Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Bacteria Inoculum Preparation
2.3. Challenge Trial
2.4. Haematological Parameters
2.5. Plasma Immune Parameters
2.6. Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Hematological and Immune Status at the End of the Feeding Trial
3.2. Hematological and Immune Status at 4 h after Challenge
3.3. Hematological and Immune Status at 24 h after the Challenge
4. Discussion
4.1. Dietary Effects on Hematological and Immune Status at the End of the Feeding Trial
4.2. Dietary Effects on Hematological and Immune Status after Challenge with Killed Phdp
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monroig, Ó.; Shu-Chien, A.; Kabeya, N.; Tocher, D.; Castro, L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog. Lipid Res. 2022, 86, 101157. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 197–202. [Google Scholar] [CrossRef]
- Monroig, O.; Tocher, D.R.; Castro, L.F.C. Chapter 3—Polyunsaturated Fatty Acid Biosynthesis and Metabolism in Fish. In Polyunsaturated Fatty Acid Metabolism; Burdge, G.C., Ed.; AOCS Press: Urbana, IL, USA, 2018; pp. 31–60. [Google Scholar]
- Hii, C.S.; Ferrante, A. Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch. Immunol. et Ther. Exp. 2007, 55, 99–110. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.-G. Crosstalk of reactive oxygen species and NF-kappaκB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Farndale, B.M.; Bell, J.; Bruce, M.P.; Bromage, N.R.; Oyen, F.; Zanuy, S.; Sargent, J.R. Dietary lipid composition affects blood leucocyte fatty acid compositions and plasma eicosanoid concentrations in European sea bass (Dicentrarchus labrax). Aquaculture 1999, 179, 335–350. [Google Scholar] [CrossRef]
- Tocher, D.R.; Sargent, J.R. Incorporation of [1-14C]arachidonic and [1-14C]eicosapentaenoic acids into the phospholipids of peripheral blood neutrophils from the plaice, Pleuronectes platessa L. Biochim. et Biophys. Acta (BBA)—Lipids Lipid Metab. 1986, 876, 592–600. [Google Scholar] [CrossRef]
- Chee, W.-L.; Turchini, G.M.; Teoh, C.-Y.; Ng, W.-K. Dietary arachidonic acid and the impact on growth performance, health and tissues fatty acids in Malabar red snapper (Lutjanus malabaricus) fingerlings. Aquaculture 2020, 519, 734757. [Google Scholar] [CrossRef]
- Nayak, S.; Koven, W.; Meiri, I.; Khozin-Goldberg, I.; Isakov, N.; Zibdeh, M.; Zilberg, D. Dietary arachidonic acid affects immune function and fatty acid composition in cultured rabbitfish Siganus rivulatus. Fish Shellfish. Immunol. 2017, 68, 46–53. [Google Scholar] [CrossRef]
- Shahkar, E.; Yun, H.; Lee, S.; Kim, D.-J.; Kim, S.-K.; Lee, B.I.; Bai, S.C. Evaluation of the optimum dietary arachidonic acid level and its essentiality based on growth and non-specific immune responses in Japanese eel, Anguilla japonica. Aquaculture 2016, 452, 209–216. [Google Scholar] [CrossRef]
