Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of MRSA, Antimicrobial Susceptibility Testing
2.3. Detection of Antimicrobial Resistance Genes and Molecular Characterization of MRSA
3. Results
3.1. Antimicrobial Susceptibility Testing and Characterization of Genotypic Antibiotic Resistance of E. coli
3.2. Virulence Associated Genes and Phylotype of E. coli
3.3. MRSA Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.S.; Boukouvala, E.; Zdragas, A.; Papa, A.; Hadjichristodoulou, C.; Sergelidis, D. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 2018, 69, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Gonggrijp, M.A.; Velthuis, A.G.J.; Heuvelink, A.E.; van den Heuvel, K.W.H.; Ter Bogt-Kappert, C.C.; Buter, G.J.; van Schaik, G.; Lam, T.J.G.M. Prevalence of extended-spectrum and AmpC β-lactamase-producing Escherichia coli in young calves on Dutch dairy farms. J. Dairy Sci. 2023, 106, 4257–4265. [Google Scholar] [CrossRef] [PubMed]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, G. Innere Medizin und Chirurgie des Rindes; Dirksen, G., Gründer, H.D., Stöber, M., Eds.; Thieme Medical Publishers: Stuttgart, Germany, 2006; pp. 561–572. [Google Scholar]
- Wieler, L.H.; Ewers, C.; Selbitz, H.J. Gramnegative fakultativ anaerobe Stäbchenbakterien. In Tiermedizinische Mikrobiologie, Infektions-und Seuchenlehre, 10th ed.; Selbitz, H.J., Truyen, U., Valentin-Weigand, P., Eds.; Georg Thieme Verlag: Stuttgard, Germany, 2015; pp. 190–201. ISBN 978-3-8304-1262-5. [Google Scholar]
- Poolman, J.T.; Wacker, M. Extraintestinal Pathogenic Escherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J. Infect. Dis. 2016, 213, 6–13. [Google Scholar] [CrossRef]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef]
- Dale, A.P.; Woodford, N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J. Infect. 2015, 71, 615–626. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, 10–1128. [Google Scholar] [CrossRef]
- Knöppel, A.; Näsvall, J.; Andersson, D.I. Evolution of Antibiotic Resistance without Antibiotic Exposure. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Schink, A.-K.; Kadlec, K.; Kaspar, H.; Mankertz, J.; Schwarz, S. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J. Antimicrob. Chemother. 2013, 68, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Lyon, G.J.; Novick, R.P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 2004, 25, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Coates, R.; Moran, J.; Horsburgh, M.J. Staphylococci: Colonizers and pathogens of human skin. Future Microbiol. 2014, 9, 75–91. [Google Scholar] [CrossRef]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. Invited Review: The Role of Cow, Pathogen, and Treatment Regimen in the Therapeutic Success of Bovine Staphylococcus aureus Mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef]
- Kumar, A.; Kaushik, P.; Anjay; Kumar, P.; Kumar, M. Prevalence of methicillin-resistant Staphylococcus aureus skin and nasal carriage isolates from bovines and its antibiogram. Vet. World 2017, 10, 593–597. [Google Scholar] [CrossRef]
- Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evolut. 2014, 21, 602–615. [Google Scholar] [CrossRef]
- Loncaric, I.; Keinprecht, H.; Irimaso, E.; Cabal-Rosel, A.; Stessl, B.; Ntakirutimana, C.; Marek, L.; Fischer, O.W.; Szostak, M.P.; Oberrauch, C.; et al. Diversity of Staphylococcus aureus isolated from nares of ruminants. J. Appl. Microbiol. 2024, 135, lxad304. [Google Scholar] [CrossRef]
