Comparison Between Medetomidine and a Medetomidine–Vatinoxan Combination on Cardiorespiratory Variables in Dogs Undergoing Ovariectomy Anesthetized with Butorphanol, Propofol and Sevoflurane or Desflurane
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals
- Mede-Sevo: medetomidine 0.25 mg m−2 (Sedator® 1.0 mg/mL, Dechra, Turin, Italy) and sevoflurane (Sevoflurane, Baxter S.p.a., Rome, Italy).
- Mede-Des: medetomidine 0.25 mg m−2 and desflurane (Suprane, Baxter S.p.a., Rome, Italy).
- Vati-Sevo: medetomidine 0.25 mg m−2 + vatinoxan 5 mg m−2 (Zenalpha® 0.5 mg/mL + 10 mg/mL, Dechra, Turin, Italy) and sevoflurane.
- Vati-Des: medetomidine 0.25 mg m−2 + vatinoxan 5 mg m−2 and desflurane.
2.3. Anesthesia and Instrumentation
- -
- At T−1, RR, HR, and NIBP were detected. Non-invasive MAP value of each dog was subsequently adjusted, multiplying it by the correction factor of 0.88 obtained and dividing the average of the IBP-derived MAP values by the average of the NIBP-derived MAP values simultaneously detected during the surgery.
- -
- At T0–T9, the IBP-derived MAP, HR, RR, PE’CO2, VT/BW, VM/BW were measured.
2.4. Recovery Quality and Post-Operative Analgesic Management
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole. Vet. Rec. 2007, 160, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.H.; Verstegen, J.P. Hemodynamic effects of medetomidine in the dog: A dose titration study. Vet. Surg. 1998, 27, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Flacke, W.E.; Flacke, J.W.; Bloor, B.C.; Mclntee, D.F.; Sagan, M. Effects of dexmedetomidine on systemic and coronary hemodynamics in the anesthetized dog. J. Cardiothorac. Vasc. Anesth. 1993, 7, 41–49. [Google Scholar] [CrossRef]
- Murrell, J.C.; Hellebrekers, L.J. Medetomidine and dexmedetomidine: A review of cardiovascular effects and antinociceptive properties in the dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef]
- Honkavaara, J.M.; Raekallio, M.R.; Kuusela, E.K.; Hyvärinen, E.A.; Vainio, O.M. The effects of L-659,066, a peripheral α2-adrenoceptor antagonist, on dexmedetomidine-induced sedation and bradycardia in dogs. Vet. Anaesth. Analg. 2008, 35, 409–413. [Google Scholar] [CrossRef]
- Restitutti, F.; Honkavaara, J.M.; Raekallio, M.R.; Kuusela, E.K.; Vainio, O.M. Effects of different doses of L-659’066 on the bispectral index and clinical sedation in dogs treated with dexmedetomidine. Vet. Anaesth. Analg. 2011, 38, 415–422. [Google Scholar] [CrossRef]
- McKenzie, S.R.; Chiavaccini, L.; Moura, R.A.; Santoro, D. Comparison between dexmedetomidine and a combination of medetomidine-vatinoxan on muscle tissue saturation in privately-owned adult dogs undergoing intradermal testing. Res. Vet. Sci. 2024, 171, 105207. [Google Scholar] [CrossRef] [PubMed]
- Honkavaara, J.M.; Raekallio, M.R.; Syrja, P.M.; Pypendop, B.H.; Knych, H.K.; Kallio-Kujala, I.J.; Vainio, O.M. Concentrations of medetomidine enantiomers and vatinoxan, an α2-adrenoceptor antagonist, in plasma and central nervous tissue after intravenous coadministration in dogs. Vet. Anaesth. Analg. 2020, 47, 47–52. [Google Scholar] [CrossRef]
