Trophic Niche Differentiation in Two Sympatric Nuthatch Species (Sitta yunnanensis and Sitta nagaensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.2.1. Bird Feather Collection
2.2.2. Food Source Sample Collection
2.3. Sample Processing and Testing
2.4. Data Processing
3. Results
3.1. Stable Isotope Characteristics of Food Sources
3.2. Stable Isotope Results for S. yunnanensis and S. nagaensis Samples
3.3. Food Source Composition from S. yunnanensis and S. nagaensis Feathers
3.4. Niche Relationships Reflected by Feather Samples from S. yunnanensis and S. nagaensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonathan Davies, T.; Meiri, S.; Barraclough, T.G.; Gittleman, J.L. Species co-existence and character divergence across carnivores. Ecol. Lett. 2007, 10, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hanane, S. Nest-niche differentiation in two sympatric Streptopelia species from a North African agricultural area: The role of human presence. Ecol. Res. 2015, 30, 573–580. [Google Scholar] [CrossRef]
- Hanane, S.; Yassin, M. Nest-niche differentiation in two sympatric columbid species from a Mediterranean Tetraclinis woodland: Considerations for forest management. Acta Oecologica 2017, 78, 47–52. [Google Scholar] [CrossRef]
- Bosenbecker, C.; Bugoni, L. Trophic niche similarities of sympatric Turdus thrushes determined by fecal contents, stable isotopes, and bipartite network approaches. Ecol. Evol. 2020, 10, 9073–9084. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Kaboli, M.; Ashrafi, S.; Mofidi-Neyestanak, M.; Yousefi, M.; Rezaei, A.; Stuart, Y. Trophic niche partitioning between two Rock Nuthatches (Sitta tephronota & Sitta neumayer) in a contact zone in Iran. J. Zool. 2016, 299, 116–124. [Google Scholar] [CrossRef]
- Shen, G.; Tan, S.; Yang, Q.; Sun, X.Y.; Sun, X.W.; Wang, X. The prevalence of species-habitat association is not adequate for justifying the niche differentiation hypothesis. Community Ecol. 2018, 19, 45–52. [Google Scholar] [CrossRef]
- Hayashi, K.; Tachihara, K.; Reimer, J.D. Patterns of coexistence of six anemonefish species around subtropical Okinawa-jima Island, Japan. Coral Reefs 2018, 37, 1027–1038. [Google Scholar] [CrossRef]
- Salinas-Ramos, V.B.; Ancillotto, L.; Cistrone, L.; Nastasi, C.; Bosso, L.; Smeraldo, S.; Sánchez Cordero, V.; Russo, D. Artificial illumination influences niche segregation in bats. Environ. Pollut. 2021, 284, 117187. [Google Scholar] [CrossRef]
- Monterroso, P.; Rebelo, P.; Alves, P.C.; Ferreras, P. Niche partitioning at the edge of the range: A multidimensional analysis with sympatric martens. J. Mammal. 2016, 97, 928–939. [Google Scholar] [CrossRef]
- Zhong, H.; Li, F.; Diaz-Sacco, J.J.; Shi, K. Dietary and temporal partitioning facilitates coexistence of sympatric carnivores in the Everest region. Ecol. Evol. 2022, 12, e9531. [Google Scholar] [CrossRef]
- Barabas, G.; Michalska-Smith, M.J.; Allesina, S. The Effect of Intra- and Interspecific Competition on Coexistence in Multispecies Communities. Am. Nat. 2016, 188, E1–E12. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, Y.; Zhang, B.; Wu, Y.; He, X.; Ran, J.; Zeng, T. Overlap and selection of dust-bathing sites among three sympatric montane galliform species. Auk 2018, 135, 1076–1086. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Price, M.; Yang, N.; Liu, W.; Zhu, B.; Zhong, X.; Ran, J. Niche partitioning among three montane ground-dwelling pheasant species along multiple ecological dimensions. IBIS 2020, 163, 171–182. [Google Scholar] [CrossRef]
- Gameiro, J.; Catry, T.; Marcelino, J.; Franco, A.M.A.; Palmeirim, J.M.; Catry, I. High trophic niche overlap in mixed-species colonies using artificial nests. IBIS 2022, 164, 1073–1085. [Google Scholar] [CrossRef]