- Paterson, G.K.; Harrison, E.M.; Holmes, M.A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014, 22, 42–47. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Ruppitsch, W.; Lepuschitz, S.; Schauer, B.; Feßler, A.T.; Krametter-Frötscher, R.; Harrison, E.M.; Holmes, M.A.; et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019, 230, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Müller, E.; Schwarz, S.; Hotzel, H.; Ehricht, R. Rapid Microarray-Based Identification of Different mecA Alleles in Staphylococci. Antimicrob. Agents Chemother. 2012, 56, 5547–5554. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Feßler, A.T.; Loncaric, I.; Wu, C.; Kadlec, K.; Wang, Y.; Shen, J. Antimicrobial Resistance among Staphylococci of Animal Origin. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef]
- Shore, A.C.; Deasy, E.C.; Slickers, P.; Brennan, G.; O’Connell, B.; Monecke, S.; Ehricht, R.; Coleman, D.C. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 3765–3773. [Google Scholar] [CrossRef]
- García-Álvarez, L.; Holden, M.T.G.; Lindsay, H.; Webb, C.R.; Brown, D.F.J.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-positive Staphylococcus aureus (CC130-MRSA-XI) in diseased European hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Eight Informational Supplement M100-28; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Braun, S.D.; Jamil, B.; Syed, M.A.; Abbasi, S.A.; Weiß, D.; Slickers, P.; Monecke, S.; Engelmann, I.; Ehricht, R. Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. Future Microbiol. 2018, 13, 1225–1246. [Google Scholar] [CrossRef]
- Grünzweil, O.M.; Palmer, L.; Cabal, A.; Szostak, M.P.; Ruppitsch, W.; Kornschober, C.; Korus, M.; Misic, D.; Bernreiter-Hofer, T.; Korath, A.D.J.; et al. Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals. Int. J. Mol. Sci. 2021, 22, 5905. [Google Scholar] [CrossRef]
- Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Misic, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 9, 1676. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylotyping method revisited: Improvement of specificity and detection of new phylogroups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef] [PubMed]
- Keinprecht, H.; Irimaso, E.; Rosel, A.C.; Stessl, B.; Ntakirutimana, C.; Marek, L.; Fischer, O.W.; Szostak, M.P.; Zöchbauer, J.; Wittek, T.; et al. Diversity of Staphylococcus aureus associated with mastitis from dairy cows in Rwanda. J. Glob. Antimicrob. Resist. 2024, 36, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Bedenić, B.; Luxner, J.; Car, H.; Sardelić, S.; Bogdan, M.; Varda-Brkić, D.; Šuto, S.; Grisold, A.; Beader, N.; Zarfel, G. Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic. Pathogens 2023, 12, 677. [Google Scholar] [CrossRef]
- Braun, S.D.; Monecke, S.; Thürmer, A.; Ruppelt, A.; Makarewicz, O.; Pletz, M.; Reiβig, A.; Slickers, P.; Ehricht, R. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS ONE 2014, 9, e102232. [Google Scholar] [CrossRef]
- Braun, S.D.; Ahmed, M.F.E.; El-Adawy, H.; Hotzel, H.; Engelmann, I.; Weiß, D.; Monecke, S.; Ehricht, R. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt. Front. Microbiol. 2016, 7, 1020. [Google Scholar] [CrossRef]
- Monecke, S.; Slickers, P.; Ehricht, R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol. Med. Microbiol. 2008, 53, 237–251. [Google Scholar] [CrossRef]
