Effect of Sempervivum tectorum Extract on Some Biomarkers of Reproductive Function and Levels of Some Trace Elements in Male Rats Exposed to Aluminum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Extract
2.2. Animals and the Experimental Protocol
- Group I (NTC—no-treatment control, received distilled water).
- Group II (NC—negative control) received 1 mg/L aluminum as aluminum sulfate (AS) in drinking water (1 mg/L being the level that demonstrated marked effects on reproductive function as were observed in a previous study) [3].
- Group III (E1 received 1 mg/L AS + 8% S. tectorum extract as drinking water).
- Group IV (PC—positive control received 8% S. tectorum as drinking water).
- Group V (E2 received 1 mg/L AS for three months, and thereafter, 8% S. tectorum for one month).
2.3. Samples Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Body Weight and the Weight of Genital Organs and Sexual Accessory Glands
3.2. Biochemical Reproductive Biomarkers
3.3. Histological Structure
3.4. Trace Elements Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Composition | Unit | Content Value |
---|---|---|
Polyphenols | % | 0.621 |
Tannins | % | 0.169 |
Proanthocyanidins | % | 0.122 |
Flavonoids (O-glycosides) | % | 0.137 |
Flavonoids (C-glycosides) | % | 0.195 |
Anthocyanidins | % | 0.019 |
Al | mg/kg | 92.14 |
Ca | mg/kg | 82,351.01 |
P | mg/kg | 2431.66 |
Mn | mg/kg | 316.15 |
Zn | mg/kg | 195.28 |
Fe | mg/kg | 36.45 |
Mg | mg/kg | 7258.14 |
Cu | mg/kg | 1.85 |
Ni | mg/kg | 0.59 |
K | mg/kg | 32,574.11 |
Appendix B
Composition | Unit | Content Value |
---|---|---|
Protein | % | 15 |
Fat | % | 10 |
Cellulose | % | 8 |
Ash | % | 3 |
Ca | % | 0.5 |
P | % | 0.4 |
Vit. A | IU/kg | 8500 |
Vit. D3 | IU/kg | 1500 |
Vit. E | mg/kg | 20 |
Mn | mg/kg | 52 |
Zn | mg/kg | 30 |
Fe | mg/kg | 40 |
Mg | mg/kg | 55 |
Cu | mg/kg | 8 |
I | mg/kg | 1.5 |
Se | mg/kg | 0.1 |
Appendix C
Specification | Groups | ||||
---|---|---|---|---|---|
NTC (n = 7) | NC (n = 7) | E1 (n = 7) | PC (n = 7) | E2 (n = 7) | |
Food intake (g) | 25.8 ± 1.15 | 25.3 ± 1.54 | 25.1 ± 1.18 | 24.9 ± 1.22 | 24.5 ± 1.65 |
Water/S. tectorum extract intake (mL) | 29.2 ± 0.12 | 30.1 ± 1.03 | 29.5 ± 0.52 | 29.1 ± 0.6 | 28.8 ± 0.55 |
References
- Wang, B.; Zhu, Y.; Zhang, H.; Liu, L.; Li, G.; Song, Y.; Li, Y. Effects of aluminium chloride on the serum protein, bilirubin and hepatic trace elements in chickens. Toxicol. Ind. Health 2016, 32, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A. Aluminum reproductive toxicity: A summary and interpretation of scientific reports. Crit. Rev. Toxicol. 2020, 50, 551–593. [Google Scholar] [CrossRef] [PubMed]
- Muselin, F.; Cristina, R.T.; İgna, V.; Dumitrescu, E.; Brezovan, D.; Trif, A. The consequences of aluminium intake on reproductive function in male rats: A three-generation study. Turk. J. Med. Sci. 2016, 46, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- D’Haese, P.C.; Couttenye, M.M.; Lamberts, L.V.; Elseviers, M.M.; Goodman, W.G.; Schrooten, I.; Cabrera, W.E.; de Broe, M.E. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin. Chem. 1999, 45, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L. Aluminum and other metals in Alzheimer’s disease: A review of potential therapy with chelating agents. J. Alzheimers Dis. 2006, 10, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Zatta, P.; Drago, D.; Bolognin, S.; Sensi, S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol. Sci. 2009, 30, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Llobet, J.M.; Colomina, M.T.; Sirvent, J.J.; Domingo, J.L.; Corbella, J. Reproductive toxicology of aluminum in male mice. Fundam. Appl. Toxicol. 1995, 25, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Lu, Y.F.; Hsu, G.S.W. The influence of aluminum exposure on male reproduction and offspring in mice. Environ. Toxicol. Pharmacol. 