- Rolfe, N.G.; Kerr, C.L.; McDonell, W.N. Cardiopulmonary and sedative effects of the peripheral α2-adrenoceptor antagonist MK 0467 administered intravenously or intramuscularly concurrently with medetomidine in dogs. Am. J. Vet. Res. 2012, 73, 587–594. [Google Scholar] [CrossRef]
- Pagel, P.S.; Proctor, L.T.; Devcic, A.; Hettrick, D.A.; Kersten, J.R.; Tessmer, J.P.; Farber, N.E.; Schmeling, W.T.; Warltier, D.C. A novel alpha 2-adrenoceptor antagonist attenuates the early, but preserves the late cardiovascular effects of intravenous dexmedetomidine in conscious dogs. J. Cardiothorac. Vasc. Anesth. 1998, 12, 429–434. [Google Scholar] [CrossRef]
- Honkavaara, J.M.; Restitutti, F.; Raekallio, M.R.; Kuusela, E.K.; Vainio, O.M. The effects of increasing doses of MK-467, a peripheral alpha(2)-adrenergic receptor antagonist, on the cardiopulmonary effects of intravenous dexmedetomidine in conscious dogs. J. Vet. Pharmacol. Ther. 2011, 34, 332–337. [Google Scholar] [CrossRef]
- Salla, K.; Restitutti, F.; Vainionpää, M.; Junnila, J.; Honkavaara, J.; Kuusela, E.; Raekallio, M.; Vainio, O. The cardiopulmonary effects of a peripheral alpha-2-adrenoceptor antagonist, MK-467, in dogs sedated with a combination of medetomidine and butorphanol. Vet. Anaesth. Analg. 2014, 41, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Restitutti, F.; Kaartinen, M.J.; Raekallio, M.R. Plasma concentration and cardiovascular effects of intramuscular medetomidine combined with three doses of the peripheral alpha2-antagonist MK-467 in dogs. Vet. Anaesth. Analg. 2017, 44, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Wissing, H.; Kuhn, I.; Rietbrock, S.; Fuhr, U. Pharmacokinetics of inhaled anaesthetics in a clinical setting: Comparison of desflurane, isoflurane and sevoflurane. Br. J. Anaesth. 2000, 84, 443–449. [Google Scholar] [CrossRef]
- Ryu, K.H.; Hwang, S.H.; Shim, J.G.; Ahn, J.H.; Cho, E.A.; Lee, S.H.; Byun, J.H. Comparison of vasodilatory properties between desflurane and sevoflurane using perfusion index: A randomised controlled trial. Br. J. Anaesth. 2020, 125, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Young, C.J.; Apfelbaum, J.L. Inhalational anesthetics: Desflurane and sevoflurane. J. Clin. Anesth. 1995, 7, 564–577. [Google Scholar] [CrossRef]
- Ko, J.C.; Fox, S.M.; Mandsager, R.E. Sedative and cardiorespiratory effects of medetomidine, medetomidine-butorphanol, and medetomidine-ketamine in dogs. J. Am. Vet. Med. Assoc. 2000, 216, 1578–1583. [Google Scholar] [CrossRef]
- Kuo, W.C.; Keegan, R.D. Comparative cardiovascular, analgesic, and sedative effects of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol in dogs. Am. J. Vet. Res. 2004, 65, 931–937. [Google Scholar] [CrossRef]
- Dodam, J.R.; Cohn, L.A.; Durham, H.E.; Szladovits, B. Cardiopulmonary effects of medetomidine, oxymorphone, or butorphanol in selegiline-treated dogs. Vet. Anaesth. Analg. 2004, 31, 129–137. [Google Scholar] [CrossRef]