- Loncaric, I.; Lepuschitz, S.; Ruppitsch, W.; Trstan, A.; Andreadis, T.; Bouchlis, N.; Marbach, H.; Schauer, B.; Szostak, M.P.; Feßler, A.T.; et al. Increased genetic diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from companion animals. Vet. Microbiol. 2019, 235, 118–126. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Firth, C.L.; Käsbohrer, A.; Pless, P.; Koeberl-Jelovcan, S.; Obritzhauser, W. Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms-A Pilot Study. Antibiotics 2022, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Hille, K.; Felski, M.; Ruddat, I.; Woydt, J.; Schmid, A.; Friese, A.; Fischer, J.; Sharp, H.; Valentin, L.; Michael, G.B.; et al. Association of farm-related factors with characteristics profiles of extended-spectrum β-lactamase-/plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolates from German livestock farms. Vet. Microbiol. 2018, 223, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Valat, C.; Auvray, F.; Forest, K.; Métayer, V.; Gay, E.; Peytavin de Garam, C.; Madec, J.-Y.; Haenni, M. Phylogenetic grouping and virulence potential of extended-spectrum-β-lactamase-producing Escherichia coli strains in cattle. Appl. Environ. Microbiol. 2012, 78, 4677–4682. [Google Scholar] [CrossRef] [PubMed]
- Nüesch-Inderbinen, M.; Hänni, C.; Zurfluh, K.; Hartnack, S.; Stephan, R. Antimicrobial resistance profiles of Escherichia coli and prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in calves from organic and conventional dairy farms in Switzerland. Microbiologyopen 2022, 11, e1269. [Google Scholar] [CrossRef]
- Ishii, S.; Meyer, K.P.; Sadowsky, M.J. Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Appl. Environ. Microbiol. 2007, 73, 5703–5710. [Google Scholar] [CrossRef]
- Higgins, J.; Hohn, C.; Hornor, S.; Frana, M.; Denver, M.; Joerger, R. Genotyping of Escherichia coli from environmental and animal samples. J. Microbiol. Methods. 2007, 70, 227–235. [Google Scholar] [CrossRef]
- Carlos, C.; Pires, M.M.; Stoppe, N.C.; Hachich, E.M.; Sato, M.I.Z.; Gomes, T.A.T.; Amaral, L.A.; Ottoboni, L.M.M. Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol. 2010, 10, 161. [Google Scholar] [CrossRef]
- Baldy-Chudzik, K.; Mackiewicz, P.; Stosik, M. Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Vet. Microbiol. 2008, 131, 173–184. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Kleist, J.F.; Schütz, A.K.; Bachmann, L. Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics 2022, 11, 940. [Google Scholar] [CrossRef]
- Werner, T.; Käsbohrer, A.; Wasner, B.; Köberl-Jelovcan, S.; Vetter, S.G.; Egger-Danner, C.; Fuchs, K.; Obritzhauser, W.; Firth, C.L. Antimicrobial resistance and its relationship with antimicrobial use on Austrian dairy farms. Front. Vet. Sci. 2023, 10, 1225826. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Bosquet, G.; Bastien, J.; Benoit, F.; Gay, E. Effects of antimicrobial exposure on the antimicrobial resistance of Escherichia coli in the digestive flora of dairy calves. Prev. Vet. Med. 2020, 185, 105177. [Google Scholar] [CrossRef] [PubMed]
- Agga, G.E.; Galloway, H.O.; Netthisinghe, A.M.P.; Schmidt, J.W.; Arthur, T.M. Tetracycline-Resistant, Third-Generation Cephalosporin-Resistant, and Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Beef Cow-Calf Production System. J. Food Prot. 2022, 85, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Agga, G.E.; Galloway, H.O. Dynamics of Extended-spectrum Beta-lactamase-producing, Third-generation Cephalosporin-resistant and Tetracycline-resistant Escherichia coli in Feedlot Cattle With or Without Tylosin Administration. J. Food Prot. 2023, 86, 100144. [Google Scholar] [CrossRef]