- Torrecillas, S.; Roman, L.; Rivero-Ramirez, F.; Caballero, M.J.; Pascual, C.; Robaina, L.; Izquierdo, M.S.; Acosta, F.; Montero, D. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on leucocytes and plasma fatty acid profiles, selected immune parameters and circulating prostaglandins levels. Fish Shellfish. Immunol. 2017, 64, 437–445. [Google Scholar] [CrossRef]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Calder, P.C. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, C.; You, C.; Chen, B.; Wang, S.; Li, Y. Effects of different dietary ratios of docosahexaenoic to eicosapentaenoic acid (DHA/EPA) on the growth, non-specific immune indices, tissue fatty acid compositions and expression of genes related to LC-PUFA biosynthesis in juvenile golden pompano Trachinotus ovatus. Aquaculture 2019, 505, 488–495. [Google Scholar] [CrossRef]
- Zuo, R.T.; Ai, Q.H.; Mai, K.S.; Xu, W.; Wang, J.; Xu, H.G.; Liufu, Z.G.; Zhang, Y.J. Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Aquaculture 2012, 334, 101–109. [Google Scholar]
- Xu, H.; Wang, J.; Mai, K.; Xu, W.; Zhang, W.; Zhang, Y.; Ai, Q. Dietary docosahexaenoic acid to eicosapentaenoic acid (DHA/EPA) ratio influenced growth performance, immune response, stress resistance and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus(Cuvier). Aquac. Res. 2016, 47, 741–757. [Google Scholar] [CrossRef]
- Wu, F.; Ting, Y.; Chen, H. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus. Fish Shellfish. Immunol. 2003, 14, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M. Essential fatty acid requirements in Mediterranean fish species. Cah. Options Mediterr. 2005, 63, 91–102. [Google Scholar]
- Magalhães, R.; Guardiola, F.; Guerreiro, I.; Fontinha, F.; Moutinho, S.; Olsen, R.; Peres, H.; Oliva-Teles, A. Effect of different dietary arachidonic, eicosapentaenoic, and docosahexaenoic acid content on selected immune parameters in gilthead sea bream (Sparus aurata). Fish Shellfish. Immunol. Rep. 2021, 2, 100014. [Google Scholar] [CrossRef]
- Magalhães, R.; Guardiola, F.A.; Guerreiro, I.; Fontinha, F.; Moutinho, S.; Serra, C.R.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Immunomodulatory effect of different dietary ARA/EPA/DHA ratios in gilthead sea bream (Sparus aurata) juveniles after infection with Photobacterium damselae subsp. piscicida. Aquac. Res. 2022, 53, 6007–6019. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Fish and Shrimp; The National Academy Press: Washinghton, DC, USA, 2011; p. 376. [Google Scholar]
- Krogdahl, A.; Hemre, G.-I.; Mommsen, T. Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquac. Nutr. 2005, 11, 103–122. [Google Scholar] [CrossRef]
- Castro, C.; Corraze, G.; Firmino-Diógenes, A.; Larroquet, L.; Panserat, S.; Oliva-Teles, A. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. Br. J. Nutr. 2016, 116, 19–34. [Google Scholar] [CrossRef]
- Ekmann, K.S.; Dalsgaard, J.; Holm, J.; Campbell, P.J.; Skov, P.V. Glycogenesis and de novo lipid synthesis from dietary starch in juvenile gilthead sea bream (Sparus aurata) quantified with stable isotopes. Br. J. Nutr. 2013, 109, 2135–2146. [Google Scholar] [CrossRef]
- Kamalam, B.S.; Médale, F.; Larroquet, L.; Corraze, G.; Panserat, S. Metabolism and Fatty Acid Profile in Fat and Lean Rainbow Trout Lines Fed with Vegetable Oil: Effect of Carbohydrates. PLoS ONE 2013, 8, e76570. [Google Scholar] [CrossRef]