- Sederberg, J.; Stanley, T.H.; Reddy, P.; Liu, W.S.; Port, D.; Gillmor, S. Hemodynamic effects of butorphanol-oxygen anesthesia in dogs. Anesth. Analg. 1981, 60, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Trim, C.M. Cardiopulmonary effects of butorphanol tartrate in dogs. Am. J. Vet. Res. 1983, 44, 329–331. [Google Scholar] [PubMed]
- Concas, A.; Santoro, G.; Serra, M.; Sanna, E.; Biggio, G. Neurochemical action of the general anaesthetic propofol on the chloride ion channel coupled with GABAA receptors. Brain. Res. 1991, 542, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Langley, M.S.; Heel, R.C. Propofol: A review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anesthetic. Drugs 1988, 35, 334–372. [Google Scholar] [CrossRef] [PubMed]
- White, C.R.; Kearney, M.R. Metabolic scaling in animals: Methods, empirical results, and theoretical explanations. Compr. Physiol. 2014, 4, 231–256. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Jones, J.H. Indexing cardiovascular and respiratory variables: Allometric scaling principles. Vet. Anaesth. Analg. 2015, 42, 343–349. [Google Scholar] [CrossRef]
- Salla, K.M.; Turunen, H.A.; Kallio-Kujala, I.J.; Pekkola, V.; Casoni, D.C.; Lepajoe, J.; Björkenheim, P.; Raekallio, M.R.; Vainio, O. Effects of vatinoxan in dogs premedicated with medetomidine and butorphanol followed by sevoflurane anaesthesia: A randomized clinical study. Vet. Anaesth. Analg. 2022, 49, 563–571. [Google Scholar] [CrossRef]
- Kazama, T.; Ikeda, K. Comparison of MAC and the rate of rise of alveolar concentration of sevoflurane with halothane and isoflurane in the dog. Anesthesiology 1988, 68, 435–437. [Google Scholar] [CrossRef]
- Yamashita, K.; Okano, Y.; Yamashita, M.; Umar, M.A.; Kushiro, T.; Muir, W.W. Effects of carprofen and meloxicam with or without butorphanol on the minimum alveolar concentration of sevoflurane in dogs. J. Vet. Med. Sci. 2008, 70, 29–35. [Google Scholar] [CrossRef]
- Yamashita, K.; Furukawa, E.; Itami, T.; Ishizuka, T.; Tamura, J.; Miyoshi, K. Minimum alveolar concentration for blunting adrenergic responses (MAC-BAR) of sevoflurane in dogs. J. Vet. Med. Sci. 2012, 74, 507–511. [Google Scholar] [CrossRef]
- Murahata, Y.; Hikasa, Y.; Hayashi, S.; Shigematsu, K.; Akashi, N.; Osaki, T.; Tsuka, T.; Okamoto, Y.; Imagawa, T. The effect of remifentanil on the minimum alveolar concentration (MAC) and MAC derivatives of sevoflurane in dogs. J. Vet. Med. Sci. 2018, 80, 1086–1093. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Ilkiw, J.E. Comparison of variability in cardiorespiratory measurements following desflurane anesthesia at a multiple of the minimum alveolar concentration for each dog versus a multiple of a single predetermined minimum alveolar concentration for all dogs in a group. Am. J. Vet. Res. 2006, 67, 1956–1961. [Google Scholar] [CrossRef] [PubMed]