- Morris, C.; Wickramasingha, D.; Abdelfattah, E.M.; Pereira, R.V.; Okello, E.; Maier, G. Prevalence of antimicrobial resistance in fecal Escherichia coli and Enterococcus spp. isolates from beef cow-calf operations in northern California and associations with farm practices. Front. Microbiol. 2023, 14, 1086203. [Google Scholar] [CrossRef]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef]
- Abe, C.M.; Salvador, F.A.; Falsetti, I.N.; Vieira, M.A.M.; Blanco, J.; Blanco, J.E.; Blanco, M.; Machado, A.M.O.; Elias, W.P.; Hernandes, R.T.; et al. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 2008, 52, 397–406. [Google Scholar] [CrossRef]
- Mihailovskaya, V.S.; Remezovskaya, N.B.; Zhdanova, I.N.; Starčič Erjavec, M.; Kuznetsova, M.V. Virulence potential of faecal Escherichia coli strains isolated from healthy cows and calves on farms in Perm Krai. Vavilovskii. Zhurnal. Genet. Selektsii. 2022, 26, 486–494. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef]
- Krüger-Haker, H.; Ji, X.; Hanke, D.; Fiedler, S.; Feßler, A.T.; Jiang, N.; Kaspar, H.; Wang, Y.; Wu, C.; Schwarz, S. Genomic Diversity of Methicillin-Resistant Staphylococcus aureus CC398 Isolates Collected from Diseased Swine in the German National Resistance Monitoring Program GERM-Vet from 2007 to 2019. Microbiol. Spectr. 2023, 11, e0077023. [Google Scholar] [CrossRef] [PubMed]
- Ballhausen, B.; Jung, P.; Kriegeskorte, A.; Makgotlho, P.E.; Ruffing, U.; Müller, L.v.; Köck, R.; Peters, G.; Herrmann, M.; Ziebuhr, W.; et al. LA-MRSA CC398 differ from classical community acquired-MRSA and hospital acquired-MRSA lineages: Functional analysis of infection and colonization processes. Int. J. Med. Microbiol. 2014, 304, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Künzel, F.; Licka, T.; Simhofer, H.; Spergser, J.; Rosengarten, R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet. Microbiol. 2014, 168, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Entorf, M.; Peters, T. Occurrence and Characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Quarter Milk Samples From Dairy Cows in Germany. Front. Microbiol. 2019, 10, 1295. [Google Scholar] [CrossRef]
- Fessler, A.T.; Olde, R.R.G.; Rothkamp, A.; Kadlec, K.; Sampimon, O.C.; Lam, T.J.; Schwarz, S. Characterization of methicillin-resistant Staphylococcus aureus CC398 obtained from humans and animals on dairy farms. Vet. Microbiol. 2012, 160, 77–84. [Google Scholar] [CrossRef]
- Tegegne, H.A.; Koláčková, I.; Karpíšková, R. Diversity of livestock associated methicillin-resistant Staphylococcus aureus. Asian Pac. J. Trop. Med. 2017, 10, 929–931. [Google Scholar] [CrossRef]
- Kreausukon, K.; Fetsch, A.; Kraushaar, B.; Alt, K.; Müller, K.; Krömker, V.; Zessin, K.-H.; Käsbohrer, A.; Tenhagen, B.-A. Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J. Dairy Sci. 2012, 95, 4382–4388. [Google Scholar] [CrossRef]
- Paterson, G.K.; Morgan, F.J.E.; Harrison, E.M.; Cartwright, E.J.P.; Török, M.E.; Zadoks, R.N.; Parkhill, J.; Peacock, S.J.; Holmes, M.A. Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J. Antimicrob. Chemother. 2014, 69, 907–910. [Google Scholar] [CrossRef]
- Türkyılmaz, S.; Tekbıyık, S.; Oryasin, E.; Bozdogan, B. Molecular Epidemiology and Antimicrobial Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Milk. Zoonoses Public Health 2010, 57, 197–203. [Google Scholar] [CrossRef]