- Seiliez, I.; Panserat, S.; Kaushik, S.; Bergot, P. Cloning, tissue distribution and nutritional regulation of a Delta 6-desaturase-like enzyme in rainbow trout. Comp. Biochem. Physiol. B 2001, 130, 83–93. [Google Scholar] [CrossRef]
- Liu, B.; Xie, J.; Ge, X.-P.; Miao, L.-H.; Wang, G. Effect of high dietary carbohydrate on growth, serum physiological response, and hepatic heat shock cognate protein 70 expression of the top-mouth culter Erythroculter ilishaeformis Bleeker. Fish. Sci. 2012, 78, 613–623. [Google Scholar] [CrossRef]
- Zhou, C.; Ge, X.; Lin, H.; Niu, J. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus). Fish Shellfish. Immunol. 2014, 41, 183–190. [Google Scholar] [CrossRef]
- Wu, C.; Ye, J.; Gao, J.; Chen, L.; Lu, Z. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus. Fish Shellfish. Immunol. 2016, 49, 132–142. [Google Scholar] [CrossRef]
- Han, H.; Wang, Z.; Wang, J.; Wang, T.; Li, Y.; Guan, D.; Sun, H. Impact of high dietary cornstarch level on growth, antioxidant response, and immune status in GIFT tilapia Oreochromis niloticus. Sci. Rep. 2021, 11, 6678. [Google Scholar] [CrossRef]
- Waagbo, R.; Glette, J.; Sandnes, K.; Hemre, G.I. Influence of dietary carbohydrate on blood chemistry, immunity and disease resistance in Atlantic salmon, Salmo salar L. J. Fish Dis. 1994, 17, 245–258. [Google Scholar] [CrossRef]
- Tan, J.; Ni, D.; Wali, J.A.; Cox, D.A.; Pinget, G.V.; Taitz, J.; Daïen, C.I.; Senior, A.; Read, M.N.; Simpson, S.J.; et al. Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. iScience 2021, 24, 102835. [Google Scholar] [CrossRef]
- Llorente, I.; Fernández-Polanco, J.; Baraibar-Diez, E.; Odriozola, M.D.; Bjørndal, T.; Asche, F.; Guillen, J.; Avdelas, L.; Nielsen, R.; Cozzolino, M.; et al. Assessment of the economic performance of the seabream and seabass aquaculture industry in the European Union. Mar. Policy 2020, 117, 103876. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A. Dietary Carbohydrate Utilization by European Sea Bass (Dicentrarchus labrax L.) and Gilthead Sea Bream (Sparus aurata L.) Juveniles. Rev. Fish. Sci. 2011, 19, 201–215. [Google Scholar] [CrossRef]
- Ibeas, C.; Izquierdo, M.; Lorenzo, A. Effect of different levels of n−3 highly unsaturated fatty acids on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata). Aquaculture 1994, 127, 177–188. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Alexis, M.N.; Henderson, R.J. Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 1992, 104, 293–308. [Google Scholar] [CrossRef]
- Fountoulaki, E.; Alexis, M.; Nengas, I.; Venou, B. Effects of dietary arachidonic acid (20:4n-6), on growth, body composition, and tissue fatty acid profile of gilthead bream fingerlings (Sparus aurata L.). Aquaculture 2003, 225, 309–323. [Google Scholar] [CrossRef]
- Magalhães, R.; Martins, N.; Fontinha, F.; Moutinho, S.; Olsen, R.; Peres, H.; Oliva-Teles, A. Effects of dietary arachidonic acid and docosahexanoic acid at different carbohydrates levels on gilthead sea bream growth performance and intermediary metabolism. Aquaculture 2021, 545, 737233. [Google Scholar] [CrossRef]