- Interlandi, C.; Di Pietro, S.; Costa, G.L.; Spadola, F.; Iannelli, N.M.; Macrì, D.; Ferrantelli, V.; Macrì, F. Effects of cisatracurium in sevoflurane and propofol requirements in dog-undergoing-mastectomy surgery. Animals 2022, 14, 3134. [Google Scholar] [CrossRef] [PubMed]
- Hampton, C.E.; Riebold, T.W.; Mandsager, R.E. Recovery characteristics of dogs following anesthesia induced with tiletamine-zolazepam, alfaxalone, ketamine-diazepam, or propofol and maintained with isoflurane. J. Am. Vet. Med. Assoc. 2019, 254, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Nolan, A.M.; Hughes, J.M.L.; Lascelles, D.; Pawson, P.; Scott, E.M. Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score. Anim. Welf. 2007, 16, 97–104. [Google Scholar] [CrossRef]
- Kallio-Kujala, I.J.; Turunen, H.A.; Raekallio, M.R.; Honkavaara, J.M.; Salla, K.M.; Casoni, D.; Hautajärvi, H.J.; Vainio, O.M. Peripherally acting α-adrenoceptor antagonist MK-467 with intramuscular medetomidine and butorphanol in dogs: A prospective, randomised, clinical trial. Vet. J. 2018, 240, 22–26. [Google Scholar] [CrossRef]
- Turunen, H.; Raekallio, M.R.; Honkavaara, J.M.; Restitutti, F.; Kallio-Kujala, I.J.; Adam, M.; Nevanperä, K.; Scheinin, M.; Männikkö, S.K.; Hautajärvi, H.J.; et al. Cardiovascular and sedation reversal effects of intramuscular administration of atipamezole in dogs treated with medetomidine hydrochloride with or without the peripheral α2-adrenoceptor antagonist vatinoxan hydrochloride. Am. J. Vet. Res. 2019, 80, 912–922. [Google Scholar] [CrossRef]
- Huuskonen, V.; Restitutti, F.; Raekallio, M.; Honkavaara, J.; Pesonen, T.; Vainio, O. Cardiovascular effects of dobutamine, norepinephrine and phenylephrine in isoflurane-anaesthetized dogs administered dexmedetomidine-vatinoxan. Vet. Anaesth. Analg. 2022, 49, 546–555. [Google Scholar] [CrossRef]
- Joerger, F.B.; Wieser, M.L.; Steblaj, B.; Niemann, L.; Turunen, H.; Kutter, A.P. Evaluation of cardiovascular effects of intramuscular medetomidine and a medetomidine-vatinoxan combination in Beagle dogs: A randomized blinded crossover laboratory study. Vet. Anaesth. Analg. 2023, 50, 397–407. [Google Scholar] [CrossRef]
- Lowe, D.; Hettrick, D.A.; Pagel, P.S.; Warltier, D.C. Influence of volatile anesthetics on left ventricular afterload in vivo. Differences between desflurane and sevoflurane. Anesthesiology 1996, 85, 112–120. [Google Scholar] [CrossRef]
- Hector, R.C.; Rezende, M.L.; Mama, K.R. Effects of constant rate infusions of dexmedetomidine or MK-467 on the minimum alveolar concentration of sevoflurane in dogs. Vet. Anaesth. Analg. 2017, 44, 755–765. [Google Scholar] [CrossRef]
- Bennett, R.C.; Salla, K.M.; Raekallio, M.R.; Hänninen, L.; Rinne, V.M.; Scheinin, M.; Vainio, O.M. Effects of MK-467 on the antinociceptive and sedative actions and pharmacokinetics of medetomidine in dogs. J. Vet. Pharmacol. 2016, 39, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Hector, R.C.; Rezende, M.L.; Mama, K.R.; Steffey, E.P.; Raekallio, M.R.; Vainio, O.M. Combined effects of dexmedetomidine and vatinoxan infusions on minimum alveolar concentration and cardiopulmonary function in sevoflurane-anesthetized dogs. Vet. Anaesth. Analg. 