- Riva, A.; Borghi, E.; Cirasola, D.; Colmegna, S.; Borgo, F.; Amato, E.; Pontello, M.M.; Morace, G. Methicillin-Resistant Staphylococcus aureus in Raw Milk: Prevalence, SCCmec Typing, Enterotoxin Characterization, and Antimicrobial Resistance Patterns. J. Food Prot. 2015, 78, 1142–1146. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Angelidis, A.S.; Papadopoulos, T.; Kotzamanidis, C.; Zdragas, A.; Papa, A.; Filioussis, G.; Sergelidis, D. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in bulk tank milk, livestock and dairy-farm personnel in north-central and north-eastern Greece: Prevalence, characterization and genetic relatedness. Food Microbiol. 2019, 84, 103249. [Google Scholar] [CrossRef]
- Ji, X.; Krüger, H.; Tao, J.; Wang, Y.; Feßler, A.T.; Bai, R.; Wang, S.; Dong, Y.; Shen, J.; Wang, Y.; et al. Comparative analysis of genomic characteristics, fitness and virulence of MRSA ST398 and ST9 isolated from China and Germany. Emerg. Microbes Infect. 2021, 10, 1481–1494. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Slickers, P.; Gawlik, D.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; Jäckel, S.C.d.; Feßler, A.T.; Frank, M.; Hotzel, H.; et al. Variability of SCCmec elements in livestock-associated CC398 MRSA. Vet. Microbiol. 2018, 217, 36–46. [Google Scholar] [CrossRef] [PubMed]
- van den Eede, A.; Martens, A.; Lipinska, U.; Struelens, M.; Deplano, A.; Denis, O.; Haesebrouck, F.; Gasthuys, F.; Hermans, K. High occurrence of methicillin-resistant Staphylococcus aureus ST398 in equine nasal samples. Vet. Microbiol. 2009, 133, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Rousseau, J.; Willey, B.M.; Archambault, M.; McGeer, A.; Low, D.E. Methicillin-resistant Staphylococcus Aureus in Horses at a Veterinary Teaching Hospital: Frequency, Characterization, and Association with Clinical Disease. J. Vet. Int. Med. 2006, 20, 182–186. [Google Scholar] [CrossRef]
- Sieber, S.; Gerber, V.; Jandova, V.; Rossano, A.; Evison, J.M.; Perreten, V. Evolution of multidrug-resistant Staphylococcus aureus infections in horses and colonized personnel in an equine clinic between 2005 and 2010. Microb. Drug Resist. 2011, 17, 471–478. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Argudín, M.A.; Haesebrouck, F.; Butaye, P. Epidemiology and molecular characterization of methicillin-resistant Staphylococcus aureus nasal carriage isolates from bovines. BMC Vet. Res. 2014, 10, 153. [Google Scholar] [CrossRef]
- Vandendriessche, S.; Vanderhaeghen, W.; Larsen, J.; Mendonça, R.d.; Hallin, M.; Butaye, P.; Hermans, K.; Haesebrouck, F.; Denis, O. High genetic diversity of methicillin-susceptible Staphylococcus aureus (MSSA) from humans and animals on livestock farms and presence of SCCmec remnant DNA in MSSA CC398. J. Antimicrob. Chemother. 2014, 69, 355–362. [Google Scholar] [CrossRef]
- Schauer, B.; Szostak, M.P.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Spergser, J.; Krametter-Frötscher, R.; Loncaric, I. Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids. Vet. Microbiol. 2021, 254, 109005. [Google Scholar] [CrossRef]
- Graveland, H.; Wagenaar, J.A.; Heesterbeek, H.; Mevius, D.; van Duijkeren, E.; Heederik, D. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: Human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS ONE 2010, 5, e10990. [Google Scholar] [CrossRef]