2005, 20, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Hsu, G.S.W.; Chuang, C.J.; Chen, P.C. Aluminum accumulation induced testicular oxidative stress and altered selenium in mice. Environ. Toxicol. Pharmacol. 2009, 27, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.I.; Kamel, I.K.; El-Guendi, M.I.; El-Demerdash, F.M. An in vitro study on reproductive toxicity of aluminum chloride on rabbit sperm: The protective role of some antioxidants. Toxicology 2007, 239, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Akinola, B.K.; Olawuyi, T.S.; Ukwenya, V.O.; Daniel, L.D.; Faleye, B.C. Protective effects of aloe vera gel (aloe baberdensis Miller) on aluminum chloride-induced reproductive toxicity in male Wistar rats. JBRA Assist. Reprod. 2021, 25, 193–201. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lima, D.; da Silva Gomes, L.; de Sousa Figueredo, E.; Silva, Y.I.F.; Silva, E.M.; de Souza Bovi, T.; Taboga, S.R.; Marques, M.R.; Biancardi, M.F.; Dos Santos, F.C.A. Subacute exposure to aluminum chloride causes prolonged morphological insults in the ventral male prostate and in the female prostate of adult gerbils. Environ. Toxicol. 2022, 37, 299–309. [Google Scholar] [CrossRef]
- Yalçın, T.; Kaya, S.; Kuloğlu, T. N-Acetylcysteine May Regulate Altered Meteorin-Like Levels in Testicular Tissue due to Aluminum Exposure. Biol. Trace Elem. Res. 2023, 201, 5335–5345. [Google Scholar] [CrossRef] [PubMed]
- Berihu, B.A. Histological and Functional Effect of Aluminium on Male Reproductive System. Int. J. Pharma Sci. Res. 2015, 6, 1122–1132. [Google Scholar]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. Human exposure to aluminium. Environ. Sci. Process. Impacts 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Muselin, F.; Trif, A.; Stana, G.L.; Cristina, R.T.; Gavrila, C.; Macinic, I.; Dumitrescu, E. Protective Effects of Aqueous Extract of Sempervivum tectorum L. (Crassulaceae) on Aluminium-Induced Oxidative Stress in Rat Blood. Trop. J. Pharm. Res. 2014, 13, 179–184. [Google Scholar] [CrossRef]
- Gentscheva, G.; Karadjova, I.; Minkova, S.; Nikolova, K.; Andonova, V.; Petkova, N.; Milkova-Tomova, I. Optical Properties and Antioxidant Activity of Water-Ethanolic Extracts from Sempervivum tectorum L. from Bulgaria. Horticulturae 2021, 7, 520. [Google Scholar] [CrossRef]
- Kovac-Besovic, E.E.; Duric, K.; Suljevic, L. Investigation of Flavonoids Presence in Houseleek, Sempervivum tectorum L. Sci. Pharm. 2009, 77, 256. [Google Scholar] [CrossRef]
- Cattaneo, F.; De Marino, S.; Parisi, M.; Festa, C.; Castaldo, M.; Finamore, C.; Duraturo, F.; Zollo, C.; Ammendola, R.; Zollo, F.; et al. Wound healing activity and phytochemical screening of purified fractions of Sempervivum tectorum L. leaves on HCT 116. Phytochem. Anal. 2019, 30, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Alberti, Á.; Béni, S.; Lackó, E.; Riba, P.; Al-Khrasani, M.; Kéry, Á. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. J. Pharm. Biomed. Anal. 2012, 70, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Jankov, M.; Ristivojević, P.; Cvijetić, I.; Milojković-Opsenica, D. Assessing radical scavenging capacity of Sempervivum tectorum L. leaf extracts: An integrated high-performance thin-layer chromatography/in silico/chemometrics approach. J. Chromatogr. A 2023, 1703, 464082. [Google Scholar] [CrossRef] [PubMed]
- Alberti, Á.; Riethmüller, E.; Béni, S.; Kéry, Á. Evaluation of Radical Scavenging Activity of Sempervivum tectorum and Corylus avellana Extracts with Different Phenolic Composition. Nat. Prod. Commun. 2016, 11, 469–474. [Google Scholar] [PubMed]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 20 February 2022).