2021, 48, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Honkavaara, J.M.; Restitutti, F.; Raekallio, M.; Salla, K.; Kuusela, E.; Ranta-Panula, V.; Rinne, V.; Vainio, O.; Scheinin, M. Influence of MK-467, a peripherally acting α2-adrenoceptor antagonist on the disposition of intravenous dexmedetomidine in dogs. Drug. Metab. Dispos. 2012, 40, 445–449. [Google Scholar] [CrossRef]
- Restitutti, F.; Raekallio, M.; Vainionpää, M.; Kuusela, E.; Vainio, O. Plasma glucose, insulin, free fatty acids, lactate and cortisol concentrations in dexmedetomidine-sedated dogs with or without MK-467: A peripheral alpha-2 adrenoceptor antagonist. Vet. J. 2012, 193, 481–485. [Google Scholar] [CrossRef]
- Hammond, R.A.; Alibhai, H.I.K.; Walsh, K.P.; Clarke, K.W.; Holden, D.J.; White, R.N. Desflurane in the dog; Minimum alveolar concentration (MAC) alone and in combination with nitrous oxide. J. Vet. Anaesth. 1994, 21, 21–23. [Google Scholar] [CrossRef]
- Zhou, J.X.; Liu, J. The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth. Analg. 2001, 93, 234–238. [Google Scholar] [CrossRef]
- La Colla, L.; Albertin, A.; La Colla, G.; Mangano, A. Faster wash-out and recovery for desflurane vs. sevoflurane in morbidly obese patients when no premedication is used. Br. J. Anaesth. 2007, 99, 353–358. [Google Scholar] [CrossRef]
- Valente, A.C.S.; Brosnan, R.J.; Guedes, A.G.P. Desflurane and sevoflurane elimination kinetics and recovery quality in horses. Am. J. Vet. Res. 2015, 76, 201–207. [Google Scholar] [CrossRef]
- Turunen, H.; Raekallio, M.; Honkavaara, J.; Jaakkola, J.; Scheinin, M.; Männikkö, S.; Hautajärvi, H.; Bennett, R.; Vainio, O. Effects of intramuscular vatinoxan (MK-467), co-administered with medetomidine and butorphanol, on cardiopulmonary and anaesthetic effects of intravenous ketamine in dogs. Vet. Anaesth. Analg. 2020, 47, 604–613. [Google Scholar] [CrossRef]
- Välimäki, E.; Leppänen, H.; Turunen, H.; Raekallio, M.; Honkavaara, J. The impact of intravenous medetomidine and vatinoxan on echocardiographic evaluation of dogs with stage B1 mitral valve disease. J. Vet. Cardiol. 2024, 54, 7–17. [Google Scholar] [CrossRef] [PubMed]
Data Collection Time Points | |
---|---|
T-−1 | Twenty minutes before trial |
T0 | Five minutes after sevoflurane or desflurane 0.8 MAC (1.8% and 6.1%, respectively) and immediately before administration of medetomidine or medetomidine–vatinoxan |
T1 | Two minutes after administration of medetomidine or medetomidine–vatinoxan |
T2 | Three minutes after administration of medetomidine or medetomidine–vatinoxan |
T3 | Six minutes after administration of medetomidine or medetomidine–vatinoxan |
T4 | Fifteen minutes after administration of medetomidine or medetomidine–vatinoxan |
T5 | At reaching 1.3 MAC (2.95% sevoflurane or 9.93% desflurane) |
T6 | At skin incision |
T7 | At first ovarian pedicle traction (left) |
T8 | At second ovarian pedicle traction (right) |
