Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genotyping and Samples
2.2. Data Filtering
2.3. Population Structure and Genetic Diversity
2.4. ROH Identification
2.5. Linkage Disequilibrium Decay and Effective Population Size
3. Results
3.1. Population Structure, Population Divergence Analysis, and Relatedness among the Eight Native Chicken Breeds
3.2. Contribution of the Eight Chicken Breeds to Gene and Allele Diversities
3.3. ROH Analysis Results
3.4. LD Decay and Effective Population Size (Ne)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.-S.; Thakur, M.; Peng, M.-S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.-J.; Wang, S.; Peters, J.; Otecko, N.O. 863 genomes reveal the origin and domestication of chicken. Cell Res. 2020, 30, 693–701. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, D.; Wang, Y.; Peng, D.; Li, H.; Fei, J.; Chen, K.; Yang, N.; Hu, X.; Zhao, Y. Widespread introgression in Chinese indigenous chicken breeds from commercial broiler. Evol. Appl. 2019, 12, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Ge, C.; Zhou, G.; Zhang, W.; Liao, G. 1H NMR-based metabolic characterization of Chinese Wuding chicken meat. Food Chem. 2019, 274, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, M.L. On diversity. Q. J. Econ. 1992, 107, 363–405. [Google Scholar] [CrossRef]
- Cortés, O.; Martinez, A.; Cañon, J.; Sevane, N.; Gama, L.; Ginja, C.; Landi, V.; Zaragoza, P.; Carolino, N.; Vicente, A. Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity 2016, 117, 14–24. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Toro, M.A. Analysis of genetic diversity for the management of conserved subdivided populations. Conserv. Genet. 2002, 3, 289–299. [Google Scholar] [CrossRef]
- Eding, H.; Crooijmans, R.P.; Groenen, M.A.; Meuwissen, T.H. Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet. Sel. Evol. 2002, 34, 613–633. [Google Scholar] [CrossRef]
- Glowatzki-Mullis, M.-L.; Muntwyler, J.; Bäumle, E.; Gaillard, C. Genetic diversity measures of Swiss goat breeds as decision-making support for conservation policy. Small Rumin. Res. 2008, 74, 202–211. [Google Scholar] [CrossRef]
- Ginja, C.; Gama, L.T.; Cortes, Ó.; Delgado, J.V.; Dunner, S.; García, D.; Landi, V.; Martín-Burriel, I.; Martínez-Martínez, A.; Penedo, M.C.T.; et al. Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers. Genet. Sel. Evol. 2013, 45, 35. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhao, Q.; Lu, J.; Sun, F.; Han, X.; Zhao, J.; Feng, H.; Wang, K.; Liu, C. Insights into the genetic diversity of indigenous goats and their conservation priorities. Asian-Australas. J. Anim. Sci. 2019, 32, 1501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Bian, Y.; Wang, Z.; Xu, Q.; Chang, G.; Chen, G. Marginal diversity analysis of conservation of Chinese domestic duck breeds. Sci. Rep. 2019, 9, 13141. [Google Scholar] [CrossRef] [PubMed]
- Ramljak, J.; Bunevski, G.; Bytyqi, H.; Marković, B.; Brka, M.; Ivanković, A.; Kume, K.; Stojanović, S.; Nikolov, V.; Simčič, M. Conservation of a domestic metapopulation structured into related and partly admixed strains. Mol. Ecol. 2018, 27, 1633–1650. [Google Scholar] [CrossRef]
- Tadano, R.; Nagasaka, N.; Goto, N.; Rikimaru, K.; Tsudzuki, M. Genetic characterization and conservation priorities of chicken lines. Poult. Sci. 2013, 92, 2860–2865. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- López-Cortegano, E.; Pouso, R.; Labrador, A.; Pérez-Figueroa, A.; Fernández, J.; Caballero, A. Optimal management of genetic diversity in subdivided populations. Front. Genet. 2019, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S. Introduction to Quantitative Genetics; Pearson Education India: Noida, India, 1996. [Google Scholar]
- Shang, P.; Li, W.; Tan, Z.; Zhang, J.; Dong, S.; Wang, K.; Chamba, Y. Population genetic analysis of ten geographically isolated tibetan pig populations. Animals 2020, 10, 1297. [Google Scholar] [CrossRef]
- Leberg, P. Estimating allelic richness: Effects of sample size and bottlenecks. Mol. Ecol. 2002, 11, 2445–2449. [Google Scholar] [CrossRef]
- Petit, R.J.; El Mousadik, A.; Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 1998, 12, 844–855. [Google Scholar] [CrossRef]