Sample Number | Resistance Phenotype | Genotype | Phylotype | Virulence Associated Genes |
---|---|---|---|---|
K32a * | ESBL, TET, SXT | blaCTX-M-1/15, blaTEM, tet(A), dfrA1, sul2, aadA1, aadA2 | B1 | fimH1, fimH2 |
K59 | ESBL, SXT | blaCTX-M-1/15, blaTEM, dfrA14, sul2 | A | fimH1, fimH2 |
K32b * | ESBL, TET, SXT | blaCTX-M1/15, aadA1, aadA2, tet(A), sul2, dfrA1 | B1 | fimH1, fimH2, |
K63 * | ESBL, CIP, GEN, TET, SXT, CHL | blaCTX-M1/15, blaTEM, aadA1, aadA2, aphA, tet(A), sul2, sul3, dfrA12, cmlA1, floR | A | fimH1 |
K42 * | ESBL, TET, SXT | blaCTX-M1/15, blaTEM, aadA1, aadA2, tet(A), sul2, dfrA1 | B1 | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K64 * | ESBL, TET, SXT | blaCTX-M1/15, aadA4, tet(A), sul2, dfrA17 | B1 | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K47 * | ESBL, TET, SXT | blaCTX-M1/15, blaTEM, aadA1, aadA2, tet(A), sul2, dfrA1, dfrA5 | B1 | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K75 * | ESBL, CIP, TET, SXT, CHL | blaCTX-M1/15, blaTEM, aadA4, tet(A), tet(B), dfrA17, cat | B1 | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K48 * | ESBL, TET, SXT | blaCTX-M1/15, blaTEM, aadA1, aadA2, tet(A), sul2, dfrA1, dfrA5 | B1 | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K89 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA14 | A | fimH1, fimH2 |
K50 | ESBL | blaCTX-M9, blaTEM, dfrA14 | E clades | fimH1, fimH2 |
K95 * | ESBL, CIP, SXT, CHL | blaCTX-M1/15, aadA1, aadA2, tet(A), sul3, dfrA12, cmlA1 | B1 | fimH1, hlyA-var2 |
K51 * | ESBL, CIP, TET, SXT, CHL | blaCTX-M1/15, blaTEM, tet(A), sul2, dfrA14, floR | A | fimH1, fimH2 |
K99 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA14 | A | fimH1, fimH2, papC1, papC2, iucD1, iucD2 |
K52 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA14 | A | fimH1, fimH2 |
K1 * | ESBL, CIP, GEN, TET, SXT, CHL | blaCTX-M1/15, aadA1, aadA2, aphA, tet(A), sul1, dfrA1, dfrA5 | A | fimH1, hlyA-var2 |
K6 * | AmpC, ESBL, CIP, GEN, TET, SXT, CHL | blaCTX-M1/15, blaTEM, blaACT, tet(A), tet(B), sul1, sul2, dfrA5, dfrA7, dfrA17 | B1 | fimH1, fimH2 |
K24 * | ESBL, TET, SXT | blaCTX-M1/15, blaTEM, aadA1, aadA2, tet(A), sul2, dfrA1 | B1 | fimH1, fimH2 |
K87 * | ESBL, CIP, TET, SXT, CHL | blaCTX-M9, blaTEM, dfrA14, floR | A | fimH1, fimH2 |
K98 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA14 | A | fimH1, fimH2 |
K100 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA5, dfrA14 | A | fimH1, fimH2 |
K101 | ESBL, SXT | blaCTX-M1/15, blaTEM, sul2, dfrA5, dfrA14 | A | fimH1, fimH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdank, L.; Loncaric, I.; Braun, S.D.; Müller, E.; Monecke, S.; Ehricht, R.; Krametter-Frötscher, R. Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals 2024, 14, 3383. https://doi.org/10.3390/ani14233383
Abdank L, Loncaric I, Braun SD, Müller E, Monecke S, Ehricht R, Krametter-Frötscher R. Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals. 2024; 14(23):3383. https://doi.org/10.3390/ani14233383
Chicago/Turabian StyleAbdank, Lisa, Igor Loncaric, Sascha D. Braun, Elke Müller, Stefan Monecke, Ralf Ehricht, and Reinhild Krametter-Frötscher. 2024. "Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle" Animals 14, no. 23: 3383. https://doi.org/10.3390/ani14233383
APA StyleAbdank, L., Loncaric, I., Braun, S. D., Müller, E., Monecke, S., Ehricht, R., & Krametter-Frötscher, R. (2024). Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals, 14(23), 3383. https://doi.org/10.3390/ani14233383