T9 | Five minutes after end of surgery and closing the vaporizer |
Factors | Assessments | Score |
---|---|---|
Struggling/ Excitement | none | 0 |
transient, easily calmed by the investigator’s voice | 1 | |
prolonged (>1 min) | 2 | |
persistent (or requiring restraint) | 3 | |
Paddling/ Flailing | none | 0 |
transient, easily calmed by the investigator’s voice | 1 | |
prolonged (>1 min) | 2 | |
persistent (or requiring restraint) | 3 | |
Vocalization | none | 0 |
transient, easily calmed by the investigator’s voice | 1 | |
prolonged (>1 min) | 2 | |
persistent (or requiring restraint) | 3 | |
Administration of rescue drugs | not given | 0 |
given | 3 |
Treatment Groups | |||||
---|---|---|---|---|---|
Variable | Mede-Sevo (n = 10) | Mede-Des (n = 10) | Vati-Sevo (n = 10) | Vati-Des (n = 10) | p-Value |
Age (month) | 12 (12–22) | 12 (9–21) | 12 (11–20) | 12 (12–18) | 0.63 |
BW (kg) | 15 (12–18) | 15 (12–19) | 14 (13–17) | 17 (16–18) | 0.79 |
Hct (%) | 54 (52–56) | 51 (49–55) | 53 (50–53) | 51 (49–56) | 0.79 |
TP (g dL−1) | 6.7 (6.2–6.8) | 6.7 (5.9–6.9) | 6.3 (5.6–7.1) | 6.2 (6.0–6.9) | 0.70 |
Propofol administered (mg kg−1) | 6.6 (6.0–7.0) | 6.8 (6.0–7.3) | 6.5 (5.7–7.1) | 6.1 (5.4–6.8) | 0.71 |
Surgery length (min) | 52 (47–54) | 50 (44–58) | 50 (43–54) | 51 (47–56) | 0.93 |
Treatment | Time (min) | ||||
---|---|---|---|---|---|
−10 min | 30 min | 60 min | 120 min | ||
Glycemia (mg dL−1) | Mede-Sevo and Mede-Des pooled | 89 (84–94) | 91 (82–96) | 105 (98–114) *,# | 109 (99–116) *,# |
Vati-Sevo and Vati-Des pooled | 91 (87–92) | 86 (82–94) | 85 (80–93) | 88 (83–93) |
Time Point | Treatment | MAP (mmHg) | HR (Beat min−1) | RR (Breath min−1) | PE’CO2 (mmHg) | VT/BW (mL kg−1) | VM/BW (mL min−1 kg−1) |
---|---|---|---|---|---|---|---|
T−1 | Mede-Sevo | 105 (101–110) | 109 (108–116) | 22 (19–22) | na | na | na |
Mede-Des | 100 (98–103) | 112 (106–120) | 21 (19–23) | na | na | na | |
Vati-Sevo | 103 (100–112) | 118 (111–120) | 23 (20–24) | na | na | na | |
Vati-Des | 103 (98–111) | 115 (104–124) | 22 (21–23) | na | na | na | |
p-value | 0.72 | 0.63 | 0.70 | ||||
T0 | Mede-Sevo | 63 (57–66) a | 94 (83–104) a | 10 (8–12) | 52 (48–52) | 12 (10–14) | 105 (79–157) |
Mede-Des | 62 (61–67) a | 96 (91–104) a | 9 (9–12) | 50 (49–52) | 12 (10–13) | 107 (96–156) | |
Vati-Sevo | 66 (65–72) a | 106 (89–111) a | 10 (9–13) | 50 (49–52) | 11 (10–13) | 120 (93–133) | |
Vati-Des | 63 (61–70) a | 104 (89–106) a | 10 (9–12) | 49 (46–52) | 12 (10–12) | 114 (91–132) | |
p-value | 0.35 | 0.47 | 0.93 | 0.79 | 0.88 | 0.96 | |
T1 | Mede-Sevo | 126 (125–135) b | 47 (43–54) b | 8 (8–10) | 53 (51–54) | 11 (9–13) | 92 (69–124) |
Mede-Des | 122 (111–126) b | 46 (44–49) b | 8 (8–11) | 52 (51–54) | 12 (11–12) | 91 (85–132) | |
Vati-Sevo | 102 (100–111) b | 84 (66–86) b | 7 (6–10) b | 53 (51–54) b | 10 (10–12) b | 89 (54–97) b | |
Vati-Des | 104 (98–111) b | 78 (54–89) b | 8 (7–10) b | 52 (49–53) b | 11 (10–12) b | 93 (73–103) b | |
p-value | 0.00 2,3,4,5 | 0.00 2,3,4,5 | 0.48 | 0.52 | 0.75 | 0.24 | |