- Cendron, F.; Mastrangelo, S.; Tolone, M.; Perini, F.; Lasagna, E.; Cassandro, M. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds. Poult. Sci. 2021, 100, 441–451. [Google Scholar] [CrossRef]
- Gorssen, W.; Meyermans, R.; Janssens, S.; Buys, N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 2021, 53, 2. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, E.; Munari, D.; Silva, M.; Lima, A.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S.; Cole, J.B.; Huson, H.; Wiggans, G.R.; Van Tassell, C.P.; Crooker, B.A.; Liu, G.; Da, Y.; Sonstegard, T.S. Effect of artificial selection on runs of homozygosity in US Holstein cattle. PLoS ONE 2013, 8, e80813. [Google Scholar]
- Bortoluzzi, C.; Crooijmans, R.P.; Bosse, M.; Hiemstra, S.J.; Groenen, M.A.; Megens, H.-J. The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity 2018, 121, 564–578. [Google Scholar] [CrossRef]
- Cendron, F.; Perini, F.; Mastrangelo, S.; Tolone, M.; Criscione, A.; Bordonaro, S.; Iaffaldano, N.; Castellini, C.; Marzoni, M.; Buccioni, A. Genome-wide SNP analysis reveals the population structure and the conservation status of 23 Italian chicken breeds. Animals 2020, 10, 1441. [Google Scholar] [CrossRef]
- Kranis, A.; Gheyas, A.A.; Boschiero, C.; Turner, F.; Yu, L.; Smith, S.; Talbot, R.; Pirani, A.; Brew, F.; Kaiser, P. Development of a high density 600K SNP genotyping array for chicken. BMC Genom. 2013, 14, 59. [Google Scholar] [CrossRef]
- Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.; Pruitt, K.D.; Thibaud-Nissen, F. A new chicken genome assembly provides insight into avian genome structure. G3 Genes Genomes Genet. 2017, 7, 109–117. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Patterson, N.; Moorjani, P.; Luo, Y.; Mallick, S.; Rohland, N.; Zhan, Y.; Genschoreck, T.; Webster, T.; Reich, D. Ancient admixture in human history. Genetics 2012, 192, 1065–1093. [Google Scholar] [CrossRef] [PubMed]
- López-Cortegano, E.; Pérez-Figueroa, A.; Caballero, A. metapop2: Re-implementation of software for the analysis and management of subdivided populations using gene and allelic diversity. Mol. Ecol. Resour. 2019, 19, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- El Mousadik, A.; Petit, R. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 1996, 92, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.-B.; López-Cortegano, E.; Oyelami, F.O.; Zhang, Z.; Ma, P.-P.; Wang, Q.-S.; Pan, Y.-C. Conservation priorities analysis of chinese indigenous pig breeds in the Taihu lake region. Front. Genet. 2021, 12, 558873. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Santiago, E.; Novo, I.; Pardiñas, A.F.; Saura, M.; Wang, J.; Caballero, A. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol. 2020, 37, 3642–3653. [Google Scholar] [CrossRef] [PubMed]
- Groenen, M.A.; Cheng, H.H.; Bumstead, N.; Benkel, B.F.; Briles, W.E.; Burke, T.; Burt, D.W.; Crittenden, L.B.; Dodgson, J.; Hillel, J. A consensus linkage map of the chicken genome. Genome Res. 2000, 10, 137–147. [Google Scholar] [PubMed]
- Groeneveld, L.; Lenstra, J.; Eding, H.; Toro, M.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E.; Jianlin, H.; Groeneveld, E. Genetic diversity in farm animals—A review. Anim. Genet. 2010, 41, 6–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lei, C.; Luo, J.; Ding, C.; Chen, G.; Chang, H.; Wang, K.; Liu, X.; Zhang, X.; Xiao, X. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Australas. J. Anim. Sci. 2004, 17, 903–909. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Woolliams, J.A.; Meuwissen, T.H. Kinship, relationship and inbreeding. In Selection and Breeding Programs in Aquaculture; Springer: Berlin/Heidelberg, Germany, 2005; pp. 73–87. [Google Scholar]
- Bao, W.; Shu, J.; Wu, X.; Musa, H.; Ji, C.; Chen, G. Genetic diversity and relationship between genetic distance and geographical distance in 14 Chinese indigenous chicken breeds and red jungle fowl. Czech J. Anim. Sci. 2009, 54, 74–83. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, C.; Li, X.; Ning, Z.; Chen, Y.; Jia, Y.; Han, J.; Wang, L.; Lv, X.; Yang, W. Genome-wide population genetic analysis of commercial, indigenous, game, and wild chickens using 600K SNP microarray data. Front. Genet. 2020, 11, 543294. [Google Scholar] [CrossRef]
- Metzger, J.; Karwath, M.; Tonda, R.; Beltran, S.; Águeda, L.; Gut, M.; Gut, I.G.; Distl, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genom. 2015, 16, 764. [Google Scholar] [CrossRef] [PubMed]
