isasi-de-Vicente, F.; Fernández-Barciela, M. Automatic Census of Mussel Platforms Using Sentinel 2 Images. arXiv 2022, arXiv:2204.04112. [Google Scholar]
- Borcherding, J. Ten years of practical experience with the Dreissena-Monitor, a biological early warning system for continuous water quality monitoring. Hydrobiologia 2006, 556, 417–426. [Google Scholar] [CrossRef]
- Shen, H.; Nugegoda, D. Real-time automated behavioural monitoring of mussels during contaminant exposures using an improved microcontroller-based device. Sci. Total Environ. 2022, 806, 150567. [Google Scholar] [CrossRef] [PubMed]
- Montella, R.; Brizius, A.; Di Luccio, D.; Porter, C.; Elliot, J.; Madduri, R.; Kelly, D.; Riccio, A.; Foster, I. Using the face-it portal and workflow engine for operational food quality prediction and assessment: An application to mussel farms monitoring in the bay of napoli, italy. Future Gener. Comput. Syst. 2020, 110, 453–467. [Google Scholar] [CrossRef]
- Nguyen, T.T.; van Deurs, M.A.; Ravn-Jonsen, L.; Roth, E. Assessment of Financial Feasibility of Farming Blue Mussel in the Great Belt by the ‘Smart Farm System’. Department of Environmental and Business Economics, University of Southern Denmark. 2013. Available online: http://www.marbio.sdu.dk/uploads/MarBioShell/Thong%20et%20al,202013 (accessed on 13 September 2022).
- Theodorou, J.A.; Sorgeloos, P.; Adams, C.M.; Viaene, J.; Tzovenis, I. Optimal Farm Size for the Production of the Mediterranean Mussel (Mytilus galloprovincialis) in Greece. In Proceedings of the 15th Biennial Conference of the International Institute of Fisheries Economics and Trade, Montpellier, France, 13–16 July 2010. [Google Scholar]
- Gren, M.; Tirkaso, W.T. Costs of mussel farming: A meta-regression analysis. Aquaculture 2021, 539, 736649. [Google Scholar] [CrossRef]
- Whitmarsh, D.J.; Cook, E.J.; Black, K.D. Searching for sustainability in aquaculture: An investigation into the economic prospects for an integrated salmon–mussel production system. Mar. Policy 2006, 30, 293–298. [Google Scholar] [CrossRef]
- Buck, B.H.; Ebeling, M.W.; Michler-Cieluch, T. Mussel cultivation as a co-use in offshore wind farms: Potential and economic feasibility. Aquac. Econ. Manag. 2010, 14, 255–281. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; van den Bergh, J.C.J.M.; Massa, F.; Theodorou, J.A.; Ziveri, P.; Gazeau, F. Sensitivity of Mediterranean bivalve mollusc aquaculture to climate change and ocean acidification: Results from a producers’ survey. J. Shellfish. Res. 2015, 34, 1161–1176. [Google Scholar] [CrossRef] [Green Version]
- Zgouridou, A.; Tripidaki, E.; Giantsis, I.A.; Theodorou, J.A.; Kalaitzidou, M.; Raitsos, D.E.; Lattos, A.; Mavropoulou, A.; Sofianos, S.; Karagiannis, D.; et al. The current situation and potential effects of climate change on the microbial load of marine bivalves of the Greek coastlines: An integrative review. Environ. Microbiol. 2022, 24, 1012–1034. [Google Scholar] [CrossRef] [PubMed]
- Matouek, J.; Gärtner, B. Understanding and Using Linear Programming (Universitext); Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Bazaraa, M.S.; Jarvis, J.J.; Sherali, H.D. Linear Programming and Network Flow, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- European Market Observatory for Fisheries and Aquaculture Products (EUMOFA). Fresh mussel in the EU. In Price Structure in the Supply Chain: Focus on Denmark, Germany and Italy; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
Small Farms (SF) | Medium Farm (MF) | Large Farms (LF) | |
---|---|---|---|
Average acreage (ha) | 0.65 | 1.40 | 2.80 |
Production (kg) | 39,000 | 90,700 | 190,000 |
Price (€/kg) | 0.362 | 0.353 | 0.381 |
Labor (€) | 2819 | 2273 | 4807 |
Family (€) | 1775 | 1232 | 2336 |
Hired (€) | 1044 | 1041 | 2471 |
Gross revenue (€) | 15,513 | 35,994 | 75,120 |
Production expenses (€) | 21,124 | 34,499 | 59,233 |
Sea acreage (Rent) (€) | 360 | 727 | 1468 |
Labor (€) | 9710 | 8504 | 19,656 |
Capital (€) | 11,054 | 25,268 | 38,109 |
Variable (€) | 7831 | 16,350 | 26,880 |
Fixed (€) | 3222 | 8918 | 11,229 |
Scenario 1 Current Situation | Scenario 2 Future Situation | |
---|---|---|
Investment costs (Year 0) | 30,000 € | 30,000 € |
Multiparameter measurement sensor for temperature, pressure, salinity and dissolved oxygen | 11,000 € | 11,000 € |
Connector cables | 2800 € | 2800 € |
Telemetric digital stand-alone datalogger | 8000 € | 8000 € |
Solar panel | 5400 € | 5400 € |
Labor costs | 2800 € | 2800 € |
Annual operation costs | 1800 € | 1800 € |
Maintenance costs (replacement of equipment-Year 6) | 6000 € | 6000 € |
Residual value | 6000 € | 6000 € |
Years of productive life | 12 | 12 |
Discount rate | 4% | 6% |
Scenario 1 Current Situation | Scenario 2 Future Situation | |
---|---|---|
Number of farms | 23 | 43 |
Sea area (ha) | 45 | 120 |
Synthesis of farms | ||
Large farms (LF) | 50% | 100% |
Medium farms (MF) | 30% | 0% |
Small farms (SF) | 20% | 0% |
Labor (full time persons) | 49 | 120 |
Family (full time persons) | 25 | 58 |
Hired (full time persons) | 24 | 62 |
Variable capital (€) | 459,774 | 1,152,000 |
Gross margin (€) | 386,059 | 1,154,649 |
Mussel production (kg) | 3,002,175 | 8,142,857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragkos, A.; Skordos, D.; Koutouzidou, G.; Giantsis, I.A.; Delis, G.; Theodoridis, A. Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture. Animals 2022, 12, 2832. https://doi.org/10.3390/ani12202832
Ragkos A, Skordos D, Koutouzidou G, Giantsis IA, Delis G, Theodoridis A. Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture. Animals. 2022; 12(20):2832. https://doi.org/10.3390/ani12202832
Chicago/Turabian StyleRagkos, Athanasios, Dimitrios Skordos, Georgia Koutouzidou, Ioannis A. Giantsis, Georgios Delis, and Alexandros Theodoridis. 2022. "Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture" Animals 12, no. 20: 2832. https://doi.org/10.3390/ani12202832