T2 | Mede-Sevo | 143 (140–146) b | 36 (32–40) b | 9 (7–11) | 53 (52–54) | 12 (9–12) | 79 (69–123) |
Mede-Des | 126 (117–129) b | 43 (39–49) b | 8 (6–11) | 53 (51–55) | 11 (11–12) | 81 (66–123) | |
Vati-Sevo | 99 (92–108) b | 91 (79–96) b | 8 (6–9) b | 52 (51–54) b | 11 (10–12) b | 78 (62–101) b | |
Vati-Des | 95 (90–97) b | 83 (70–91) b | 7 (6–10) b | 53 (52–55) b | 11 (10–12) b | 81 (73–103) b | |
p-value | 0.00 1,2,3,4,5 | 0.00 1,2,3,4,5 | 0.08 | 0.68 | 0.52 | 0.33 | |
T3 | Mede-Sevo | 125 (124–132) b | 42 (37–49) b | 9 (7–10) | 54 (52–55) | 12 (9–13) | 87 (66–128) |
Mede-Des | 110 (105–116) b | 52 (48–55) b | 8 (7–11) | 53 (51–55) | 11 (11–12) | 85 (78–118) | |
Vati-Sevo | 86 (78–96) b | 100 (91–111) | 8 (6–9) b | 54 (53–54) b | 10 (9–12) b | 74 (66–85) b | |
Vati-Des | 70 (63–75) | 103 (98–106) | 7 (7–9) b | 53 (51–55) b | 11 (10–12) b | 86 (73–97) b | |
p-value | 0.00 1,2,3,4,5,6 | 0.00 2,3,4,5 | 0.12 | 0.74 | 0.85 | 0.48 | |
T4 | Mede-Sevo | 108 (106–113) b | 62 (56–73) b | 10 (8–11) | 53 (52–55) | 12 (10–14) | 104 (70–148) |
Mede-Des | 75 (69–82) b | 68 (61–74) b | 9 (8–11) | 53 (51–55) | 11 (10–12) | 86 (70–148) | |
Vati-Sevo | 61 (56–66) b | 118 (113–122) b | 9 (8–11) | 51 (50–53) | 11 (10–12) | 108 (86–118) | |
Vati-Des | 46 (44–50) b | 102 (98–108) | 9 (8–11) | 53 (50–55) | 11 (9–12) | 105 (94–111) | |
p-value | 0.00 1,2,3,4,5,6 | 0.000 2,3,4,5,6 | 0.92 | 0.63 | 0.73 | 0.97 | |
T5 | Mede-Sevo | 105 (100–107) b | 71 (67–75) b | 9 (8–10) | 54 (52–56) | 11 (9–13) | 104 (71–132) |
Mede-Des | 67 (59–71) | 90 (86–98) b | 8 (8–10) | 54 (51–56) | 11 (9–12) | 87 (73–112) | |
Vati-Sevo | 54 (49–55) b | 116 (113–122) b | 8 (8–11) | 52 (50–54) | 10 (10–12) | 93 (74–104) | |
Vati-Des | 49 (45–53) b | 108 (104–112) b | 10 (9–12) | 54 (52–56) | 11 (10–12) | 115 (103–121) | |
p-value | 0.00 1,2,3,4,5 | 0.00 1,2,3,4,5,6 | 0.24 | 0.38 | 0.75 | 0.25 | |
T6 | Mede-Sevo | 100 (98–103) | 76 (74–84) | 9 (8–10) | 54 (52–55) | 10 (9–12) | 88 (64–127) |
Mede-Des | 58 (54–62) | 93 (91–99) | 9 (8–9) | 54 (51–55) | 11 (10–12) | 90 (77–112) | |
Vati-Sevo | 50 (46–55) | 118 (112–120) | 9 (8–11) | 52 (51–53) | 11 (10–12) | 109 (92–115) | |
Vati-Des | 52 (49–54) | 109 (106–111) | 10 (9–13) | 54 (53–56) | 12 (10–13) | 120 (106–133) | |
p-value | 0.00 1,2,3,5 | 0.00 1,2,3,4,5,6 | 0.25 | 0.24 | 0.62 | 0.23 | |
T7 | Mede-Sevo | 100 (96–100) | 87 (80–93) c | 10 (8–10) | 53 (52–55) | 11 (9–12) | 90 (70–139) |
Mede-Des | 60 (58–62) | 93 (90–100) | 9 (8–10) | 53 (52–55) | 11 (10–13) | 95 (8–116) | |
Vati-Sevo | 72 (70–79) c | 116 (108–118) | 10 (9–11) | 51 (49–52) | 11 (11–13) | 118 (105–128) | |
Vati-Des | 68 (68–71) c | 110 (106–114) | 11 (9–13) | 54 (52–55) | 12 (11–13) | 131 (105–150) | |
p-value | 0.00 1,2,3,4,5,6 | 0.00 1,2,3,4,5 | 0.19 | 0.07 | 0.64 | 0.14 | |
T8 | Mede-Sevo | 98 (96–98) | 90 (84–94) c | 9 (7–10) | 54 (52–54) | 11 (10–12) | 91 (75–114) |
Mede-Des | 65 (62–67) | 94 (88–101) | 10 (9–11) | 52 (51–55) | 12 (10–13) | 114 (93–117) | |
Vati-Sevo | 78 (77–84) c | 109 (105–115) c | 10 (9–12) | 50 (50–52) | 11 (10–13) | 124 (102–133) | |