- Diaz-Rosales, P.; Chabrillon, M.; Moriñigo, M.A.; Balebona, M.C. Survival against exogenous hydrogen peroxide of Photobacterium damselae subsp. piscicida under different culture conditions. J. Fish Dis. 2003, 26, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Susana, L.; Joana, S.; Anthony, E.E.; Manuel, T.S. Neutrophil and macrophage responses to inflammation in the peritoneal cavity of rainbow trout Oncorhynchus mykiss. A light and electron microscopic cytochemical study. Dis. Aquat. Org. 1998, 34, 27–37. [Google Scholar] [CrossRef]
- Peres, H.; Costas, B.; Perez-Jimenez, A.; Guerreiro, I.; Oliva-Teles, A. Reference values for selected hematological and serum biochemical parameters of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles under intensive aquaculture conditions. J. Appl. Ichthyol. 2015, 31, 65–71. [Google Scholar] [CrossRef]
- Machado, M.; Moura, J.; Peixoto, D.; Castro-Cunha, M.; Conceição, L.E.; Dias, J.; Costas, B. Dietary methionine as a strategy to improve innate immunity in rainbow trout (Oncorhynchus mykiss) juveniles. Gen. Comp. Endocrinol. 2021, 302, 113690. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Siwicki, A.K.; Anderson, D.P. Nonspecific defence mechanisms assay in fish II; Potential killing activity of neutrophils and manocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In Fish Disease Diagnosis and Preventions Methods; Siwicki, A.K., Anderson, D.P., Waluga, J., Eds.; Wydawnictwo Instytutu Rybactwa Strodladowego: Olsztyn, Poland, 1993; pp. 105–111. [Google Scholar]
- Sunyer, J.O.; Tort, L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.G.; Jeffries, A.H.; Secombes, C.J. A novel assay to detect macrophage bactericidal activity in fish: Factors influencing the killing of Aeromonas salmonicida. J. Fish Dis. 1988, 11, 389–396. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Socorro, J.; Tort, L.; Caballero, M.J.; Robaina, L.E.; Vergara, J.M.; Izquierdo, M.S. Glomerulonephritis and immunosuppression associated with dietary essential fatty acid deficiency in gilthead sea bream, Sparus aurata L., juveniles. J. Fish Dis. 2004, 27, 297–306. [Google Scholar] [CrossRef]
- Montero, D.; Tort, L.; Izquierdo, M.; Robaina, L.; Vergara, J. Depletion of serum alternative complement pathway activity in gilthead seabream caused by α-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiol. Biochem. 1998, 18, 399–407. [Google Scholar] [CrossRef]
- Kumaresan, V.; Ravichandran, G.; Nizam, F.; Dhayanithi, N.B.; Arasu, M.V.; Al-Dhabi, N.A.; Harikrishnan, R.; Arockiaraj, J. Multifunctional murrel caspase 1, 2, 3, 8 and 9: Conservation, uniqueness and their pathogen-induced expression pattern. Fish Shellfish. Immunol. 2016, 49, 493–504. [Google Scholar] [CrossRef]
- Long, H.; Sun, L. Molecular characterization reveals involvement of four caspases in the antibacterial immunity of tongue sole (Cynoglossus semilaevis). Fish Shellfish. Immunol. 2016, 57, 340–349. [Google Scholar] [CrossRef]
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS |
---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 |
Dry matter (% DM) | 91.1 | 91.9 | 90.2 | 92.0 |