- Flores-Escobar, E.; Sanpera, C.; Jover, L.; Cortes-Ortiz, L.; Rangel-Negrin, A.; Canales-Espinosa, D.; Dias, P.A.D. Isotopic niche partitioning in two sympatric howler monkey species. Am. J. Phys. Anthr. 2020, 172, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Corti, C.; Biaggini, M.; Zhao, Y.; Cianferoni, F. The Trophic Niche of Two Sympatric Species of Salamanders (Plethodontidae and Salamandridae) from Italy. Animals 2022, 12, 2221. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.Y.; Lu, G.Y.; Zhong, X.Y.; Yang, X.J. Winter diet and food selection of the Black-necked CraneGrus nigricollisin Dashanbao, Yunnan, China. PeerJ 2016, 4, e1968. [Google Scholar] [CrossRef] [PubMed]
- Gasperin, G.; Aurélio Pizo, M. Frugivory and habitat use by thrushes (Turdus spp.) in a suburban area in south Brazil. Urban. Ecosyst. 2009, 12, 425–436. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, J.; Lei, Y.; Wang, C.; Qing, B.; Ding, C. Using stable isotope to compare the habitat use and trophic level between the new and old breeding range of wild Crested Ibis in the early breeding season. Avian Res. 2022, 13, 100007. [Google Scholar] [CrossRef]
- Dalerum, F.; Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 2005, 144, 647–658. [Google Scholar] [CrossRef]
- Dehnhard, N.; Achurch, H.; Clarke, J.; Michel, L.N.; Southwell, C.; Sumner, M.D.; Eens, M.; Emmerson, L.; Fayet, A. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? J. Anim. Ecol. 2019, 89, 104–119. [Google Scholar] [CrossRef]
- Quillfeldt, P.; McGill, R.A.; Masello, J.F.; Poisbleau, M.; van Noordwijk, H.; Demongin, L.; Furness, R.W. Differences in the stable isotope signatures of seabird egg membrane and albumen--implications for non-invasive studies. Rapid Commun. Mass. Spectrom. 2009, 23, 3632–3636. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gong, Y.; Chen, X.; Dai, X.; Zhu, J. Trophic ecology of sharks in the mid-east Pacific ocean inferred from stable isotopes. J. Ocean. Univ. China 2013, 13, 278–282. [Google Scholar] [CrossRef]
- Potapov, A.M.; Tiunov, A.V.; Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. Camb. Philos. Soc. 2018, 94, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Newsome, S.; Rio, C.; Bearhop, S.; Phillips, D. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429–436. [Google Scholar] [CrossRef]
- Yuan, Q.; Guo, Q.; Cao, J.; Luo, X.; Duan, Y. Description of the Three Complete Mitochondrial Genomes of Sitta (S. himalayensis, S. nagaensis, and S. yunnanensis) and Phylogenetic Relationship (Aves: Sittidae). Genes 2023, 14, 589. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.; Li, Y.; Yuan, Q.; He, M.; Xu, X.; Chen, G.; Zhang, W.; Duan, Y. Nest-Site Features and Breeding Ecology of Chestnut-Vented Nuthatch Sitta nagaensis in Southwestern China. Animals 2023, 13, 2034. [Google Scholar] [CrossRef] [PubMed]
- Marx, M.; Schumm, Y.R.; Kardynal, K.J.; Hobson, K.A.; Rocha, G.; Zehtindjiev, P.; Bahkaloudis, D.; Metzger, B.; Cecere, J.G.; Spina, F.; et al. Feather stable isotopes (δ2Hf and δ13Cf) identify the Sub-Saharan wintering grounds of turtle doves from Europe. Eur. J. Wildl. Res. 2022, 68, 21. [Google Scholar] [CrossRef]
- Doucette, J.L.; Wissel, B.; Somers, C.M. Cormorant–fisheries conflicts: Stable isotopes reveal a consistent niche for avian piscivores in diverse food webs. Ecol. Appl. 2011, 21, 2987–3001. [Google Scholar] [CrossRef]
- Cai, W.Z.; Hu, L. Chinese Insect Atlas; Shanxi Science and Technology Press: Taiyuan, China, 2015. (In Chinese) [Google Scholar]
- Zhang, W.W. China Insect Ecology Map; Chongqing University Press: Chongqing, China, 2011. (In Chinese) [Google Scholar]
- Zhang, W.W. Insect family Tree; Chongqing University Press: Chongqing, China, 2014. (In Chinese) [Google Scholar]
- Post, D.M.; Layman, C.A.; Arrington, D.A.; Takimoto, G.; Quattrochi, J.; Montana, C.G. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 2007, 152, 179–189. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Post, D. Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and Assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Parra, G.J.; Wojtkowiak, Z.; Peters, K.J.; Cagnazzi, D. Isotopic niche overlap between sympatric Australian snubfin and humpback dolphins. Ecol. Evol. 2022, 12, e8937. [Google Scholar] [CrossRef]