- National Research Council, Institute of Laboratory Animal Research (NRC). Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. Available online: https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-oflaboratory-animals.pdf (accessed on 20 May 2022).
- Xu, F.; Liu, Y.; Zhao, H.; Yu, K.; Song, M.; Zhu, Y.; Li, Y. Aluminum chloride caused liver dysfunction and mitochondrial energy metabolism disorder in rat. J. Inorg. Biochem. 2017, 174, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Al Murshidi, M.M.H.; Raheem, S.A.; Razaq, R.A. Some Histological and Physiological Effects of Aluminum Chloride on Some Reproductive Organs of Male Albino Mice (Musmusculus). Ann. Rom. Soc. Cell Biol. 2021, 25, 5906–5918. Available online: https://annalsofrscb.ro/index.php/journal/article/view/6609 (accessed on 15 January 2024).
- Mouro, V.G.S.; Menezes, T.P.; Lima, G.D.A.; Domingues, R.R.; Souza, A.C.F.; Oliveira, J.A.; Matta, S.L.P.; Machado-Neves, M. How Bad Is Aluminum Exposure to Reproductive Parameters in Rats? Biol. Trace Elem. Res. 2018, 183, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B. Testosterone and ill-health in aging men. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Hu, C.; Jia, L.; Zhu, Y.; Zhao, H.; Shao, B.; Wang, N.; Zhang, Z.; Li, Y. Effect of aluminium exposure on serum sex hormones and androgen receptors expression in male rats. Biol. Trace Elem. Res. 2011, 144, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Lin, C.Y.; Yeh, M.S.; Hsu, G.S.W. Aluminum-induced suppression of testosterone through nitric oxide production in male mice. Environ. Toxicol. Pharmacol. 2005, 19, 33–40. [Google Scholar] [CrossRef]
- Yousef, M.I.; Salama, A.F. Propolis protection from reproductive toxicity caused by aluminium chloride in male rats. Food Chem. Toxicol. 2009, 47, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, F.; Ye, L.; Zirkin, B.; Chen, H. Steroidogenesis in Leydig cells: Effects of aging and environmental factors. Reproduction 2017, 154, R111–R122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Z.; Sun, H.; Fu, Y.; Wang, J.; Song, M.; Li, M.; Li, Y.F.; Miao, L.G. Effects of sub-chronic aluminum chloride on spermatogenesis and testicular enzymatic activity in male rats. Life Sci. 2014, 102, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Lappano, R.; Malaguarnera, R.; Belfiore, A.; Maggiolini, M. Recent advances on the stimulatory effects of metals in breast cancer. Mol. Cell. Endocrinol. 2017, 457, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.I.; Al-Hamadani, M.Y.I.; Kamel, M.A. Reproductive toxicity of aluminum oxide nanoparticles and zinc oxide nanoparticles in male rats. Nanoparticle 2019, 1, 3–13. [Google Scholar] [CrossRef]