Crude Protein | 46.5 | 46.7 | 46.9 | 46.1 |
Crude Lipid | 17.6 | 17.7 | 18.7 | 17.7 |
Ash | 8.6 | 9.2 | 8.9 | 8.7 |
Starch | 19.6 | 4.6 | 20.0 | 5.4 |
Gross energy (kJ g−1) | 23.4 | 23.0 | 23.1 | 23.1 |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS |
---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 |
18:2n-6 (LA) | 15.80 | 15.55 | 15.25 | 15.13 |
18:3n-3 (ALA) | 14.88 | 14.98 | 17.87 | 17.95 |
20:4n-6 (ARA) | 13.11 | 13.24 | 0.17 | 0.14 |
20:5n-3 (EPA) | 1.21 | 1.24 | 2.66 | 2.69 |
22:6n-3 (DHA) | 1.53 | 1.60 | 13.67 | 13.90 |
∑SFA | 24.20 | 24.12 | 19.30 | 19.06 |
∑MUFA | 25.73 | 25.67 | 26.78 | 26.79 |
∑PUFA | 49.25 | 49.38 | 53.44 | 53.67 |
∑n-6 | 30.86 | 30.76 | 15.53 | 15.37 |
∑n-3 | 18.10 | 18.32 | 37.63 | 38.00 |
n-6/n-3 | 1.70 | 1.68 | 0.41 | 0.40 |
Gene | Gene Abbreviation | Primer Sequences (5′ → 3′) | Primer Efficiency | Accession Number |
---|---|---|---|---|
Arachidonate 5-lipoxygenase | 5-Lox | F: CCTGGCAGATGTGAACTTGA R: CGTTCTCCTGATACTGGCTGA | 1.88 | FP334124 |
Caspase 3 | Casp3 | F: CCAGTCAGTCGAGCAGATGA R: GAACACACCCTCGTCTCCAT | 1.98 | EU722334 |
Interleukin 1-β | IL1β | F: GGGCTGAACAACAGCACTCTC R: TTAACACTCTCCACCCTCCA | 2.14 | AJ277166 |
Immunoglobulin M | IGM | F: CAGCCTCGAGAAGTGGAAAC R: GAGGTTGACCAGGTTGGTGT | 2.10 | AM493677 |
Cyclooxygenase 2 | Cox2 | F: GAGTACTGGAAGCCGAGCAC R: GATATCACTGCCGCCTGAGT | 1.96 | AM296029 |
Tumor necrosis factor-α | TNFα | F: TCGTTCAGAGTCTCCTGCAG R: CATGGACTCTGAGTAGCGCGA | 2.02 | AJ413189 |
Major histocompatibility complex class IIa | MHCII | F: CTGGACCAAGAACGGAAAGA R: CATCCCAGATCCTGGTCAGT | 1.94 | DQ019401 |
Interleukin 10 | Il-10 | F: TGGAGGGCTTTCCTGTCAGA R: TGCTTCGTAGAAGTCTCGGATGT | 1.94 | FG261948 |
Prostaglandin E2 receptor EP2 | EP2 | F: ACACGTTGGACAGAGCAAGT R: TAGTGGCACGTGTCGTTCTC | 2.12 | XM_030410284.1 |
Prostaglandin E2 receptor EP3 | EP3 | F: ACCCCATGAAACCACTGTCC R: CCCTGGGCGGATACACAAAT | 1.80 | XM_030434233.1 |
Prostaglandin E2 receptor EP4 | EP4 | F: GCGGACAGACTCTCTGGTTC R: TCTCAGTGCTCAACGACACC | 1.99 | XM_030415999.1 |
Elongation factor 1α | Ef1α | F: CTGTCAAGGAAATCCGTCGT R: TGACCTGAGCGTTGAAGTTG | 1.87 | AF184170 |
Ribosomal protein S18 | 18s | F: AGGGTGTTGGCAGACGTTAC R: CTTCTGCCTGTTGAGGAACC | 1.95 | AM490061 |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE |
---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | |
RBC (×106 μL−1) | 2.7 | 3.1 | 3.1 | 3.3 | 0.07 |
Hemoglobin (g dL−1) | 3.5 | 3.8 | 4.1 | 4.2 | 0.12 |
Hematocrit (%) | 39.6 | 40.1 | 42.1 | 40.1 | 1.55 |
MCV (μm3) | 146.2 | 132.9 | 133.4 | 122.4 | 3.44 |
MCH (pg cell−1) | 13.1 | 12.7 | 13.2 | 12.0 | 0.35 |
MCHC (g 100 mL−1) | 9.0 | 9.6 | 9.9 | 9.8 | 0.26 |
WBC (×104 μL−1) | 2.9 | 1.5 | 2.7 | 2.7 | 0.18 |
Neutrophils (104 μL−1) | 0.2 | 0.1 | 0.2 | 0.2 | 0.03 |
Monocytes (104 μL−1) | 0.1 | 0.1 | 0.2 | 0.1 | 0.01 |
Lymphocytes (104 μL−1) | 0.7 | 0.3 | 0.6 | 0.6 | 0.06 |
Thrombocytes (104 μL−1) | 1.8 B | 1.0 A | 1.7 | 1.7 | 0.11 |
Two-way ANOVA | |||||
Parameters | EFA | CHO | INT | ||
RBC | 0.039 | NS | NS | ||
Hemoglobin | 0.049 | NS | NS | ||
Hematocrit | NS | NS | NS | ||
MCV | NS | NS | NS | ||
MCH | NS | NS | NS | ||
MCHC | NS | NS | NS | ||