- Ablondi, M.; Dadousis, C.; Vasini, M.; Eriksson, S.; Mikko, S.; Sabbioni, A. Genetic diversity and signatures of selection in a native Italian horse breed based on SNP data. Animals 2020, 10, 1005. [Google Scholar] [CrossRef]
- Sun, M.; Sui, Y.; Li, L.; Su, W.; Hao, F.; Zhu, Q.; Di, W.; Gao, H.; Ma, T. Anoctamin 1 calcium-activated chloride channel downregulates estrogen production in mouse ovarian granulosa cells. Endocrinology 2014, 155, 2787–2796. [Google Scholar] [CrossRef]
- Elferink, M.G.; Megens, H.-J.; Vereijken, A.; Hu, X.; Crooijmans, R.P.; Groenen, M.A. Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS ONE 2012, 7, e32720. [Google Scholar] [CrossRef]
- Lee, J.; Karnuah, A.B.; Rekaya, R.; Anthony, N.B.; Aggrey, S.E. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol. Genet. Genom. 2015, 290, 1673–1682. [Google Scholar] [CrossRef]
- Ji, G.; Shan, Y.; Shu, J.; Zhang, M.; Tu, Y.; Zou, J. Analysis on NFATc3 mRNA expression in skeletal muscles of different breeds of chickens. China Poult. 2016, 38, 6–10. [Google Scholar]
- Zhang, H.; Hu, X.; Wang, Z.; Zhang, Y.; Wang, S.; Wang, N.; Ma, L.; Leng, L.; Wang, S.; Wang, Q. Selection signature analysis implicates the PC1/PCSK1 region for chicken abdominal fat content. PLoS ONE 2012, 7, e40736. [Google Scholar] [CrossRef] [PubMed]
- Malomane, D.K.; Simianer, H.; Weigend, A.; Reimer, C.; Schmitt, A.O.; Weigend, S. The SYNBREED chicken diversity panel: A global resource to assess chicken diversity at high genomic resolution. BMC Genom. 2019, 20, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breeds | Label | Number | Original Region | Specific Features |
---|---|---|---|---|
Baier Chicken | Baier | 18 | Shangrao city, Jiangxi | Light-sized, three yellow, layer |
Chahua Chicken | Chahua | 19 | Xishuangbanna, Yunnan | light-sized, meat and egg dual-purpose breed |
Figthing Chicken | Figthing | 20 | Zhengzhou city, Henan | Heavy-sized of purpose breed, fancy breed |
Gushi Chicken | Gushi | 20 | Gushi county, Henan | Medium-sized, Three yellow, meat and egg dual-purpose breed |
Langshan Chicken | Langshan | 20 | Zhengzhou city, Henan | Heavy-sized, meat and egg dual-purpose breed |
Wannan three-yellow chicken | WanTy | 20 | Qinyan county, Anhui | Medium-sized, three yellow, egg purpose breed |
Wugu Chicken | Wugu | 20 | Taihe county, Jiangxi | Light-sized, White feather, black skin, black bone, medicinal and meat |
Xiaoshan Chicken | Xiaoshan | 20 | Taihe county, Jiangxi | Heavy-sized, meat and egg dual-purpose breed |
Breed | Sample Size | SROH (Mb) | NROH | MNROH ± SD (Mb) |
---|---|---|---|---|
Baier | 18 | 1977.998 | 686 | 2.845 ± 0.645 |
Chahua | 19 | 2698.555 | 837 | 3.227 ± 0.405 |
Fighting | 20 | 2328.759 | 975 | 2.353 ± 0.401 |
Gushi | 20 | 2745.876 | 886 | 3.006 ± 0.643 |
Langshan | 20 | 571.271 | 296 | 1.921 ± 0.303 |
WanTy | 20 | 181.114 | 91 | 2.010 ± 0.692 |
Wugu | 20 | 2645.142 | 917 | 2.885 ± 0.576 |
Xiaoshan | 20 | 1775.372 | 554 | 2.989 ± 0.724 |
Average | - | 1865.511 | 653 | 2.648 ± 0.724 |
Chromosome | Number of SNPs | Start (bp) | End (bp) | Number of Genes | Number of QTL |
---|---|---|---|---|---|
1 | 469 | 73,276,840 | 75,884,166 | 18 | 55 |
2 | 671 | 51,100,728 | 54,046,793 | 13 | 30 |
5 | 400 | 1,912,343 | 3,909,043 | 18 | 16 |
8 | 638 | 8,946,537 | 11,679,072 | 11 | 54 |
11 | 343 | 2,365,463 | 3,771,468 | 20 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Du, W.; Tian, K.; Wang, K.; Wang, C.; Sun, G.; Kang, X.; Li, W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals 2023, 13, 599. https://doi.org/10.3390/ani13040599
Gao C, Du W, Tian K, Wang K, Wang C, Sun G, Kang X, Li W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals. 2023; 13(4):599. https://doi.org/10.3390/ani13040599
Chicago/Turabian StyleGao, Chaoqun, Wenping Du, Kaiyuan Tian, Kejun Wang, Chunxiu Wang, Guirong Sun, Xiangtao Kang, and Wenting Li. 2023. "Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds" Animals 13, no. 4: 599. https://doi.org/10.3390/ani13040599
APA StyleGao, C., Du, W., Tian, K., Wang, K., Wang, C., Sun, G., Kang, X., & Li, W. (2023). Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals, 13(4), 599. https://doi.org/10.3390/ani13040599