- Moselhy, W.A.; Helmy, N.A.; Abdel-Halim, B.R.; Nabil, T.M.; Abdel Hamid, M.I. Role of ginger against the reproductive toxicity of aluminium chloride in albino male rats. Reprod. Domest. Anim. 2012, 47, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, M.R.; Palan Mony, E.Y.; Zahed Asl, S.; Sarkaki, A.R.; Shahraki, A.R. Effect of aluminium chloride injection in lateral ventricle on serum gonadotropines, testosterone and spermatogenesis in rats. J. Med. Sci. 2008, 8, 410–414. [Google Scholar] [CrossRef]
- Mayyas, I.; Elbetieha, A.; Khamas, W.; Khamas, W.A. Evaluation of reproductive and fertility toxic potential of aluminum chloride on adult male mice. J. Anim. Vet. Adv. 2005, 4, 224–233. [Google Scholar]
- Martinez, C.S.; Uranga-Ocio, J.A.; Peçanha, F.M.; Vassallo, D.V.; Exley, C.; Miguel-Castro, M.; Wiggers, G.A. Dietary Egg White Hydrolysate Prevents Male Reproductive Dysfunction after Long-Term Exposure to Aluminum in Rats. Metabolites 2022, 12, 1188. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.S.; Arafa, M.H.; Atteia, H.H. Coenzyme Q10 and fish oil synergistically alleviate aluminum chloride-induced suppression of testicular steroidogenesis and antioxidant defense. Free Radic. Res. 2015, 49, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, J.A.; Akinpade, T.G.; Olatunji, S.Y.; Owolabi, J.O.; Enya, J.I.; Adelodun, S.T.; Fabiyi, S.O.; Desalu, A.B. Observable Protective Activities of Quercetin on Aluminum Chloride-Induced Testicular Toxicity in Adult Male Wistar Rat. J. Hum. Reprod. Sci. 2021, 14, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Odo, R.I.; Uchendu, C.N.; Okeke, S.E. Protective effects of Citrullus lanatus seed ethanol extract on aluminum chloride-induced testosterone, testicular and hematological changes in an experimental male rat model. Vet. Res. Forum 2021, 12, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G.; Varin, A.; Fulop, T. NF-kappaB, AP-1, Zinc-deficiency and aging. Biogerontology 2006, 7, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Taysi, S.; Okumus, S.; Akyuz, M. Zinc administration modulates radiation-induced oxidative injury in lens of rat. Pharmacogn. Mag. 2012, 8, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Wellejus, A.; Poulsen, H.E.; Loft, S. Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro. Free Radic. Res. 2000, 32, 75–83. [Google Scholar] [CrossRef] [PubMed]
Specification | Groups | ||||
---|---|---|---|---|---|
NTC (n = 7) | NC (n = 7) | E1 (n = 7) | PC (n = 7) | E2 (n = 7) | |
Body weight (g) | 278 ± 2.15 | 243 ± 2.22 ** | 272 ± 3.18 ## | 281 ± 2.39 | 265 ± 3.15 *,# |
Testis (g) | 2.47 ± 0.08 | 2.01 ± 0.09 * | 2.21 ± 0.07 | 2.59 ± 0.16 | 2.35 ± 0.18 # |