WBC | NS | NS | NS | ||
Neutrophils | NS | NS | NS | ||
Monocytes | NS | NS | NS | ||
Lymphocytes | NS | NS | NS | ||
Thrombocytes | NS | NS | 0.036 |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE |
---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | |
Nitric oxide (μM) | 662.4 | 688.2 | 735.1 | 767.9 | 18.4 |
Total Ig (mg ml−1) | 18.3 | 16.5 | 17.2 | 18.5 | 0.46 |
Peroxidase activity (units mL−1) | 22.5 | 22.3 | 32.2 | 22.7 | 1.74 |
Protease activity (%) | 5.7 | 5.6 | 5.1 | 5.3 | 0.09 |
Antiprotease activity (%) | 82.7 | 81.3 | 84.4 | 83.3 | 0.39 |
Alternative complement pathway activity (ACH50 U mL−1) | 2.48 | 1.81 | 4.43 | 4.46 | 0.35 |
Bactericidal activity against Phdp (%) | 19.1 | 37.8 | 26.1 | 24.1 | 2.72 |
Bactericidal activity against Vibrio anguillarum (%) | B 64.4 | A 51.6 | 60.8 | 61.5 | 1.62 |
Two-way ANOVA | |||||
Parameters | EFA | CHO | INT | ||
Nitric oxide | 0.040 | NS | NS | ||
Total Ig | NS | NS | NS | ||
Peroxidase | NS | NS | NS | ||
Protease activity | 0.004 | NS | NS | ||
Antiprotease activity | 0.015 | NS | NS | ||
ACH50 | 0.001 | NS | NS | ||
Bactericidal activity against Phdp | NS | NS | NS | ||
Bactericidal activity against Vibrio anguillarum | NS | 0.047 | 0.028 |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE |
---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | |
RBC | 0.77 a | 0.86 | 1.16 b | 0.86 | 0.05 |
Hemoglobin | 1.00 | 1.07 | 1.06 | 0.94 | 0.03 |
Hematocrit | 0.85 | 0.95 | 1.11 | 1.01 | 0.03 |
MCV | 1.08 | 1.11 | 0.93 | 1.11 | 0.03 |
MCH | 1.19 | 1.26 | 0.97 | 0.96 | 0.07 |
MCHC | 1.05 | 1.07 | 0.95 | 0.93 | 0.02 |
WBC | B 1.25 | A 0.86 a | 1.35 | 1.60 b | 0.09 |
Neutrophils | 1.19 | 1.05 | 1.35 | 2.06 | 0.14 |
Monocytes | 1.62 | 0.90 | 0.78 | 0.72 | 0.15 |
Lymphocytes | B 1.24 | A 0.67 | 0.78 | 0.94 | 0.08 |
Thrombocytes | 1.26 | 0.81 | 1.34 | 1.60 | 0.11 |
Two-way ANOVA | |||||
Parameters | EFA | CHO | INT | ||
RBC | 0.024 | NS | 0.018 | ||
Hemoglobin | NS | NS | NS | ||
Hematocrit | 0.002 | NS | NS | ||
MCV | NS | NS | NS | ||
MCH | NS | NS | NS | ||
MCHC | 0.019 | NS | NS | ||
WBC | 0.007 | NS | 0.040 | ||
Neutrophils | NS | NS | NS | ||
Monocytes | NS | NS | NS | ||
Lymphocytes | NS | NS | 0.040 | ||
Thrombocytes | 0.033 | NS | NS |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE | |
---|---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | ||
Nitric oxide | 1.06 | 1.02 | 1.05 | 0.88 | 0.04 | |
Total Ig | 1.46 | 1.92 | 0.92 | 0.96 | 0.16 | |
Peroxidase | 1.65 | 0.53 | 1.54 | 1.50 | 0.24 | |
Protease activity | 0.98 | 0.95 | 0.98 | 0.99 | 0.03 | |
Antiprotease activity | 0.99 | 1.03 | 1.00 | 0.99 | 0.01 | |
ACH50 | B 1.40 b | A 0.29 a | 0.92 a | 1.02 b | 0.13 | |
Bactericidal activity against Phdp | 0.64 | 0.54 | 0.89 | 0.46 | 0.10 | |
Bactericidal activity against vibrio anguillarum | 1.26 | 1.11 | 0.97 | 1.01 | 0.04 | |
Two-way ANOVA | ||||||
Parameters | EFA | CHO | INT | |||
Nitric oxide | NS | NS | NS | |||
Total Ig | 0.034 | NS | NS | |||
Peroxidase | NS | NS | NS | |||
Protease activity | NS | NS | NS | |||
Antiprotease activity | NS | NS | NS | |||
ACH50 | NS | 0.013 | 0.005 | |||