- Yao, H.; Wang, P.; Davison, G.; Wang, Y.; McGowan, P.J.K.; Wang, N.; Xu, J. How do Snow Partridge (Lerwa lerwa) and Tibetan Snowcock (Tetraogallus tibetanus) coexist in sympatry under high-elevation conditions on the Qinghai-Tibetan Plateau? Ecol. Evol. 2021, 11, 18331–18341. [Google Scholar] [CrossRef]
- Vieira, E.M.; Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 2006, 272, 57–63. [Google Scholar] [CrossRef]
- Ogloff, W.R.; Yurkowski, D.J.; Davoren, G.K.; Ferguson, S.H. Diet and isotopic niche overlap elucidate competition potential between seasonally sympatric phocids in the Canadian Arctic. Mar. Biol. 2019, 166, 103. [Google Scholar] [CrossRef]
- Reisinger, R.R.; Carpenter-Kling, T.; Connan, M.; Cherel, Y.; Pistorius, P.A. Foraging behaviour and habitat-use drives niche segregation in sibling seabird species. R. Soc. Open Sci. 2020, 7, 200649. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, S.R.; Possamai, B.; Schneck, F.; Hoeinghaus, D.J.; Albertoni, E.F.; Garcia, A.M. Trophic niches and diet shifts of juvenile mullet species coexisting in marine and estuarine habitats. J. Mar. Biol. Assoc. United Kingd. 2021, 101, 431–441. [Google Scholar] [CrossRef]
- Rioux, E.; Pelletier, F.; St-Laurent, M.H. Trophic niche partitioning between two prey and their incidental predators revealed various threats for an endangered species. Ecol. Evol. 2022, 12, e8742. [Google Scholar] [CrossRef]
- Olsson, K.; Stenroth, P.; Nyström, P.E.R.; Granéli, W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish? Freshw. Biol. 2009, 54, 1731–1740. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Z.; Gu, B.; Liu, D.; Li, X.; Wang, Y. Isotopic niche overlap of two planktivorous fish in southern China. Limnology 2010, 12, 151–155. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Choi, S.H.; Banjade, M.; Jin, S.D.; Park, S.M.; Kunwar, B.; Oh, H.S. Spatiotemporal Niche Separation among Passeriformes in the Halla Mountain Wetland of Jeju, Republic of Korea: Insights from Camera Trap Data. Animals 2024, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Fraissinet, M.; Ancillotto, L.; Migliozzi, A.; Capasso, S.; Bosso, L.; Chamberlain, D.E.; Russo, D. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landsc. Ecol. 2022, 38, 293–305. [Google Scholar] [CrossRef]
Food Source | Sample Size (n) | S. nagaensis Photograph Number (n) | Stable Isotope Signature | Food Contribution Rate (%) | ||
---|---|---|---|---|---|---|
δ13C‰ | δ15N‰ | S. yunnanensis Feather | S. nagaensis Feather | |||
Hemiptera | 7 | 3 | −25.24 ± 2.35 | 1.86 ± 2.90 | 7.76 | 22.41 |
Lepidoptera | 17 | 9 | −29.48 ± 3.38 | 2.38 ± 3.19 | 2.29 | 4.12 |
Hymenoptera | 4 | 2 | −25.74 ± 0.60 | 2.89 ± 2.24 | 3.91 | 9.56 |
Coleoptera | 12 | 7 | −25.20 ± 3.58 | 3.33 ± 3.24 | 3.96 | 9.30 |
Diptera | 3 | 13 | −24.70 ± 0.63 | 3.97 ± 1.24 | 3.36 | 9.02 |
Orthoptera | 4 | 11 | −23.98 ± 3.46 | 0.90 ± 0.26 | 78.69 | 45.56 |
Isotope | S. yunnanensis | S. nagaensis |
---|---|---|
δ13C‰ | −20.95 ± 0.77 | −23.24 ± 0.81 |
δ15N‰ | 3.67 ± 1.07 | 3.50 ± 0.54 |
TA (‰2) | 6.44 | 1.73 |
SEAc (‰2) | 2.69 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Lu, X.; Xie, C.; Zhang, J.; Xu, X.; Qian, Y.; Luo, X.; Duan, Y. Trophic Niche Differentiation in Two Sympatric Nuthatch Species (Sitta yunnanensis and Sitta nagaensis). Animals 2024, 14, 1146. https://doi.org/10.3390/ani14081146
Guo Q, Lu X, Xie C, Zhang J, Xu X, Qian Y, Luo X, Duan Y. Trophic Niche Differentiation in Two Sympatric Nuthatch Species (Sitta yunnanensis and Sitta nagaensis). Animals. 2024; 14(8):1146. https://doi.org/10.3390/ani14081146
Chicago/Turabian StyleGuo, Qiang, Xi Lu, Chongxin Xie, Jiansong Zhang, Xianyin Xu, Yuhan Qian, Xu Luo, and Yubao Duan. 2024. "Trophic Niche Differentiation in Two Sympatric Nuthatch Species (Sitta yunnanensis and Sitta nagaensis)" Animals 14, no. 8: 1146. https://doi.org/10.3390/ani14081146
APA StyleGuo, Q., Lu, X., Xie, C., Zhang, J., Xu, X., Qian, Y., Luo, X., & Duan, Y. (2024). Trophic Niche Differentiation in Two Sympatric Nuthatch Species (Sitta yunnanensis and Sitta nagaensis). Animals, 14(8), 1146. https://doi.org/10.3390/ani14081146