Epididymis (g) | 0.79 ± 0.02 | 0.37 ± 0.03 *** | 0.45 ± 0.04 * | 0.81 ± 0.04 | 0.64 ± 0.03 ## |
Prostate (g) | 0.84 ± 0.03 | 0.98 ± 0.02 * | 0.75 ± 0.03 # | 0.86 ± 0.03 | 0.72 ± 0.02 **,## |
Bulbo-urethral glands (g) | 0.31 ± 0.01 | 0.22 ± 0.04 * | 0.28 ± 0.08 | 0.36 ± 0.04 | 0.29 ± 0.03 # |
Seminal vesicles (g) | 1.31 ± 0.02 | 1.10 ± 0.03 * | 1.21 ± 0.11 | 1.42 ± 0.13 | 1.29 ± 0.14 |
Organs | Groups | Studied Trace Elements (µg/g) | ||||
---|---|---|---|---|---|---|
Al | Zn | Cu | Fe | Mn | ||
Testis | NTC (n = 7) | 3.12 ± 0.07 | 143.21 ± 9.41 | 7.56 ± 0.93 | 164.29 ± 16.39 | 1.12 ± 0.15 |
NC (n = 7) | 9.16 ± 0.94 *** | 98.18 ± 7.32 ** | 4.25 ± 0.74 ** | 111.42 ± 12.12 *** | 0.82 ± 0.04 | |
E1 (n = 7) | 5.28 ± 0.69 **,## | 112.24 ± 5.28 * | 6.35 ± 1.12 # | 134.89 ± 16.87 *,# | 1.08 ± 0.07 | |
PC (n = 7) | 2.17 ± 0.18 * | 139.47 ± 6.38 | 8.22 ± 0.98 | 183.28 ± 21.22 | 1.31 ± 0.09 | |
E2 (n = 7) | 4.54 ± 0.57 *,###,$ | 141.58 ± 11.25 # | 6.89 ± 0.65 # | 145.87 ± 12.28 *,# | 1.29 ± 0.12 # | |
Epididymis | NTC (n = 7) | 1.32 ± 0.04 | 42.56 ± 3.87 | 2.84 ± 0.15 | 107.65 ± 12.15 | 0.58 ± 0.05 |
NC (n = 7) | 3.11 ± 0.45 ** | 28.42 ± 3.63 ** | 1.65 ± 0.08 * | 109.58 ± 16.18 | 0.49 ± 0.11 | |
E1 (n = 7) | 2.47 ± 0.61 *,# | 39.51 ± 2.76 # | 1.91 ± 0.11 * | 108.24 ± 18.27 | 0.51 ± 0.15 | |
PC (n = 7) | 0.98 ± 0.06 | 40.22 ± 5.13 | 2.25 ± 0.09 | 106.29 ± 15.55 | 0.55 ± 0.09 | |
E2 (n = 7) | 1.15 ± 0.09 ##,$ | 38.65 ± 5.29 # | 1.98 ± 0.08 * | 108.97 ± 14.86 | 0.52 ± 0.08 | |
Prostate | NTC (n = 7) | 2.45 ± 0.14 | 136.22 ± 8.92 | 0.94 ± 0.08 | 75.88 ± 11.35 | 0.91 ± 0.16 |
NC (n = 7) | 5.19 ± 0.68 ** | 128.48 ± 7.55 * | 0.88 ± 0.04 | 73.27 ± 16.28 | 0.88 ± 0.09 | |
E1 (n = 7) | 3.28 ± 0.35 *,## | 131.54 ± 6.88 | 0.91 ± 0.03 | 73.98 ± 12.54 | 0.87 ± 0.06 | |
PC (n = 7) | 1.99 ± 0.64 * | 132.81 ± 9.11 | 0.91 ± 0.04 | 74.29 ± 14.96 | 0.85 ± 0.19 | |
E2 (n = 7) | 2.14 ± 0.58 ##,$$ | 130.11 ± 8.26 | 0.89 ± 0.05 | 72.51 ± 12.57 | 0.93 ± 0.16 | |
Bulbo-urethral glands | NTC (n = 7) | 0.72 ± 0.08 | 24.3 ± 6.25 | 1.12 ± 0.11 | 68.59 ± 8.45 | 0.37 ± 0.08 |
NC (n = 7) | 1.37 ± 0.19 * | 18.5 ± 3.38 * | 0.84 ± 0.02 * | 66.74 ± 5.89 | 0.33 ± 0.07 | |
E1 (n = 7) | 0.98 ± 0.07 | 21.2 ± 4.48 | 0.96 ± 0.08 | 65.38 ± 6.22 | 0.34 ± 0.06 | |
PC (n = 7) | 0.52 ± 0.07 | 25.31 ± 6.55 | 0.93 ± 0.09 | 67.29 ± 7.88 | 0.34 ± 0.09 | |
E2 (n = 7) | 1.02 ± 0.09 * | 20.35 ± 8.11 *,# | 0.93 ± 0.05 | 66.81 ± 6.34 | 0.36 ± 0.04 | |
Seminal vesicles | NTC (n = 7) | 0.94 ± 0.08 | 20.18 ± 3.45 | 4.81 ± 0.18 | 115.38 ± 12.86 | 0.64 ± 0.03 |
NC (n = 7) | 2.65 ± 0.64 *** | 16.47 ± 1.12 ** | 4.22 ± 0.11 | 121.86 ± 19.97 | 0.63 ± 0.02 | |
E1 (n = 7) | 1.41 ± 0.14 * | 18.39 ± 2.15 * | 4.39 ± 0.15 | 119.41 ± 12.55 | 0.65 ± 0.08 | |