Bactericidal activity against Phdp | NS | NS | NS | |||
Bactericidal activity against Vibrio anguillarum | 0.027 | NS | NS |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE |
---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | |
RBC | 0.93 | 0.88 | 0.92 | 0.75 | 0.03 |
Hemoglobin | 0.89 | 1.03 | 0.96 | 0.96 | 0.02 |
Hematocrit | 0.91 | 0.91 a | A 0.89 | B 1.10 b | 0.03 |
MCV | 0.96 | 1.06 | 0.93 | 1.35 | 0.05 |
MCH | 0.94 | 1.24 | 0.84 | 1.05 | 0.06 |
MCHC | A 0.97 a | B 1.16 b | B 1.11 b | A 0.86 a | 0.03 |
WBC | 1.48 | 1.49 | 0.96 | 0.90 | 0.10 |
Neutrophils | 2.11 | 2.03 | 2.42 | 1.98 | 0.21 |
Monocytes | 1.56 | 1.39 | 1.39 | 0.86 | 0.28 |
Lymphocytes | 0.96 | 0.74 | 1.06 | 0.93 | 0.12 |
Thrombocytes | 1.40 | 1.42 | 0.80 | 0.97 | 0.09 |
Two-way ANOVA | |||||
Parameters | EFA | CHO | INT | ||
RBC | 0.041 | 0.031 | NS | ||
Hemoglobin | NS | 0.044 | NS | ||
Hematocrit | NS | 0.032 | 0.032 | ||
MCV | NS | 0.004 | NS | ||
MCH | NS | NS | NS | ||
MCHC | NS | NS | 0.000 | ||
WBC | 0.004 | NS | NS | ||
Neutrophils | NS | NS | NS | ||
Monocytes | NS | NS | NS | ||
Lymphocytes | NS | NS | NS | ||
Thrombocytes | 0.004 | NS | NS |
Diets | ARA/HS | ARA/LS | DHA/HS | DHA/LS | PSE |
---|---|---|---|---|---|
(ARA/DHA %) | 2.3/0.3 | 2.3/0.3 | 0/2.6 | 0/2.5 | |
Nitric oxide | 1.26 | 0.97 | 1.11 | 0.92 | 0.05 |
Total Ig | 2.22 | 1.17 | 0.77 | 0.62 | 0.18 |
Peroxidase | 2.17 | 2.27 | 0.86 | 0.86 | 0.27 |
Protease activity | 0.89 | 1.05 | 0.94 | 0.98 | 0.02 |
Antiprotease activity | 0.99 | 1.01 | 0.99 | 1.00 | 0.00 |
ACH50 | 1.12 | 0.87 | 0.64 | 0.56 | 0.10 |
Bactericidal activity against Phdp | 1.03 | 0.56 | 1.05 | 0.66 | 0.08 |
Bactericidal activity against Vibrio anguillarum | 0.81 | 0.99 | 0.82 | 1.01 | 0.03 |
Two-way ANOVA | |||||
Parameters | EFA | CHO | INT | ||
Nitric oxide | NS | 0.017 | NS | ||
Total Ig | 0.002 | NS | NS | ||
Peroxidase | 0.012 | NS | NS | ||
Protease activity | NS | 0.020 | NS | ||
Antiprotease activity | NS | 0.006 | NS | ||
ACH50 | NS | NS | NS | ||
Bactericidal activity against Phdp | NS | 0.010 | NS | ||
Bactericidal activity against Vibrio anguillarum | NS | 0.000 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, R.; Martins, N.; Fontinha, F.; Olsen, R.E.; Serra, C.R.; Peres, H.; Oliva-Teles, A. Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge. Animals 2023, 13, 1770. https://doi.org/10.3390/ani13111770
Magalhães R, Martins N, Fontinha F, Olsen RE, Serra CR, Peres H, Oliva-Teles A. Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge. Animals. 2023; 13(11):1770. https://doi.org/10.3390/ani13111770
Chicago/Turabian StyleMagalhães, Rui, Nicole Martins, Filipa Fontinha, Rolf Erick Olsen, Claudia Reis Serra, Helena Peres, and Aires Oliva-Teles. 2023. "Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge" Animals 13, no. 11: 1770. https://doi.org/10.3390/ani13111770
APA StyleMagalhães, R., Martins, N., Fontinha, F., Olsen, R. E., Serra, C. R., Peres, H., & Oliva-Teles, A. (2023). Dietary ARA, DHA, and Carbohydrate Ratios Affect the Immune Status of Gilthead Sea Bream Juveniles upon Bacterial Challenge. Animals, 13(11), 1770. https://doi.org/10.3390/ani13111770