Vati-Des | 73 (70–76) c | 113 (108–115) | 11 (9–13) | 54 (53–56) | 12 (11–13) | 129 (114–143) | |
p-value | 0.00 1,2,3,4,5,6 | 0.00 2,3,4,5 | 0.19 | 0.06 | 0.42 | 0.10 | |
T9 | Mede-Sevo | 79 (76–85) | 89 (88–92) | 9 (9–11) | 52 (49–54) | 11 (9–13) | 108 (78–133) |
Mede-Des | 65 (64–70) | 96 (92–104) | 10 (9–12) | 51 (50–52) | 13 (10–14) | 115 (95–150) | |
Vati-Sevo | 77 (72–81) | 110 (104–113) | 11 (10–12) | 50 (49–51) | 12 (11–13) | 136 (118–146) | |
Vati-Des | 71 (70–71) | 110 (106–114) | 12 (11–14) | 53 (52–54) | 13 (12–15) | 157 (134–178) | |
p-value | 0.00 1,3,4,6 | 0.00 2,3,4,5 | 0.06 | 0.08 | 0.18 | 0.06 |
Treatment Groups | ||||||
---|---|---|---|---|---|---|
Variable | Mede-Sevo (n = 10) | Mede-Des (n = 10) | Vati-Sevo (n = 10) | Vati-Des (n = 10) | p-Value | |
Post-operative pain score | 15 min | 1 (1-1) | 2 (1-2) | 1 (1-1) | 1 (1-1) | <0.05 |
30 min | 0 (0-0) | 1 (1-1) | 0 (0-0) | 1 (1-1) | <0.05 | |
60 min | 0 (0-0) | 0 (0-0) | 0 (0-0) | 1 (1-1) | <0.05 | |
90 min | 0 (0-0) | 0 (0-0) | 0 (0-0) | 0 (0-0) | 1 |
Treatment Groups | |||||
---|---|---|---|---|---|
Variable | Mede-Sevo (n = 10) | Mede-Des (n = 10) | Vati-Sevo (n = 10) | Vati-Des (n = 10) | p-Value |
Extubation time (min) | 10 (9.3–11) | 3.5 (3.0–4.0) | 7.0 (6.0–8.0) | 3.0 (2.3–3.0) | <0.01 |
Head lift time (min) | 27 (26–27) | 15 (14–17) | 14 (10–14) | 16 (14–19) | <0.01 |
Sternal recumbency time (min) | 34 (33–35) | 18 (15–18) | 16 (13–17) | 22 (21–25) | <0.01 |
Standing time (min) | 41 (33–42) | 22 (18–25) | 20 (19–23) | 29 (28–31) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cubeddu, F.; Masala, G.; Corda, F.; Corda, A.; Careddu, G.M. Comparison Between Medetomidine and a Medetomidine–Vatinoxan Combination on Cardiorespiratory Variables in Dogs Undergoing Ovariectomy Anesthetized with Butorphanol, Propofol and Sevoflurane or Desflurane. Animals 2024, 14, 3322. https://doi.org/10.3390/ani14223322
Cubeddu F, Masala G, Corda F, Corda A, Careddu GM. Comparison Between Medetomidine and a Medetomidine–Vatinoxan Combination on Cardiorespiratory Variables in Dogs Undergoing Ovariectomy Anesthetized with Butorphanol, Propofol and Sevoflurane or Desflurane. Animals. 2024; 14(22):3322. https://doi.org/10.3390/ani14223322
Chicago/Turabian StyleCubeddu, Francesca, Gerolamo Masala, Francesca Corda, Andrea Corda, and Giovanni Mario Careddu. 2024. "Comparison Between Medetomidine and a Medetomidine–Vatinoxan Combination on Cardiorespiratory Variables in Dogs Undergoing Ovariectomy Anesthetized with Butorphanol, Propofol and Sevoflurane or Desflurane" Animals 14, no. 22: 3322. https://doi.org/10.3390/ani14223322
APA StyleCubeddu, F., Masala, G., Corda, F., Corda, A., & Careddu, G. M. (2024). Comparison Between Medetomidine and a Medetomidine–Vatinoxan Combination on Cardiorespiratory Variables in Dogs Undergoing Ovariectomy Anesthetized with Butorphanol, Propofol and Sevoflurane or Desflurane. Animals, 14(22), 3322. https://doi.org/10.3390/ani14223322