PC (n = 7) | 0.59 ± 0.09 | 19.58 ± 3.28 | 4.28 ± 0.18 | 118.28 ± 13.65 | 0.62 ± 0.04 | |
E2 (n = 7) | 1.05 ± 0.18 # | 18.66 ± 4.45 # | 4.35 ± 0.15 | 120.55 ± 16.21 | 0.60 ± 0.08 |
Al Level in | Specification | Studied Trace Elements | |||
---|---|---|---|---|---|
Zn | Cu | Fe | Mn | ||
Testis | r | −0890 | −0.999 | −0.963 | −0.878 |
p | 0.043 | 0.0003 | 0.008 | 0.050 | |
Epididymis | r | −0.780 | −0.661 | 0.668 | −0.755 |
p | 0.120 | 0.224 | 0.218 | 0.140 | |
Prostate | r | −0.604 | −0.534 | −0.248 | −0.193 |
p | 0.281 | 0.353 | 0.687 | 0.756 | |
Bulbo-urethral gl. | r | −0.981 | −0.584 | −0.448 | −0.405 |
p | 0.003 | 0.301 | 0.450 | 0.499 | |
Seminal vesicles | r | −0.930 | −0.399 | 0.678 | 0.220 |
p | 0.022 | 0.505 | 0.208 | 0.722 |
Hormones | Specification | Studied Trace Elements | ||||
---|---|---|---|---|---|---|
Al | Zn | Cu | Fe | Mn | ||
Testosterone | r | −0.877 | 0.871 | 0.863 | 0.799 | 0.648 |
p | 0.050 | 0.054 | 0.059 | 0.104 | 0.236 | |
LH | r | −0.997 | 0.859 | 0.995 | 0.958 | 0.859 |
p | 0.001 | 0.061 | 0.004 | 0.010 | 0.062 | |
FSH | r | −0.864 | 0.684 | 0.845 | 0.819 | 0.530 |
p | 0.058 | 0.202 | 0.071 | 0.089 | 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muselin, F.; Dumitrescu, E.; Doma, A.O.; Degi, D.M.; Degi, J.; Savici, J.; Grigorescu, C.C.; Brezovan, D.; Gencia, I.; Cristina, R.T. Effect of Sempervivum tectorum Extract on Some Biomarkers of Reproductive Function and Levels of Some Trace Elements in Male Rats Exposed to Aluminum. Animals 2024, 14, 1196. https://doi.org/10.3390/ani14081196
Muselin F, Dumitrescu E, Doma AO, Degi DM, Degi J, Savici J, Grigorescu CC, Brezovan D, Gencia I, Cristina RT. Effect of Sempervivum tectorum Extract on Some Biomarkers of Reproductive Function and Levels of Some Trace Elements in Male Rats Exposed to Aluminum. Animals. 2024; 14(8):1196. https://doi.org/10.3390/ani14081196
Chicago/Turabian StyleMuselin, Florin, Eugenia Dumitrescu, Alexandru O. Doma, Diana Maria Degi, Janos Degi, Jelena Savici, Catalin Cicerone Grigorescu, Diana Brezovan, Ioana Gencia, and Romeo T. Cristina. 2024. "Effect of Sempervivum tectorum Extract on Some Biomarkers of Reproductive Function and Levels of Some Trace Elements in Male Rats Exposed to Aluminum" Animals 14, no. 8: 1196. https://doi.org/10.3390/ani14081196
APA StyleMuselin, F., Dumitrescu, E., Doma, A. O., Degi, D. M., Degi, J., Savici, J., Grigorescu, C. C., Brezovan, D., Gencia, I., & Cristina, R. T. (2024). Effect of Sempervivum tectorum Extract on Some Biomarkers of Reproductive Function and Levels of Some Trace Elements in Male Rats Exposed to Aluminum. Animals, 14(8), 1196. https://doi.org/10.3390/ani14081196